Correlated Decision Fusion Accompanied with Quality Information on a Multi-Band Pixel Basis for Land Cover Classification
Abstract
:1. Introduction
2. Study Area and Materials
3. Preprocessing—PolSAR
4. Feature Extraction—PolSAR Data
5. Feature Extraction—Landsat-8 Thermal Infrared
6. Classification
6.1. Registration
6.2. Sensor Training
6.3. Classification
7. Decision Fusion
Discussion on Fusion Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, C.; Mou, L.; Schmitt, M.; Zhu, X.X. Multiseasonal Sentinel-2 Imagery for Urban Land Cover Classification with Multibranch Residual Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1787–1791. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Y.; Pan, J.; Gao, A. Multi-Structure Joint Decision-Making Approach for Land Use Classification of High-Resolution Remote Sensing Images Based on CNNs. IEEE Access 2020, 8, 42848–42863. [Google Scholar] [CrossRef]
- Chen, S.; Useya, J.; Mugiyo, H. Decision-Level Fusion of Sentinel-1 SAR and Landsat 8 OLI Texture Features for Crop Discrimination and Classification: Case of Masvingo, Zimbabwe. Heliyon 2020, 6, e05358. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, X.; Xu, J.; Guo, L.; Lu, Y.; Zhang, R. Decision Tree-Based Classification in Coastal Area Integrating Polarimetric SAR and Optical Data. Data Technol. Appl. 2021, 56, 342–357. [Google Scholar] [CrossRef]
- Rangzan, K.; Kabolizadeh, M.; Karimi, D.; Zareie, S. Supervised Cross-Fusion Method: A New Triplet Approach to Fuse Thermal, Radar, and Optical Satellite Data for Land Use Classification. Environ. Monit. Assess. 2019, 191, 481. [Google Scholar] [CrossRef] [PubMed]
- Alifu, H.; Vuillaume, J.-F.; Johnson, B.A.; Hirabayashi, Y. Machine-Learning Classification of Debris-Covered Glaciers Using a Combination of Sentinel-1/-2 (SAR/Optical), Landsat 8 (Thermal) and Digital Elevation Data. Geomorphology 2020, 369, 107365. [Google Scholar] [CrossRef]
- Jia, S.; Zhan, Z.; Zhang, R.; Xu, M.; Ceccarelli, M.; Zhou, J.; Jiang, Z.-P. Multiple Feature-Based Superpixel-Level Decision Fusion for Hyperspectral and LiDAR Data Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1437–1452. [Google Scholar] [CrossRef]
- Bui, D.H.; Mucsi, L. Comparison of Layer-Stacking and Dempster-Shafer Theory-Based Methods Using Sentinel-1 and Sentinel-2 Data Fusion in Urban Land Cover Mapping. Geo-Spat. Inf. Sci. 2022, 25, 425–438. [Google Scholar] [CrossRef]
- Maggiolo, L.; Solarna, D.; Moser, G.; Serpico, S.B. Optical-Sar Decision Fusion with Markov Random Fields for High-Resolution Large-Scale Land Cover Mapping. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5508–5511. [Google Scholar] [CrossRef]
- Zhu, J.; Pan, J.; Jiang, W.; Yue, X.; Yin, P. SAR Image Fusion Classification Based on the Decision-Level Combination of Multi-Band Information. Remote Sens. 2022, 14, 2243. [Google Scholar] [CrossRef]
- Tabib Mahmoudi, F.; Arabsaeedi, A.; Alavipanah, S.K. Feature-Level Fusion of Landsat 8 Data and SAR Texture Images for Urban Land Cover Classification. J. Indian Soc. Remote. Sens. 2018, 47, 479–485. [Google Scholar] [CrossRef]
- Kumar, D. Urban Objects Detection from C-Band Synthetic Aperture Radar (SAR) Satellite Images through Simulating Filter Properties. Sci. Rep. 2021, 11, 6241. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yu, A.; Dong, Z.; Wang, Q. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR. Sensors 2016, 16, 973. [Google Scholar] [CrossRef] [PubMed]
- Makineci, H.B.; Karabörk, H. Evaluation Digital Elevation Model Generated by Synthetic Aperture Radar Data. ISPRS, 2016; XLI-B1, 57–62. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Chen, S.-W.; Li, Y.; Wang, X.; Xiao, S.; Sato, M. Modeling and Interpretation of Scattering Mechanisms in Polarimetric Synthetic Aperture Radar: Advances and Perspectives. IEEE Signal Process. Mag. 2014, 31, 79–89. [Google Scholar] [CrossRef]
- Sun, X.; Song, H.; Wang, R.; Li, N. High-Resolution Polarimetric SAR Image Decomposition of Urban Areas Based on a POA Correction Method. Remote Sens. Lett. 2018, 9, 363–372. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Wu, L.; Wei, G. A New Classifier for Polarimetric SAR Images. Prog. Electromagn. Res. 2009, 94, 83–104. [Google Scholar] [CrossRef]
- Abdalkadhum, A.J.; Salih, M.M.; Jasim, O.Z. Combination of Visible and Thermal Remotely Sensed Data for Enhancement of Land Cover Classification by Using Satellite Imagery. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012226. [Google Scholar] [CrossRef]
- Al-Doski, J.; Mansor, S.B.; San, H.P.; Khuzaimah, Z. Improved Land Cover Mapping Using Landsat 8 Thermal Imagery. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012022. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, L.; Xu, Y.; Ren, H.; Huang, X.; Gong, P. Exploring the Addition of Landsat 8 Thermal Band in Land-Cover Mapping. Int. J. Remote Sens. 2019, 40, 4544–4559. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Classification and Change Detection of Built-up Lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS Imageries: A Comparative Assessment of Various Spectral Indices. Ecol. Indic. 2015, 56, 205–217. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, W. A Comparative Analysis of Retrieval Algorithms of Land Surface Temperature from Landsat-8 Data: A Case Study of Shanghai, China. Int. J. Environ. Res. Public Health 2021, 18, 5659. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating Land Surface Temperature from Landsat-8 Data Using the NOAA JPSS Enterprise Algorithm. Remote Sens. 2019, 11, 155. [Google Scholar] [CrossRef]
- Rongali, G.; Keshari, A.K.; Gosain, A.K.; Khosa, R. Split-Window Algorithm for Retrieval of Land Surface Temperature Using Landsat 8 Thermal Infrared Data. J. Geovisualization Spat. Anal. 2018, 2, 14. [Google Scholar] [CrossRef]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data. Remote Sens. 2015, 7, 647. [Google Scholar] [CrossRef]
- NASA National Aeronautics and Space Administration. Goddard Earth Sciences (GES); Data and Information Services Center (DISC): Greenbelt, MD, USA, 2012.
- Weng, Q.; Fu, P.; Gao, F. Generating Daily Land Surface Temperature at Landsat Resolution by Fusing Landsat and MODIS Data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Barsi, J.; Schott, J.; Hook, S.; Raqueno, N.; Markham, B.; Radocinski, R. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Abhilash, G.; Murthy, T.R.; Naidu, V.P. Image Fusion for Enhanced Vision System Using Laplacian Pyramid. Int. J. Eng. Res. Technol. 2015, 4, 507–512. [Google Scholar] [CrossRef]
- Karachristos, K.; Koukiou, G.; Anastassopoulos, V. A Review on PolSAR Decompositions for Feature Extraction. J. Imaging 2024, 10, 75. [Google Scholar] [CrossRef]
- Sammut, C. Encyclopedia of Machine Learning; Springer: New York, NY, USA, 2011; pp. 235–238. ISBN 9780387307688. [Google Scholar]
Pauli Basis | Meaning |
---|---|
Single- or odd-bounce scattering: This occurs when a radar signal interacts with a target and undergoes a single reflection or bounce before reaching the radar sensor. | |
Double- or even-bounce scattering: This can happen, for instance, when radar waves hit a surface, reflect off, and then reflect again off another surface before returning to the sensor. | |
Volume scattering: This type of scattering is more complex and involves multiple interactions within the target volume, leading to a scattering signal that does not follow a simple direct path (forest canopy). |
Water Test | Forest Test | Urban Test | Bare Land Test | |||||
---|---|---|---|---|---|---|---|---|
Median | Std | Median | Std | Median | Std | Median | Std | |
α | 84 | 20.84 | 151 | 23.64 | 230 | 28.22 | 144 | 24.58 |
β | 78 | 22.96 | 139 | 23.16 | 211 | 28.85 | 95 | 22.04 |
γ | 59 | 21.81 | 137 | 22.00 | 140 | 27.16 | 76 | 23.88 |
Τ1 | 11.20 | 0.1 | 11.69 | 1.21 | 16.79 | 0.53 | 16.24 | 0.43 |
Τ2 | 10.98 | 0.12 | 11.69 | 1.21 | 16.79 | 0.48 | 15.92 | 0.43 |
Water | |||||
---|---|---|---|---|---|
α | β | γ | Τ1 | Τ2 | |
Water | 1 | 1 | 1 | 1 | 1 |
Urban | 0 | 0 | 0 | 0 | 0 |
Forest | 0 | 0 | 0 | 1 | 1 |
Bare land | 0 | 1 | 1 | 0 | 0 |
Water1 | |||||
---|---|---|---|---|---|
Pixel | α | β | γ | Τ1 | Τ2 |
Water | 1 (0) | 1 (1) | 1 (0) | 1 (1) | 1 (1) |
Urban | 0 | 0 | 0 | 0 | 0 |
Forest | 0 | 0 | 0 | 1 (1) | 1 (0) |
Bare land | 0 | 1 (0) | 1 (1) | 0 | 0 |
Water2 | |||||
Pixel | α | β | γ | Τ1 | Τ2 |
Water | 1 (1) | 1 (1) | 1 (0) | 0 | 0 |
Urban | 0 | 0 | 0 | 0 | 0 |
Forest | 0 | 0 | 0 | 0 | 1 (1) |
Bare land | 0 | 1 (0) | 1 (1) | 0 | 0 |
Forest1 | |||||
Pixel | α | β | γ | Τ1 | Τ2 |
Water | 0 | 0 | 0 | 0 | 0 |
Urban | 0 | 0 | 1 (0) | 0 | 0 |
Forest | 0 | 1 (1) | 1 (0) | 0 | 0 |
Bare land | 0 | 0 | 0 | 0 | 0 |
Forest2 | |||||
Pixel | α | β | γ | Τ1 | Τ2 |
Water | 0 | 0 | 0 | 0 | 0 |
Urban | 0 | 0 | 1 (0) | 0 | 0 |
Forest | 0 | 1 (0) | 0 | 1 (0) | 1 (0) |
Bare land | 0 | 0 | 0 | 0 | 0 |
Urban1 | |||||
Pixel | α | β | γ | Τ1 | Τ2 |
Water | 0 | 0 | 0 | 0 | 0 |
Urban | 1 (0) | 1 (0) | 1 (1) | 0 | 1 (1) |
Forest | 0 | 0 | 0 | 0 | 0 |
Bare land | 0 | 0 | 0 | 0 | 0 |
Urban2 | |||||
Pixel | α | β | γ | Τ1 | Τ2 |
Water | 0 | 0 | 1 (1) | 0 | 0 |
Urban | 1 (0) | 1 (1) | 0 | 1 (1) | 1 (1) |
Forest | 0 | 0 | 0 | 0 | 0 |
Bare land | 0 | 0 | 1 | 0 | 0 |
Bare land 1 | |||||
Pixel | α | β | γ | Τ1 | Τ2 |
Water | 0 | 0 | 1 (1) | 0 | 0 |
Urban | 0 | 0 | 0 | 1 (0) | 1 (0) |
Forest | 1 (1) | 1 (0) | 0 | 0 | 0 |
Bare land | 1 (0) | 0 | 1 (0) | 0 | 0 |
Ground2 | |||||
Pixel | α | β | γ | Τ1 | Τ2 |
Water | 0 | 0 | 0 | 0 | 0 |
Urban | 0 | 0 | 0 | 0 | 0 |
Forest | 1 (1) | 0 | 0 | 0 | 0 |
Bare land | 1 (1) | 1 (0) | 1 (0) | 0 | 0 |
Water | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Successful | Successful | |||||||||
α | β | γ | Τ1 | Τ2 | α | β | γ | Τ1 | Τ2 | |
Water | 1 (0) | 1 (1) | 1 (0) | 1 (0) | 1 (1) | 1 (1) | 1 (1) | 1 (0) | 0 | 0 |
Urban | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Forest | 0 | 0 | 0 | 1 (1) | 1 (0) | 0 | 0 | 0 | 0 | 1 (1) |
Bare land | 0 | 1 (0) | 1 (1) | 0 | 0 | 0 | 1 (0) | 1 (1) | 0 | 0 |
Successful | Failed | |||||||||
Water | 1 (1) | 1 (0) | 1 (1) | 0 | 0 | 1 (1) | 0 | 1 (1) | 0 | 0 |
Urban | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Forest | 0 | 0 | 0 | 1 (1) | 1 (1) | 0 | 0 | 0 | 1 (0) | 1 (1) |
Bare land | 0 | 1 (1) | 0 | 0 | 0 | 0 | 1 (0) | 1 (1) | 0 | 0 |
Urban | ||||||||||
Successful | Successful | |||||||||
α | β | γ | Τ1 | Τ2 | α | β | γ | Τ1 | Τ2 | |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (1) | 0 | 0 |
Urban | 1 (1) | 1 (0) | 1 (1) | 0 | 1 (1) | 1 (0) | 1 (1) | 0 | 1 (1) | 1 (1) |
Forest | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Bare land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (0) | 0 | 0 |
Successful | Failed | |||||||||
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (1) | 0 | 0 |
Urban | 0 | 1 (1) | 1 (1) | 1 (0) | 1 (0) | 0 | 1 (0) | 0 | 0 | 0 |
Forest | 0 | 0 | 1 (1) | 0 | 0 | 1 (0) | 0 | 0 | 0 | 0 |
Bare land | 0 | 0 | 0 | 1 (1) | 0 | 1 (0) | 0 | 1 (0) | 0 | 0 |
Forest | ||||||||||
Successful | Successful | |||||||||
α | β | γ | Τ1 | Τ2 | α | β | γ | Τ1 | Τ2 | |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Urban | 0 | 0 | 1 (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Forest | 1 (1) | 1 (0) | 1 (1) | 1 (0) | 1 (0) | 1 (0) | 1 (1) | 0 | 1 (0) | 1 (0) |
Bare land | 1 (1) | 0 | 0 | 0 | 0 | 0 | 0 | 1 (1) | 0 | 0 |
Successful | Failed | |||||||||
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Urban | 0 | 0 | 1 (1) | 0 | 0 | 0 | 0 | 1 (0) | 1 (0) | 0 |
Forest | 1 (1) | 1 (1) | 1 (0) | 0 | 0 | 1 (0) | 1 (0) | 1 (0) | 0 | 0 |
Bare land | 1 (0) | 0 | 0 | 0 | 0 | 1 (1) | 0 | 0 | 1 (1) | 1 (0) |
Bare land | ||||||||||
Successful | Successful | |||||||||
α | β | γ | Τ1 | Τ2 | α | β | γ | Τ1 | Τ2 | |
Water | 0 | 1 (1) | 1 (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Urban | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (0) | 1 (1) | 1 (0) |
Forest | 1 () | 0 | 0 | 0 | 0 | 1 (1) | 0 | 0 | 0 | 0 |
Bare land | 1 (1) | 1 (0) | 1 (1) | 0 | 0 | 1 (1) | 1 (0) | 0 | 1 (0) | 1 (0) |
Successful | Failed | |||||||||
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (1) | 0 | 0 |
Urban | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (0) | 1 (0) |
Forest | 1 (1) | 0 | 0 | 0 | 0 | 1 (1) | 1 (0) | 0 | 0 | 0 |
Bare land | 1 (1) | 1 (0) | 1 (0) | 0 | 0 | 1 (0) | 0 (0) | 1 (0) | 0 | 0 |
Covariance Matrices | ||||||||
---|---|---|---|---|---|---|---|---|
Water | Urban | Forest | Bare Land | |||||
Successful–Successful | 0.2605 | 0.1447 | 0.1684 | 0.0947 | 0.2395 | 0.1184 | 0.2211 | 0.0316 |
0.1447 | 0.1974 | 0.0947 | 0.2211 | 0.1184 | 0.1974 | 0.0316 | 0.2526 | |
Successful–Failed | 0.2211 | 0.1684 | 0.2211 | −0.0263 | 0.1974 | 0.1579 | 0.1684 | 0.0842 |
0.1684 | 0.2211 | −0.0263 | 0.1974 | 0.1579 | 0.2526 | 0.0842 | 0.2395 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, S.; Koukiou, G.; Anastassopoulos, V. Correlated Decision Fusion Accompanied with Quality Information on a Multi-Band Pixel Basis for Land Cover Classification. J. Imaging 2024, 10, 91. https://doi.org/10.3390/jimaging10040091
Papadopoulos S, Koukiou G, Anastassopoulos V. Correlated Decision Fusion Accompanied with Quality Information on a Multi-Band Pixel Basis for Land Cover Classification. Journal of Imaging. 2024; 10(4):91. https://doi.org/10.3390/jimaging10040091
Chicago/Turabian StylePapadopoulos, Spiros, Georgia Koukiou, and Vassilis Anastassopoulos. 2024. "Correlated Decision Fusion Accompanied with Quality Information on a Multi-Band Pixel Basis for Land Cover Classification" Journal of Imaging 10, no. 4: 91. https://doi.org/10.3390/jimaging10040091
APA StylePapadopoulos, S., Koukiou, G., & Anastassopoulos, V. (2024). Correlated Decision Fusion Accompanied with Quality Information on a Multi-Band Pixel Basis for Land Cover Classification. Journal of Imaging, 10(4), 91. https://doi.org/10.3390/jimaging10040091