A Neural-Network-Based Watermarking Method Approximating JPEG Quantization
Abstract
:1. Introduction
2. Preliminary: JPEG Quantization
3. Related Works
3.1. ReDMark
3.1.1. Embedding Network
3.1.2. Extraction Network
3.1.3. Attack Layer
3.2. JPEGdiff
3.3. Previous Work
4. Proposed Method
4.1. Quantized Activation Function
4.2. Proposed Attack Layer
4.3. Training Method
5. Computer Simulations
5.1. Evaluation of the QAF
5.2. Evaluation of the Proposed Attack Layer
5.2.1. Experimental Conditions
5.2.2. Evaluation of the Image Quality
5.2.3. Evaluation of the BER
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, W.; Wang, J.; Zhang, Y.; Li, J.; Yu, H.; Sun, J. A comprehensive survey on robust image watermarking. Neurocomputing 2022, 488, 226–247. [Google Scholar] [CrossRef]
- Vafaei, M.; Mahdavi-Nasab, H.; Pourghassem, H. A new robust blind watermarking method based on neural networks in wavelet transform domain. World Appl. Sci. J. 2013, 22, 1572–1580. [Google Scholar]
- Sy, N.C.; Kha, H.H.; Hoang, N.M. An efficient robust blind watermarking method based on convolution neural networks in wavelet transform domain. Int. J. Mach. Learn. Comput. 2020, 10, 675–684. [Google Scholar] [CrossRef]
- He, D.; Xu, K.; Wang, D. Design of multi-scale receptive field convolutional neural network for surface inspection of hot rolled steels. Image Vis. Comput. 2019, 89, 12–20. [Google Scholar] [CrossRef]
- Singh, H.K.; Singh, A.K. Digital image watermarking using deep learning. Multimed. Tools Appl. 2024, 83, 2979–2994. [Google Scholar] [CrossRef]
- Hamamoto, I.; Kawamura, M. Image watermarking technique using embedder and extractor neural networks. IEICE Trans. Inf. Syst. 2019, E102-D, 19–30. [Google Scholar] [CrossRef]
- Jamali, M.; Karimi, N.; Khadivi, P.; Shirani, S.; Samavi, S. Robust watermarking using diffusion of logo into auto-encoder feature maps. Multimed. Tools Appl. 2023, 82, 45175–45201. [Google Scholar] [CrossRef]
- Zhu, J.; Kaplan, R.; Johnson, J.; Fei-Fei, L. HiDDeN: Hiding data with deep networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Part XV. pp. 682–697. [Google Scholar]
- Zhao, Y.; Wang, C.; Zhou, X.; Qin, Z. DARI-Mark: Deep learning and attention network for robust image watermarking. Mathematics 2023, 11, 209. [Google Scholar] [CrossRef]
- Hamamoto, I.; Kawamura, M. Neural watermarking method including an attack simulator against rotation and compression attacks. IEICE Trans. Inf. Syst. 2020, E103-D, 33–41. [Google Scholar] [CrossRef]
- Ahmadi, M.; Norouzi, A.; Soroushmehr, S.M.R.; Karimi, N.; Najarian, K.; Samavi, S.; Emami, A. Redmark: Framework for residual diffusion watermarking based on deep networks. Expert Syst. Appl. 2020, 146, 113157. [Google Scholar] [CrossRef]
- Shin, R.; Song, D. JPEG-resistant adversarial images. In Proceedings of the NIPS 2017 Workshop on Machine Learning and Computer Security, Long Beach, CA, USA, 4–9 December 2017; Volume 1, pp. 8–13. [Google Scholar]
- Mareen, H.; Antchougov, L.; Wallendael, G.V.; Lambert, P. Blind deep-learning-based image watermarking robust against geometric transformations. In Proceedings of the 2024 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 5–8 January 2024; pp. 1–2. [Google Scholar]
- Guo, C.; Rana, M.; Cisse, M.; Maaten, L.v. Countering adversarial images using input transformations. arXiv 2018, arXiv:1711.00117. [Google Scholar]
- Yamauchi, S.; Kawamura, M. Neural network based watermarking trained with quantized activation function. In Proceedings of the Asia Pacific Signal and Information Processing Association Annual Summit and Conference, Chiang Mai, Thailand, 7–10 November 2022; pp. 1608–1613. [Google Scholar]
- Independent JPEG Group. Available online: http://www.ijg.org/ (accessed on 21 May 2023).
- Clevert, D.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (ELUs). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Computer Vision Group at the University of Granada, Dataset of Standard 512 × 512 Grayscale Test Images. Available online: http://decsai.ugr.es/cvg/CG/base.htm (accessed on 9 June 2023).
- Krizhevsky, A.; Nair, V.; Hinton, G. The CIFAR-10 Dataset. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 9 June 2023).
- Lin, R.; Liu, S.; Jiang, J.; Li, S.; Li, C.; Kuo, C.-C.J. Recovering sign bits of DCT coefficients in digital images as an optimization problem. J. Vis. Commun. Image Represent. 2024, 98, 104045. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamauchi, S.; Kawamura, M. A Neural-Network-Based Watermarking Method Approximating JPEG Quantization. J. Imaging 2024, 10, 138. https://doi.org/10.3390/jimaging10060138
Yamauchi S, Kawamura M. A Neural-Network-Based Watermarking Method Approximating JPEG Quantization. Journal of Imaging. 2024; 10(6):138. https://doi.org/10.3390/jimaging10060138
Chicago/Turabian StyleYamauchi, Shingo, and Masaki Kawamura. 2024. "A Neural-Network-Based Watermarking Method Approximating JPEG Quantization" Journal of Imaging 10, no. 6: 138. https://doi.org/10.3390/jimaging10060138
APA StyleYamauchi, S., & Kawamura, M. (2024). A Neural-Network-Based Watermarking Method Approximating JPEG Quantization. Journal of Imaging, 10(6), 138. https://doi.org/10.3390/jimaging10060138