Quantitative Evaluation of White Matter Injury by Cranial Ultrasound to Detect the Effects of Parenteral Nutrition in Preterm Babies: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Nutritional Protocol
2.3. Acquisition and Analysis of CUS Scans
2.4. Statistical Analysis
2.5. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Nardo, M.C.; Petrella, C.; Di Chiara, M.; Di Mario, C.; Deli, G.; Travaglia, E.; Baldini, L.; Russo, A.; Parisi, P.; Fiore, M.; et al. Early nutritional intake influences the serum levels of nerve growth factor (NGF) and brain-derived neurotrophic factor in preterm newborns. Front. Neurol. 2022, 13, 988101. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, E.B.; Gadian, D.G.; Sabatini, S.; Chong, W.K.; Quinn, B.T.; Fischl, B.R.; Lucas, A. The Effect of Early Human Diet on Caudate Volumes and IQ. Pediatr. Res. 2008, 63, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Boscarino, G.; Gasparini, C.; Di Chiara, M.; Faccioli, F.; Onestà, E.; Parisi, P.; Spalice, A.; De Nardo, M.C.; Dito, L.; et al. Energy-Enhanced Parenteral Nutrition and Neurodevelopment of Preterm Newborns: A Cohort Study. Nutrition 2021, 89, 111219. [Google Scholar] [CrossRef] [PubMed]
- Laccetta, G.; Di Chiara, M.; De Nardo, M.C.; Tagliabracci, M.; Travaglia, E.; De Santis, B.; Spiriti, C.; Dito, L.; Regoli, D.; Caravale, B.; et al. Quantitative ultrasonographic examination of cerebral white matter by pixel brightness intensity as marker of middle-term neurodevelopment: A prospective observational study. Sci. Rep. 2023, 13, 16816. [Google Scholar] [CrossRef]
- Agut, T.; Alarcon, A.; Cabañas, F.; Bartocci, M.; Martinez-Biarge, M.; Horsch, S.; eurUS.brain group. Preterm white matter injury: Ultrasound diagnosis and classification. Pediatr. Res. 2020, 87 (Suppl. 1), 37–49. [Google Scholar] [CrossRef]
- Volpe, J.J. Cerebral White Matter Injury of the Premature Infant—More Common Than You Think. Pediatrics 2003, 112, 176–180. [Google Scholar] [CrossRef]
- Dyet, L.E.; Kennea, N.; Counsell, S.J.; Maalouf, E.F.; Ajayi-Obe, M.; Duggan, P.J.; Harrison, M.; Allsop, J.M.; Hajnal, J.; Herlihy, A.H.; et al. Natural History of Brain Lesions in Extremely Preterm Infants Studied with Serial Magnetic Resonance Imaging From Birth and Neurodevelopmental Assessment. Pediatrics 2006, 118, 536–548. [Google Scholar] [CrossRef]
- E Inder, T.; Wells, S.J.; Mogridge, N.B.; Spencer, C.; Volpe, J.J. Defining the nature of the cerebral abnormalities in the premature infant: A qualitative magnetic resonance imaging study. J. Pediatr. 2003, 143, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Horsch, S.; Hallberg, B.; Leifsdottir, K.; Skiöld, B.; Nagy, Z.; Mosskin, M.; Blennow, M.; Ådén, U. Brain abnormalities in extremely low gestational age infants: A Swedish population based MRI study. Acta Paediatr. 2007, 96, 979–984. [Google Scholar] [CrossRef]
- Ancel, P.-Y.; Livinec, F.; Larroque, B.; Marret, S.; Arnaud, C.; Pierrat, V.; Dehan, M.; N’Guyen, S.; Escande, B.; Burguet, A.; et al. Cerebral Palsy Among Very Preterm Children in Relation to Gestational Age and Neonatal Ultrasound Abnormalities: The EPIPAGE Cohort Study. Pediatrics 2006, 117, 828–835. [Google Scholar] [CrossRef]
- Martinez-Biarge, M.; Groenendaal, F.; Kersbergen, K.J.; Benders, M.J.N.L.; Foti, F.; Cowan, F.M.; de Vries, L.S. MRI Based Preterm White Matter Injury Classification: The Importance of Sequential Imaging in Determining Severity of Injury. PLoS ONE 2016, 11, e0156245. [Google Scholar] [CrossRef] [PubMed]
- Di Chiara, M.; Laccetta, G.; Gangi, S.; De Santis, B.; Spiriti, C.; Attenni, M.; Bertolaso, L.; Boscarino, G.; De Nardo, M.C.; Ciambra, G.; et al. Risk factors and preventive strategies for post-traumatic stress disorder in neonatal intensive care unit. Front. Psychol. 2022, 13, 1003566. [Google Scholar] [CrossRef]
- Shankaran, S.; Laptook, A.R.; Sood, B.G.; Do, B.; Stoll, B.J.; Van Meurs, K.P.; Bell, E.F.; Das, A.; Barks, J.; Sarkar, S.; et al. Screening Cranial Imaging at Multiple Time Points Improves Cystic Periventricular Leukomalacia Detection. Am. J. Perinatol. 2015, 32, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Leijser, L.M.; de Bruïne, F.T.; van der Grond, J.; Steggerda, S.J.; Walther, F.J.; van Wezel-Meijler, G. Is sequential cranial ultrasound reliable for detection of white matter injury in very preterm infants? Neuroradiology 2010, 52, 397–406. [Google Scholar] [CrossRef]
- Skiöld, B.; Hallberg, B.; Vollmer, B.; Ådén, U.; Blennow, M.; Horsch, S. A Novel Scoring System for Term-Equivalent-Age Cranial Ultrasound in Extremely Preterm Infants. Ultrasound Med. Biol. 2019, 45, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Kuban, K.; Adler, I.; Allred, E.N.; Batton, D.; Bezinque, S.; Betz, B.W.; Cavenagh, E.; Durfee, S.; Ecklund, K.; Feinstein, K.; et al. Observer variability assessing US scans of the preterm brain: The ELGAN study. Pediatr. Radiol. 2007, 37, 1201–1208. [Google Scholar] [CrossRef]
- Harris, D.L.; Bloomfield, F.H.; Teele, R.L.; E Harding, J.; Australian and New Zealand Neonatal Network. Variable interpretation of ultrasonograms may contribute to variation in the reported incidence of white matter damage between newborn intensive care units in New Zealand. Arch. Dis. Child. Fetal Neonatal Ed. 2006, 91, F11–F16. [Google Scholar] [CrossRef]
- Beller, T.; Peylan, T.; Ben Sira, L.; Shiran, S.I.; Levi, L.; Bassan, H. Quantitative analysis of cranial ultrasonographic periventricular echogenicity in relation to early neuromotor development in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F217–F222. [Google Scholar] [CrossRef]
- Padilla, N.F.; Enriquez, G.; Jansson, T.; Gratacos, E.; Hernandez-Andrade, E. Quantitative Tissue Echogenicity of the Neonatal Brain Assessed by Ultrasound Imaging. Ultrasound Med. Biol. 2009, 35, 1421–1426. [Google Scholar] [CrossRef]
- Pinto, P.S.; Tekes, A.; Singhi, S.; Northington, F.J.; Parkinson, C.; Huisman, T.A.G.M. White–gray matter echogenicity ratio and resistive index: Sonographic bedside markers of cerebral hypoxic–ischemic injury/edema? J. Perinatol. 2012, 32, 448–453. [Google Scholar] [CrossRef]
- Simaeys, B.; Philips, W.; Lemahieu, I.; Govaert, P. Quantitative analysis of the neonatal brain by ultrasound. Comput. Med. Imaging Graph. 2000, 24, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ichihashi, K.; Yada, Y.; Takahashi, N.; Homma, Y.; Momoi, M. Integrated backscatter of the brain of preterm infants. J. Perinat. Med. 2008, 36, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, C.; Yamashita, Y.; Kanda, H.; Harada, E.; Maeno, Y.; Matsuishi, T. In vivo quantitative ultrasonic evaluation of neonatal brain with a real time integrated backscatter imaging system. Brain Dev. 2003, 25, 411–415. [Google Scholar] [CrossRef]
- Hope, T.; Gregson, P.; Linney, N.; Schmidt, M. Ultrasonic Tissue Characterization as a Predictor of White Matter Damage: Results of a Preliminary Study. In IEEE Ultrasonics Symposium; IEEE: Piscataway, NJ, USA, 2004; Volume 3, pp. 2157–2160. [Google Scholar]
- Na Jung, H.; Suh, S.-I.; Park, A.; Kim, G.-H.; Ryoo, I. Early Prediction of Periventricular Leukomalacia Using Quantitative Texture Analysis of Serial Cranial Ultrasound Scans in Very Preterm Infants. Ultrasound Med. Biol. 2019, 45, 2658–2665. [Google Scholar] [CrossRef]
- Narchi, H.; Mahmoud-Ghoneim, D.; Skinner, A.; Cogings, P. Texture analysis of periventricular echogenicity on neonatal cranial ultrasound predicts periventricular leukomalacia. J. Neonatal-Perinat. Med. 2013, 6, 117–124. [Google Scholar] [CrossRef]
- Tenorio, V.; Bonet-Carne, E.; Botet, F.; Marques, F.; Amat-Roldan, I.; Gratacos, E. Correlation Between a Semiautomated Method Based on Ultrasound Texture Analysis and Standard Ultrasound Diagnosis Using White Matter Damage in Preterm Neonates as a Model. J. Ultrasound Med. 2011, 30, 1365–1377. [Google Scholar] [CrossRef]
- You, S.K.; Choi, Y.H.; Park, S.J.; Cheon, J.-E.; Kim, I.-O.; Kim, W.-S.; Lee, S.M.; Cho, H.-H. Quantitative Sonographic Texture Analysis in Preterm Neonates with White Matter Injury: Correlation of Texture Features with White Matter Injury Severity. J. Ultrasound Med. 2015, 34, 1931–1940. [Google Scholar] [CrossRef]
- Broderick, P.A. A New Approach to Tumor Cancer with a Novel Imaging Profile for White matter abnormalities including Leukodystrophies: Sensing the Human Brain. Med. Res. Arch. 2022, 10, 2925. [Google Scholar] [CrossRef]
- Lal, B.K.; Hobson, R.W.; Pappas, P.J.; Kubicka, R.; Hameed, M.; Chakhtura, E.Y.; Jamil, Z.; Padberg, F.T.; Haser, P.B.; Durán, W.N. Pixel distribution analysis of B-mode ultrasound scan images predicts histologic features of atherosclerotic carotid plaques. J. Vasc. Surg. 2002, 35, 1210–1217. [Google Scholar] [CrossRef]
- American Academy of Pediatrics Committee on Fetus and Newborn. Levels of neonatal care. Pediatrics 2012, 130, 587–597. [Google Scholar] [CrossRef]
- De Vries, L.S.; Eken, P.; Dubowitz, L.M. The spectrum of leukomalacia using cranial ultrasound. Behav. Brain Res. 1992, 49, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Laccetta, G.; Fiori, S.; Giampietri, M.; Ferrari, A.; Cetica, V.; Bernardini, M.; Chesi, F.; Mazzotti, S.; Parrini, E.; Ciantelli, M.; et al. A de novo KCNQ2 Gene Mutation Associated with Non-familial Early Onset Seizures: Case Report and Revision of Literature Data. Front. Pediatr. 2019, 7, 348. [Google Scholar] [CrossRef]
- Terrin, G.; Passariello, A.; Canani, R.B.; Manguso, F.; Paludetto, R.; Cascioli, C. Minimal enteral feeding reduces the risk of sepsis in feed-intolerant very low birth weight newborns. Acta Paediatr. 2009, 98, 31–35. [Google Scholar] [CrossRef]
- Terrin, G.; Stronati, L.; Cucchiara, S.; De Curtis, M. Serum Markers of Necrotizing Enterocolitis: A Systematic Review. J. Pediatr. Gastroenterol. Nutr. 2017, 65, e120–e132. [Google Scholar] [CrossRef] [PubMed]
- Anvari, A.; Halpern, E.F.; Samir, A.E. Essentials of Statistical Methods for Assessing Reliability and Agreement in Quantitative Imaging. Acad. Radiol. 2018, 25, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Janson, E.; Willemsen, M.F.; Van Beek, P.E.; Dudink, J.; Van Elburg, R.M.; Hortensius, L.M.; Tam, E.W.Y.; de Pipaon, M.S.; Lapillonne, A.; de Theije, C.G.M.; et al. The influence of nutrition on white matter development in preterm infants: A scoping review. Pediatr. Res. 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Strømmen, K.; Blakstad, E.W.; Moltu, S.J.; Almaas, A.N.; Westerberg, A.C.; Amlien, I.K.; Rønnestad, A.E.; Nakstad, B.; Drevon, C.A.; Bjørnerud, A.; et al. Enhanced Nutrient Supply to Very Low Birth Weight Infants is Associated with Improved White Matter Maturation and Head Growth. Neonatology 2014, 107, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Fumeaux, C.J.F.; Duerden, E.G.; Guo, T.; Foong, J.; Graz, M.B.; Hagmann, P.; Chakravarty, M.M.; Hüppi, P.S.; Beauport, L.; et al. Nutrient Intake in the First Two Weeks of Life and Brain Growth in Preterm Neonates. Pediatrics 2018, 141, e20172169. [Google Scholar] [CrossRef]
- Coviello, C.; Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Leemans, A.; Peels, B.; Isgum, I.; Viergever, M.A.; De Vries, L.S.; Buonocore, G.; et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr. Res. 2018, 83, 102–110. [Google Scholar] [CrossRef]
- Sato, J.; Vandewouw, M.M.; Bando, N.; Ng, D.V.Y.; Branson, H.M.; O’connor, D.L.; Unger, S.L.; Taylor, M.J. Early nutrition and white matter microstructure in children born very low birth weight. Brain Commun. 2021, 3, fcab066. [Google Scholar] [CrossRef]
- Terrin, G.; De Nardo, M.C.; Boscarino, G.; Di Chiara, M.; Cellitti, R.; Ciccarelli, S.; Gasparini, C.; Parisi, P.; Urna, M.; Ronchi, B.; et al. Early Protein Intake Influences Neonatal Brain Measurements in Preterms: An Observational Study. Front. Neurol. 2020, 11, 885. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, G.; Di Chiara, M.; Cellitti, R.; De Nardo, M.C.; Conti, M.G.; Parisi, P.; Spalice, A.; Di Mario, C.; Ronchi, B.; Russo, A.; et al. Effects of early energy intake on neonatal cerebral growth of preterm newborn: An observational study. Sci. Rep. 2021, 11, 18457. [Google Scholar] [CrossRef] [PubMed]
- Ottolini, K.M.; Andescavage, N.; Kapse, K.; Jacobs, M.; Murnick, J.; Veer, R.V.; Basu, S.; Said, M.; Limperopoulos, C. Early Lipid Intake Improves Cerebellar Growth in Very Low-Birth-Weight Preterm Infants. J. Parenter. Enter. Nutr. 2021, 45, 587–595. [Google Scholar] [CrossRef]
- Power, V.A.; Spittle, A.J.; Lee, K.J.; Anderson, P.J.; Thompson, D.K.; Doyle, L.W.; Cheong, J.L. Nutrition, Growth, Brain Volume, and Neurodevelopment in Very Preterm Children. J. Pediatr. 2019, 215, 50–55.e3. [Google Scholar] [CrossRef]
- Hansen-Pupp, I.; Hövel, H.; Hellström, A.; Hellström-Westas, L.; Löfqvist, C.; Larsson, E.-M.; Lazeyras, F.; Fellman, V.; Hüppi, P.S.; Ley, D. Postnatal decrease in circulating insulin-like growth factor-I and low brain volumes in very preterm infants. J. Clin. Endocrinol. Metab. 2011, 96, 1129–1135. [Google Scholar] [CrossRef]
- van Beek, P.E.; Claessens, N.H.; Makropoulos, A.; Groenendaal, F.; de Vries, L.S.; Counsell, S.J.; Benders, M.J. Increase in Brain Volumes after Implementation of a Nutrition Regimen in Infants Born Extremely Preterm. J. Pediatr. 2020, 223, 57–63.e5. [Google Scholar] [CrossRef]
- Rozé, J.-C.; Morel, B.; Lapillonne, A.; Marret, S.; Guellec, I.; Darmaun, D.; Bednarek, N.; Moyon, T.; Marchand-Martin, L.; Benhammou, V.; et al. Association Between Early Amino Acid Intake and Full-Scale IQ at Age 5 Years Among Infants Born at Less Than 30 Weeks’ Gestation. JAMA Netw. Open 2021, 4, e2135452. [Google Scholar] [CrossRef] [PubMed]
- Hortensius, L.M.; Janson, E.; van Beek, P.E.; Groenendaal, F.; Claessens, N.H.P.; de Veye, H.F.N.S.; Eijsermans, M.J.C.; Koopman-Esseboom, C.; Dudink, J.; van Elburg, R.M.; et al. Nutritional Intake, White Matter Integrity, and Neurodevelopment in Extremely Preterm Born Infants. Nutrients 2021, 13, 3409. [Google Scholar] [CrossRef] [PubMed]
- Beauport, L.; Schneider, J.; Faouzi, M.; Hagmann, P.; Hüppi, P.S.; Tolsa, J.-F.; Truttmann, A.C.; Fumeaux, C.J.F. Impact of Early Nutritional Intake on Preterm Brain: A Magnetic Resonance Imaging Study. J. Pediatr. 2017, 181, 29–36.e1. [Google Scholar] [CrossRef]
- Tan, M.; Abernethy, L.; Cooke, R. Improving head growth in preterm infants—A randomised controlled trial II: MRI and developmental outcomes in the first year. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F342–F346. [Google Scholar] [CrossRef]
- De Nardo, M.C.; Di Mario, C.; Laccetta, G.; Boscarino, G.; Terrin, G. Enteral and parenteral energy intake and neurodevelopment in preterm infants: A systematic review. Nutrition 2022, 97, 111572. [Google Scholar] [CrossRef] [PubMed]
- Cormack, B.E.; Harding, J.E.; Miller, S.P.; Bloomfield, F.H. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019, 11, 2029. [Google Scholar] [CrossRef] [PubMed]
- Berrington, J.E.; Stewart, C.J.; Embleton, N.D.; Cummings, S.P. Gut microbiota in preterm infants: Assessment and relevance to health and disease. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F286–F290. [Google Scholar] [CrossRef] [PubMed]
- Rønnestad, A.; Abrahamsen, T.G.; Medbø, S.; Reigstad, H.; Lossius, K.; Kaaresen, P.I.; Egeland, T.; Engelund, I.E.; Irgens, L.M.; Markestad, T. Late-Onset Septicemia in a Norwegian National Cohort of Extremely Premature Infants Receiving Very Early Full Human Milk Feeding. Pediatrics 2005, 115, e269–e276. [Google Scholar] [CrossRef]
- Langhnoja, J.; Buch, L.; Pillai, P. Potential role of NGF, BDNF, and their receptors in oligodendrocytes differentiation from neural stem cell: An in vitro study. Cell Biol. Int. 2021, 45, 432–446. [Google Scholar] [CrossRef]
- Shah, D.K.; Yip, P.K.; Barlas, A.; Tharmapoopathy, P.; Ponnusamy, V.; Michael-Titus, A.T.; Chisholm, P. Raised Plasma Neurofilament Light Protein Levels After Rewarming Are Associated with Adverse Neurodevelopmental Outcomes in Newborns After Therapeutic Hypothermia. Front. Neurol. 2020, 11, 562510. [Google Scholar] [CrossRef]
- Abdelhak, A.; Petermeier, F.; Benkert, P.; Schädelin, S.; Oechtering, J.; Maceski, A.M.; Kabesch, M.; Geis, T.; Laub, O.; Leipold, G.; et al. Serum neurofilament light chain reference database for individual application in paediatric care: A retrospective modelling and validation study. Lancet Neurol. 2023, 22, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Schultz, S.A.; Strain, J.F.; Adedokun, A.; Wang, Q.; Preische, O.; Kuhle, J.; Flores, S.; Keefe, S.; Dincer, A.; Ances, B.M.; et al. Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer’s disease. Neurobiol. Dis. 2020, 142, 104960. [Google Scholar] [CrossRef]
- Brouwer, M.J.; Kersbergen, K.J.; van Kooij, B.J.M.; Benders, M.J.N.L.; van Haastert, I.C.; Koopman-Esseboom, C.; Neil, J.J.; de Vries, L.S.; Kidokoro, H.; Inder, T.E.; et al. Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years. PLoS ONE 2017, 12, e0177128. [Google Scholar] [CrossRef]
- Barnett, M.L.; Tusor, N.; Ball, G.; Chew, A.; Falconer, S.; Aljabar, P.; Kimpton, J.A.; Kennea, N.; Rutherford, M.; Edwards, A.D.; et al. Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI. NeuroImage Clin. 2017, 17, 596–606. [Google Scholar] [CrossRef]
- Boscarino, G.; Conti, M.G.; Gasparini, C.; Onestà, E.; Faccioli, F.; Dito, L.; Regoli, D.; Spalice, A.; Parisi, P.; Terrin, G. Neonatal Hyperglycemia Related to Parenteral Nutrition Affects Long-Term Neurodevelopment in Preterm Newborn: A Prospective Cohort Study. Nutrients 2021, 13, 1930. [Google Scholar] [CrossRef] [PubMed]
- Cainelli, E.; Arrigoni, F.; Vedovelli, L. White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog. Neurobiol. 2020, 193, 101845. [Google Scholar] [CrossRef]
- Sánchez-Alvarez, R.; Almeida, A.; Medina, J.M. Oxidative Stress in Preterm Rat Brain Is Due to Mitochondrial Dysfunction. Pediatr. Res. 2002, 51, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Bale, G.; Mitra, S.; de Roever, I.; Sokolska, M.; Price, D.; Bainbridge, A.; Gunny, R.; Uria-Avellanal, C.; Kendall, G.S.; Meek, J.; et al. Oxygen dependency of mitochondrial metabolism indicates outcome of newborn brain injury. J. Cereb. Blood Flow Metab. 2019, 39, 2035–2047. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Wischmeyer, P.E.; Miller, K.R.; van Zanten, A.R.H. Mitochondrial Dysfunction in Critical Illness: Implications for Nutritional Therapy. Curr. Nutr. Rep. 2019, 8, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Casaer, M.P.; Mesotten, D.; Hermans, G.; Wouters, P.J.; Schetz, M.; Meyfroidt, G.; Van Cromphaut, S.; Ingels, C.; Meersseman, P.; Muller, J.; et al. Early versus Late Parenteral Nutrition in Critically Ill Adults. New Engl. J. Med. 2011, 365, 506–517. [Google Scholar] [CrossRef]
- Terrin, G.; Boscarino, G.; Di Chiara, M.; Iacobelli, S.; Faccioli, F.; Greco, C.; Onestà, E.; Sabatini, G.; Pietravalle, A.; Oliva, S.; et al. Nutritional Intake Influences Zinc Levels in Preterm Newborns: An Observational Study. Nutrients 2020, 12, 529. [Google Scholar] [CrossRef]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T.; the ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef]
- Van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; de Pipaon, M.S.; the ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef]
Gestational age, weeks | 29.14 ± 2.31 |
Birth weight, g | 1266.60 ± 425.83 |
Male sex, n (%) | 17 (40.5) |
Cesarean section, n (%) | 38 (90.5) |
Twins, n (%) | 13 (31.0) |
1 min Apgar score | 6.38 ± 1.65 |
5 min Apgar score | 8.19 ± 0.89 |
Arterial cord blood pH | 7.29 ± 0.07 |
Base excess on arterial cord blood | −4.46 ± 2.92 |
Clinical risk index for babies-II score | 6.33 ± 3.92 |
Small for gestational age, n (%) | 6 (14.3) |
Intrauterine growth restriction, n (%) | 6 (14.3) |
Necrotizing enterocolitis, n (%) | 3 (7.1) |
Intraventricular hemorrhage grade I–II, n (%) | 0 (0.0) |
Periventricular leukomalacia, n (%) | 16 (38.1) |
Sepsis proven by positive cultures, n (%) | 2 (4.8) |
Retinopathy of prematurity, n (%) | 7 (16.7) |
Bronchopulmonary dysplasia, n (%) | 0 (0.0) |
Patent ductus arteriosus, n (%) | 10 (23.8) |
Anemia of prematurity, n (%) | 10 (23.8) |
Duration of invasive mechanical ventilation, days | 2.38 ± 1.24 |
Start of enteral nutrition, days of life | 1.33 ± 0.80 |
Duration of parenteral nutrition, days | 14.79 ± 12.76 |
Length of hospital stay, days | 60.17 ± 23.69 |
Maternal age, years | 33.38 ± 3.71 |
Gestational diabetes, n (%) | 4 (9.5) |
Maternal hypertension, n (%) | 8 (19.0) |
Abnormal uterine artery Doppler flow velocimetry, n (%) | 9 (21.4) |
Maternal thyroid disorders during pregnancy, n (%) | 4 (9.5) |
Placental abruption, n (%) | 4 (9.5) |
Antenatal steroids a, n (%) | 32 (76.2) |
Parenteral energy intake 0–7 DoL (kcal/kg/1st week) | 346.96 ± 158.78 |
Parenteral amino acid intake 0–7 DoL (g/kg/1st week) | 15.05 ± 4.50 |
Parenteral lipid intake 0–7 DoL (g/kg/1st week) | 9.96 ± 7.12 |
Parenteral carbohydrate intake 0–7 DoL (g/kg/1st week) | 44.60 ± 16.29 |
Enteral energy intake 0–7 DoL (kcal/kg/1st week) | 191.93 ± 146.86 |
Enteral protein intake 0–7 DoL (g/kg/1st week) | 5.66 ± 4.33 |
Enteral fat intake 0–7 DoL (g/kg/1st week) | 9.67 ± 7.99 |
Enteral carbohydrate intake 0–7 DoL (g/kg/1st week) | 19.13 ± 15.75 |
Left RECP | Right RECP | ||
---|---|---|---|
Clinical variables | Gestational age (weeks) | r = −0.140 | r = −0.179 |
Birth weight (g) | r = −0.121 | r = −0.337 * | |
Arterial cord blood pH | r = 0.148 | r = 0.028 | |
Base excess on arterial cord blood | r = 0.047 | r = −0.174 | |
Clinical risk index for babies-II score | r = 0.034 | r = 0.125 | |
Duration of invasive mechanical ventilation (days) | r = 0.053 | r = 0.221 | |
Start of enteral nutrition (days of life) | r = 0.308 * | r = 0.248 | |
Duration of parenteral nutrition (days) | r = 0.235 | r = 0.335 * | |
Length of hospital stay (days) | r = 0.176 | r = 0.246 | |
Maternal age (years) | r = 0.025 | r = 0.128 | |
Nutritional variables | Parenteral energy intake 0–7 DoL (kcal/kg/1st week) | r = 0.422 * | r = 0.413 * |
Parenteral amino acid intake 0–7 DoL (g/kg/1st week) | r = 0.446 * | r = 0.438 * | |
Parenteral lipid intake 0–7 DoL (g/kg/1st week) | r = 0.306 | r = 0.198 | |
Parenteral carbohydrate intake 0–7 DoL (g/kg/1st week) | r = 0.222 | r = 0.264 | |
Enteral energy intake 0–7 DoL (kcal/kg/1st week) | r = −0.276 | r = −0.261 | |
Enteral protein intake 0–7 DoL (g/kg/1st week) | r = −0.284 | r = −0.260 | |
Enteral fat intake 0–7 DoL (g/kg/1st week) | r = −0.279 | r = −0.267 | |
Enteral carbohydrate intake 0–7 DoL (g/kg/1st week) | r = −0.279 | r = −0.260 |
Dependent Variable | Right RECP at TEA | B | S.E. | β | p-Value | 95% C.I. for B | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Covariates (model I) | Duration of invasive MV | −0.014 | 0.013 | −0.125 | 0.279 | −0.040 | 0.012 |
Start of EN | 0.007 | 0.058 | 0.018 | 0.909 | −0.110 | 0.124 | |
Duration of PN | 0.016 | 0.008 | 0.370 | 0.062 | −0.001 | 0.032 | |
Parenteral energy intake 0–7 DoL ° | 0.001 | 0.000 | 0.544 | 0.002 * | 0.000 | 0.002 | |
Covariates (model II) | Duration of invasive MV | −0.015 | 0.013 | −0.137 | 0.244 | −0.042 | 0.011 |
Start of EN | −0.006 | 0.060 | −0.015 | 0.924 | −0.127 | 0.116 | |
Duration of PN | 0.018 | 0.008 | 0.426 | 0.033 * | 0.002 | 0.034 | |
Parenteral amino acid intake 0–7 DoL ° | 0.027 | 0.009 | 0.515 | 0.005 * | 0.009 | 0.046 |
Dependent Variable | Left RECP at TEA | B | S.E. | β | p-Value | 95% C.I. for B | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Covariates (model I) | Duration of invasive MV | −0.017 | 0.012 | −0.158 | 0.172 | −0.041 | 0.008 |
Start of EN | 0.023 | 0.055 | 0.063 | 0.682 | −0.088 | 0.134 | |
Duration of PN | 0.013 | 0.008 | 0.330 | 0.095 | −0.002 | 0.029 | |
Parenteral energy intake 0–7 DoL ° | 0.001 | 0.000 | 0.562 | 0.001 * | 0.000 | 0.002 | |
Covariates (model II) | Duration of invasive MV | −0.018 | 0.012 | −0.171 | 0.149 | −0.043 | 0.007 |
Start of EN | 0.011 | 0.057 | 0.029 | 0.855 | −0.105 | 0.126 | |
Duration of PN | 0.015 | 0.008 | 0.387 | 0.051 | 0.000 | 0.031 | |
Parenteral amino acid intake 0–7 DoL ° | 0.027 | 0.009 | 0.531 | 0.004 * | 0.009 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laccetta, G.; De Nardo, M.C.; Cellitti, R.; Di Chiara, M.; Tagliabracci, M.; Parisi, P.; Gloria, F.; Rizzo, G.; Spalice, A.; Terrin, G. Quantitative Evaluation of White Matter Injury by Cranial Ultrasound to Detect the Effects of Parenteral Nutrition in Preterm Babies: An Observational Study. J. Imaging 2024, 10, 224. https://doi.org/10.3390/jimaging10090224
Laccetta G, De Nardo MC, Cellitti R, Di Chiara M, Tagliabracci M, Parisi P, Gloria F, Rizzo G, Spalice A, Terrin G. Quantitative Evaluation of White Matter Injury by Cranial Ultrasound to Detect the Effects of Parenteral Nutrition in Preterm Babies: An Observational Study. Journal of Imaging. 2024; 10(9):224. https://doi.org/10.3390/jimaging10090224
Chicago/Turabian StyleLaccetta, Gianluigi, Maria Chiara De Nardo, Raffaella Cellitti, Maria Di Chiara, Monica Tagliabracci, Pasquale Parisi, Flavia Gloria, Giuseppe Rizzo, Alberto Spalice, and Gianluca Terrin. 2024. "Quantitative Evaluation of White Matter Injury by Cranial Ultrasound to Detect the Effects of Parenteral Nutrition in Preterm Babies: An Observational Study" Journal of Imaging 10, no. 9: 224. https://doi.org/10.3390/jimaging10090224
APA StyleLaccetta, G., De Nardo, M. C., Cellitti, R., Di Chiara, M., Tagliabracci, M., Parisi, P., Gloria, F., Rizzo, G., Spalice, A., & Terrin, G. (2024). Quantitative Evaluation of White Matter Injury by Cranial Ultrasound to Detect the Effects of Parenteral Nutrition in Preterm Babies: An Observational Study. Journal of Imaging, 10(9), 224. https://doi.org/10.3390/jimaging10090224