Applications of Laboratory-Based Phase-Contrast Imaging Using Speckle Tracking Technique towards High Energy X-Rays
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Diemoz, P.C.; Bravin, A.; Sztrokay-Gaul, A.; Ruat, M.; Grandl, S.; Mayr, D.; Auweter, S.; Mittone, A.; Brun, E.; Ponchut, C.; et al. A method for high-energy, low-dose mammography using edge illumination X-ray phase-contrast imaging. Phys. Med. Biol. 2016, 61, 8750–8761. [Google Scholar] [CrossRef] [PubMed]
- Als-Nielsen, J.; McMorrow, D. Elements of Modern X-ray Physics; John Wiley and Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Zhihua, Q.; Joseph, Z.; Nicholas, B.; Guang-Hong, C. Quantitative imaging of electron density and effective atomic number using phase contrast ct. Phys. Med. Biol. 2010, 55, 2669. [Google Scholar]
- Raupach, R.; Flohr, T. Performance evaluation of X-ray differential phase contrast computed tomography (PCT) with respect to medical imaging. Med. Phys. 2012, 39, 4761–4774. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, U.; Larsson, D.H.; Burvall, A.; Takman, P.A.C.; Scott, L.; Brismar, H.; Hertz, H.M. X-ray phase contrast for CO2 microangiography. Phys. Med. Biol. 2012, 57, 2603. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, J.; Bevins, N.; Qi, Z.H.; Chen, G.H. Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT. Med. Phys. 2010, 37, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Momose, A. Recent advances in X-ray phase imaging. Jpn. J. Appl. Phys. 2005, 44, 6355–6367. [Google Scholar] [CrossRef]
- Endrizzi, M. X-ray phase-contrast imaging. Nucl. Instrum. Methods Phys. Res. A 2018, 878, 88–98. [Google Scholar] [CrossRef]
- Bonse, U.; Hart, M. An X-ray interferometer. Appl. Phys. Lett. 1965, 6, 155–156. [Google Scholar] [CrossRef]
- Chapman, D.; Thomlinson, W.; Johnston, R.E.; Washburn, D.; Pisano, E.; Gmur, N.; Zhong, Z.; Menk, R.; Arfelli, F.; Sayers, D. Diffraction enhanced X-ray imaging. Phys. Med. Biol. 1997, 42, 2015–2025. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, S.W.; Gureyev, T.E.; Gao, D.; Pogany, A.; Stevenson, A.W. Phase-contrast imaging using polychromatic hard X-rays. Nature 1996, 384, 335–338. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2006, 2, 258–261. [Google Scholar] [CrossRef]
- Zanette, I.; Zhou, T.; Burvall, A.; Lundström, U.; Larsson, D.H.; Zdora, M.; Thibault, P.; Pfeiffer, F.; Hertz, H.M. Speckle-based X-ray phase-contrast and dark-field imaging with a laboratory source. Phys. Rev. Lett. 2014, 112, 253903. [Google Scholar] [CrossRef] [PubMed]
- Olivo, A.; Speller, R. A coded-aperture technique allowing X-ray phase contrast imaging with conventional sources. Appl. Phys. Lett. 2007, 91, 074106. [Google Scholar] [CrossRef]
- Parham, C.; Zhong, Z.; Connor, D.M.; Chapman, L.D.; Pisano, E.D. Design and implementation of a compact low-dose diffraction enhanced medical imaging system. Acad. Radiol. 2009, 16, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Epple, F.M.; Ehn, S.; Thibault, P.; Koehler, T.; Potdevin, G.; Herzen, J.; Pennicard, D.; Graafsma, H.; Noel, P.B.; Pfeiffer, F. Phase unwrapping in spectral X-ray differential phase-contrast imaging with an energy-resolving photon-counting pixel detector. IEEE Trans. Med. Imaging 2015, 34, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.S.; Paganin, D.M.; Siu, K.K.W. X-ray phase imaging with a paper analyzer. Appl. Phys. Lett. 2012, 100, 124102–124104. [Google Scholar] [CrossRef]
- Berujon, S.; Ziegler, E.; Cerbino, R.; Peverini, L. Two-dimensional X-ray beam phase sensing. Phys. Rev. Lett. 2012, 108, 158102. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kashyap, Y.; Cai, B.; Sawhney, K. High energy X-ray phase and dark-field imaging using a random absorption mask. Sci. Rep. 2016, 6, 30581. [Google Scholar] [CrossRef] [PubMed]
- Thuring, T.; Abis, M.; Wang, Z.; David, C.; Stampanoni, M. X-ray phase-contrast imaging at 100 keV on a conventional source. Sci. Rep. 2014, 4, 5198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, A.M.; Boone, J.M. Tungsten anode spectral model using interpolating cubic splines: Unfiltered X-ray spectra from 20 kV to 640 kV. Med. Phys. 2014, 41, 042101. [Google Scholar] [CrossRef] [PubMed]
- FEPA-Standard. Available online: https://www.fepa-abrasives.com/abrasive-products/grains (accessed on 10 May 2018).
- The Commonly Used Grading System for Steel Wool Fibre Thickness Can Be Found for Example in the Engineering Toolbox as a Reference. Available online: https://www.engineeringtoolbox.com/steel-wool-grades-d_1619.html (accessed on 10 May 2018).
- Pan, B.; Xie, H.-M.; Xu, B.-Q.; Dai, F.-L. Performance of sub-pixel registration algorithms in digital image correlation. Meas. Sci. Technol. 2006, 17, 1615. [Google Scholar]
- Zhou, T.; Zdora, M.C.; Zanette, I.; Romell, J.; Hertz, H.M.; Burvall, A. Noise analysis of speckle-based X-ray phase-contrast imaging. Opt. Lett. 2016, 41, 5490–5493. [Google Scholar] [CrossRef] [PubMed]
- Berujon, S.; Wang, H.; Sawhney, K. X-ray multimodal imaging using a random-phase object. Phys. Rev. A 2012, 86, 063813. [Google Scholar] [CrossRef]
- Pan, B.; Xie, H.M.; Wang, Z.Y.; Qian, K.M.; Wang, Z.Y. Study on subset size selection in digital image correlation for speckle patterns. Opt. Express 2008, 16, 7037–7048. [Google Scholar] [CrossRef] [PubMed]
- Scrivener, K.L.; Gartner, E.M. Microstructural gradients in cement paste around aggregate particles. MRS Proc. 1987, 114. [Google Scholar] [CrossRef]
- Leemann, A.; Münch, B.; Gasser, P.; Holzer, L. Influence of compaction on the interfacial transition zone and the permeability of concrete. Cem. Concr. Res. 2006, 36, 1425–1433. [Google Scholar] [CrossRef]
- Bentz, D.P.; Martys, N.S.; Stutzman, P.; Levenson, M.S.; Garboczi, E.J.; Dunsmuir, J.; Schwartz, L.M. X-ray microtomography of an ASTM C109 mortar exposed to sulfate attack. MRS Proc. 1995, 370, 77–82. [Google Scholar] [CrossRef]
- Chotard, T.J.; Boncoeur-Martel, M.P.; Smith, A.; Dupuy, J.P.; Gault, C. Application of X-ray computed tomography to characterise the early hydration of calcium aluminate cement. Cem. Concr. Compos. 2003, 25, 145–152. [Google Scholar] [CrossRef]
- Sarapata, A.; Ruiz-Yaniz, M.; Zanette, I.; Rack, A.; Pfeiffer, F.; Herzen, J. Multi-contrast 3D X-ray imaging of porous and composite materials. Appl. Phys. Lett. 2015, 106, 154102. [Google Scholar] [CrossRef]
- Prade, F.; Fischer, K.; Heinz, D.; Meyer, P.; Mohr, J.; Pfeiffer, F. Time resolved X-ray dark-field tomography revealing water transport in a fresh cement sample. Sci. Rep. 2016, 6, 29108. [Google Scholar] [CrossRef] [PubMed]
- Trtik, P.; Soos, M.; Munch, B.; Lamprou, A.; Mokso, R.; Stampanoni, M. Quantification of a single aggregate inner porosity and pore accessibility using hard X-ray phase-contrast nanotomography. Langmuir 2011, 27, 12788–12791. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, A.; De la Torre, A.; Santacruz, I.; Trtik, P.; Da Silva, J.; Diaz, A.; Holler, M.; Aranda, M. In situ hydration imaging study of a ye’elimite paste by ptychographic X-ray computed tomography. In Proceedings of the 39 International Conference on Cement Microscopy, Toronto, ON, Canada, 10–13 April 2017. [Google Scholar]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1984, 1, 612–619. [Google Scholar] [CrossRef]
- Vlassenbroeck, J.; Dierick, M.; Masschaele, B.; Cnudde, V.; Hoorebeke, L.; Jacobs, P. Software tools for quantification of X-ray microtomography. Nucl. Instrum. Methods Phys. Res. A 2007, 580, 442–445. [Google Scholar] [CrossRef]
- Wang, F.X.; Wang, Y.D.; Wei, G.X.; Du, G.H.; Xue, Y.L.; Hu, T.; Li, K.; Deng, B.; Xie, H.L.; Xiao, T.Q. Speckle-tracking X-ray phase-contrast imaging for samples with obvious edge-enhancement effect. Appl. Phys. Lett. 2017, 111, 174101. [Google Scholar] [CrossRef]
- Wang, H.; Kashyap, Y.; Sawhney, K. From synchrotron radiation to lab source: Advanced speckle-based X-ray imaging using abrasive paper. Sci. Rep. 2016, 6, 20476. [Google Scholar] [CrossRef] [PubMed]
- Zdora, M.-C.; Thibault, P.; Zhou, T.; Koch, F.J.; Romell, J.; Sala, S.; Last, A.; Rau, C.; Zanette, I. X-ray phase-contrast imaging and metrology through unified modulated pattern analysis. Phys. Rev. Lett. 2017, 118, 203903. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Yang, F.; Kaufmann, R.; Wang, H. Applications of Laboratory-Based Phase-Contrast Imaging Using Speckle Tracking Technique towards High Energy X-Rays. J. Imaging 2018, 4, 69. https://doi.org/10.3390/jimaging4050069
Zhou T, Yang F, Kaufmann R, Wang H. Applications of Laboratory-Based Phase-Contrast Imaging Using Speckle Tracking Technique towards High Energy X-Rays. Journal of Imaging. 2018; 4(5):69. https://doi.org/10.3390/jimaging4050069
Chicago/Turabian StyleZhou, Tunhe, Fei Yang, Rolf Kaufmann, and Hongchang Wang. 2018. "Applications of Laboratory-Based Phase-Contrast Imaging Using Speckle Tracking Technique towards High Energy X-Rays" Journal of Imaging 4, no. 5: 69. https://doi.org/10.3390/jimaging4050069
APA StyleZhou, T., Yang, F., Kaufmann, R., & Wang, H. (2018). Applications of Laboratory-Based Phase-Contrast Imaging Using Speckle Tracking Technique towards High Energy X-Rays. Journal of Imaging, 4(5), 69. https://doi.org/10.3390/jimaging4050069