The Potential of Cognitive Neuroimaging: A Way Forward to the Mind-Machine Interface
Abstract
:1. Introduction
2. Functional Neuroimaging—The Concept
3. Mind-Machine Interface—The Concept
4. Cognitive Neuroimaging in Action
4.1. Functional MRI
4.2. PET
4.3. Micro-Electrode Array
4.4. EEG
4.5. MEG
4.6. ECoG
4.7. NIRS
4.8. Other Imaging Techniques
5. Significance of Cognitive Imaging in Neural Disease Diagnosis and Treatment
6. Limitations in Functional Imaging Based MMI
7. Future Scope
8. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Padmanabhan, P.; Nedumaran, A.M.; Mishra, S.; Pandarinathan, G.; Archunan, G.; Gulyas, B. The Advents of Hybrid Imaging Modalities: A New Era in Neuroimaging Applications. Adv. Biosyst. 2017. [Google Scholar] [CrossRef]
- Sandrone, S.; Bacigaluppi, M.; Galloni, M.R.; Cappa, S.F.; Moro, A.; Catani, M.; Filippi, M.; Monti, M.M.; Perani, D.; Martino, G. Weighing brain activity with the balance: Angelo Mosso’s original manuscripts come to light. Brain 2014, 137, 621–633. [Google Scholar] [CrossRef]
- Friedland, R.P.; Iadecola, C. Roy and Sherrington (1890): A Centennial Re-examination of “On the Regulation of the Blood-Supply of the Brain”. Neurology 1991, 41, 10–14. [Google Scholar] [CrossRef]
- Haas, L.F. Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. J. Neurol. Neurosurg. Psychiatry 2003, 74, 9. [Google Scholar] [CrossRef]
- Vidal, J.J. Toward Direct Brain-Computer Communication. Annu. Rev. Biophys. Bioeng. 1973, 2, 157–180. [Google Scholar] [CrossRef]
- MacDonald, A.W.; Cohen, J.D.; Stenger, V.A.; Carter, C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000, 288, 1835–1838. [Google Scholar]
- Min, B.K.; Marzelli, M.J.; Yoo, S.S. Neuroimaging-based approaches in the brain-computer interface. Trends Biotechnol. 2010, 28, 552–560. [Google Scholar] [CrossRef]
- Minati, L.; Nigri, A.; Rosazza, C.; Bruzzone, M.G. Thoughts turned into high-level commands: Proof-of-concept study of a vision-guided robot arm driven by functional MRI (fMRI) signals. Med. Eng. Phys. 2012, 34, 650–658. [Google Scholar] [CrossRef]
- Schatzthauer, R.; Fromherz, P. Neuron-silicon junction with voltage-gated ionic currents. Eur. J. Neurosci. 1998, 10, 1956–1962. [Google Scholar] [CrossRef]
- Blackstone, J.J.; Long, J.C. Shifting the debate on geoengineering. Science 2010, 329, 1466–1468. [Google Scholar]
- Gazzaniga, M.S.; Ivry, R.B.; Mangun, G.R. Cognitive Neuroscience: The Biology of the Mind. Q. Rev. Biol. 2009, 84, 196–197. [Google Scholar]
- Downing, P.E.; Chan, A.W.; Peelen, M.V.; Dodds, C.M. Domain Specificity in Visual Cortex. Cereb. Cortex 2006, 1453–1461. [Google Scholar] [CrossRef]
- Aguirre, G.K.; Singh, R.; D’Esposito, M. Stimulus inversion and the responses of face and object-sensitive cortical areas. Neuroreport 1999, 10, 189–194. [Google Scholar] [CrossRef]
- Mukamel, R. Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex. Science 2005, 309, 951–954. [Google Scholar] [CrossRef]
- Attwell, D.; Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002, 25, 621–625. [Google Scholar] [CrossRef]
- Pauling, L.; Coryell, C.D. The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc. Natl. Acad. Sci. USA 1936, 22, 210–216. [Google Scholar] [CrossRef]
- Pauling, L. Magnetic properties and structure of oxyhemoglobin. Proc. Natl. Acad. Sci. USA 1977, 74, 2612–2613. [Google Scholar]
- Ogawa, S.; Lee, T. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef]
- Raichle, M.E.; Mintun, M.A. Brain Work and Brain Imaging. Annu. Rev. Neurosci. 2006, 29, 449–476. [Google Scholar] [CrossRef]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef]
- Lebedev, M.A.; Nicolelis, M.A.L. Brain–machine interfaces: Past, present and future. Trends Neurosci. 2006, 29, 536–546. [Google Scholar] [CrossRef]
- Buch, E.; Weber, C.; Cohen, L.G.; Braun, C.; Dimyan, M.A.; Ard, T.; Mellinger, J.; Caria, A.; Soekadar, S.; Fourkas, A.; et al. Think to Move: A Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke. Stroke 2008, 39, 910–917. [Google Scholar] [CrossRef]
- Sarasola-Sanz, A.; López-Larraz, E.; Irastorza-Landa, N.; Klein, J.; Valencia, D.; Belloso, A.; Morin, F.O.; Spüler, M.; Birbaumer, N.; Ramos-Murguialday, A. An EEG-Based Brain-Machine Interface to Control a 7-Degrees of Freedom Exoskeleton for Stroke Rehabilitation. In Converging Clinical and Engineering Research on Neurorehabilitation II, Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016), Segovia, Spain, 18–21 October 2016; Ibáñez, J., González-Vargas, J., Azorín, J.M., Akay, M., Pons, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1127–1131. ISBN 978-3-319-46669-9. [Google Scholar]
- Ramos-Murguialday, A.; Schürholz, M.; Caggiano, V.; Wildgruber, M.; Caria, A.; Hammer, E.M.; Halder, S.; Birbaumer, N. Proprioceptive Feedback and Brain Computer Interface (BCI) Based Neuroprostheses. PLoS ONE 2012, 7, e47048. [Google Scholar] [CrossRef] [Green Version]
- Buxton, R.B. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. Energy 2002, 24, 523. [Google Scholar] [CrossRef]
- Leksell, L.; Leksell, D.; Schwebel, J. Stereotaxis and nuclear magnetic resonance. J. Neurol. Neurosurg. Psychiatry 1985, 48, 14–18. [Google Scholar]
- Fomby, P.; Cherlin, A.J. Family Instability and Child Well-Being. NIH Public Access. 2011, 72, 181–204. [Google Scholar]
- Wagner, A.D.; Maril, A.; Bjork, R.A.; Schacter, D.L. Prefrontal contributions to executive control: FMRI evidence for functional distinctions within lateral Prefrontal cortex. Neuroimage 2001, 14, 1337–1347. [Google Scholar] [CrossRef]
- Donaldson, D.I.; Petersen, S.E.; Ollinger, J.M.; Buckner, R.L. Dissociating state and item components of recognition memory using fMRI. Neuroimage 2001, 13, 129–142. [Google Scholar] [CrossRef]
- Nenadic, I.; Gaser, C.; Volz, H.-P.; Rammsayer, T.; Häger, F.; Sauer, H. Processing of temporal information and the basal ganglia: New evidence from fMRI. Exp. Brain Res. 2003, 148, 238–246. [Google Scholar] [CrossRef]
- Ahmad, R.F.; Malik, A.S. Simultaneous EEG-fMRI Data Acquisition during Cognitive Task. In Proceedings of the 2014 5th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, 3–5 June 2014. [Google Scholar]
- Ahmad, R.F.; Malik, A.S.; Member, S.; Kamel, N.; Member, S.; Reza, F. Object Categories Specific Brain Activity Classification with Simultaneous EEG-fMRI. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1825–1828. [Google Scholar]
- Northoff, G.; Richter, A.; Gessner, M.; Schlagenhauf, F.; Fell, J.; Baumgart, F.; Kaulisch, T.; Kötter, R.; Stephan, K.E.; Leschinger, A.; et al. Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: A combined fMRI/MEG study. Cereb. Cortex 2000, 10, 93–107. [Google Scholar] [CrossRef]
- Menon, C. The Use of an Meg/fMri-compatible Finger Motion sensor in Detecting Different Finger actions. Front. Bioeng. Biotechnol. 2016, 3, 1–9. [Google Scholar] [CrossRef]
- McDonald, C.R.; Thesen, T.; Carlson, C.; Blumberg, M.; Girard, H.M.; Trongnetrpunya, A.; Sherfey, J.S.; Devinsky, O.; Kuzniecky, R.; Dolye, W.K.; et al. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing. Neuroimage 2010, 53, 707–717. [Google Scholar] [CrossRef]
- Lee, J.-H.; Ryu, J.; Jolesz, F.A.; Cho, Z.-H.; Yoo, S.-S. Brain–machine interface via real-time fMRI: Preliminary study on thought-controlled robotic arm. Neurosci. Lett. 2009, 450, 1–6. [Google Scholar] [CrossRef]
- Marchesotti, S.; Martuzzi, R.; Schurger, A.; Blefari, M.L.; del Millán, J.R.; Bleuler, H.; Blanke, O. Cortical and subcortical mechanisms of brain-machine interfaces. Hum. Brain Mapp. 2017, 38, 2971–2989. [Google Scholar] [CrossRef]
- Tomography, P.E. Positron Emission Tomography; Springer: Berlin, Germany, 2002; Volume 27, ISBN 1852337982. [Google Scholar]
- Jonides, J.; Schumacher, E.H.; Smith, E.E.; Lauber, E.J.; Awh, E.; Minoshima, S.; Koeppe, R.A. Verbal Working Memory Load Affects Regional Brain Activation as Measured by PET. J. Cognit. Neurosci. 1969, 462–475. [Google Scholar]
- Kosslyn, S.M.; Digirolamo, G.J.; Thompson, W.L. Mental rotation of objects versus hands: Neural mechanisms revealed by positron emission tomography. Psychophysiology 1998, 35, 151–161. [Google Scholar]
- Ross, M.; Errandonea, D.; Boehler, R. Melting of transition metals at high pressure and the influence of liquid frustration: The early metals Ta and Mo. Phys. Rev. B 2007, 76, 184118. [Google Scholar] [CrossRef]
- Friston, K.J.; Frith, C.D.; Liddle, P.F.; Frackowiak, R.S.J. Comparing functional (PET) images: The assessment of significant change. J. Cereb. Blood Flow Metab. 1991, 11, 690–699. [Google Scholar] [CrossRef]
- Blaxton, T.A.; Zeffiro, T.A.; Gabrieli, J.D.; Bookheimer, S.Y.; Carrillo, M.C.; Theodore, W.H.; Disterhoft, J.F. Functional mapping of human learning: A positron emission tomography activation study of eyeblink conditioning. J. Neurosci. 1996, 16, 4032–4040. [Google Scholar]
- Müller, B.W.; Jüptner, M.; Jentzen, W.; Müller, S.P. Cortical Activation to Auditory Mismatch Elicited by Frequency Deviant and Complex Novel Sounds: A PET Study. Neuroimage 2002, 17, 231–239. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, K.; Xu, C.; Zhang, J.; Ji, J.; Zheng, X.; Zhang, H.; Tian, M. PET Mapping for Brain-Computer-Interface-Based Stimulation in a Rat Model with Intracranial Electrode Implantation in the Ventro-posterior Medial Thalamus. J. Nucl. Med. 2016, 57, 1141–1145. [Google Scholar] [CrossRef]
- Moran, D. Evolution of brain–computer interface: Action potentials, local field potentials and electrocorticograms. Curr. Opin. Neurobiol. 2010, 20, 741–745. [Google Scholar] [CrossRef]
- Polikov, V.S.; Tresco, P.A.; Reichert, W.M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 2005, 148, 1–18. [Google Scholar]
- Nordhausen, C.T.; Maynard, E.M.; Normann, R.A. Single unit recording capabilities of a 100 microelectrode array. Brain Res. 1996, 726, 129–140. [Google Scholar]
- Maynard, E.M.; Nordhausen, C.T.; Normann, R.A. The Utah intracortical Electrode Array: A recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 1997, 102, 228–239. [Google Scholar]
- Michel, C.M.; Murray, M.M.; Lantz, G.; Gonzalez, S.; Spinelli, L.; Grave de Peralta, R. EEG source imaging. Clin. Neurophysiol. 2004, 115, 2195–2222. [Google Scholar] [CrossRef]
- Guger, C.; Edlinger, G.; Harkam, W.; Niedermayer, I.; Pfurtscheller, G. How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 145–147. [Google Scholar] [CrossRef]
- Lin, B.-S.; Pan, J.-S.; Chu, T.-Y.; Lin, B.-S. Development of a Wearable Motor-Imagery-Based Brain–Computer Interface. J. Med. Syst. 2016, 40, 71. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; McFarland, D.J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. USA 2004, 101, 17849–17854. [Google Scholar] [CrossRef]
- Fok, S.; Schwartz, R.; Wronkiewicz, M.; Holmes, C.; Zhang, J.; Somers, T.; Bundy, D.; Leuthardt, E. An EEG-based brain computer interface for rehabilitation and restoration of hand control following stroke using ipsilateral cortical physiology. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 6277–6280. [Google Scholar] [CrossRef]
- Cohen, D. Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer. Science 1972, 175, 664–666. [Google Scholar] [CrossRef]
- Braun, C.; Schweizer, R.; Elbert, T.; Birbaumer, N.; Taub, E. Differential activation in somatosensory cortex for different discrimination tasks. J. Neurosci. 2000, 20, 446–450. [Google Scholar] [CrossRef]
- Georgopoulos, A.P.; Langheim, F.J.P.; Leuthold, A.C.; Merkle, A.N. Magnetoencephalographic signals predict movement trajectory in space. Exp. Brain Res. 2005, 167, 132–135. [Google Scholar] [CrossRef]
- Schalk, G.; Leuthardt, E.C. Brain-Computer Interfaces Using Electrocorticographic Signals. IEEE Rev. Biomed. Eng. 2011, 4, 140–154. [Google Scholar] [CrossRef]
- Freeman, W.J.; Holmes, M.D.; Burke, B.C.; Vanhatalo, S. Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 2003, 114, 1053–1068. [Google Scholar] [CrossRef]
- Leuthardt, E.C.; Schalk, G.; Wolpaw, J.R.; Ojemann, J.G.; Moran, D.W. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 2004, 1, 63–71. [Google Scholar] [CrossRef]
- Shenoy, P.; Miller, K.J.; Ojemann, J.G.; Rao, R.P.N. Finger Movement Classification for an Electrocorticographic BCI. In Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–5 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 192–195. [Google Scholar]
- Graimann, B.; Huggins, J.E.; Levine, S.P.; Pfurtscheller, G. Toward a direct brain interface based on human subdural recordings and wavelet-packet analysis. IEEE Trans. Biomed. Eng. 2004, 51, 954–962. [Google Scholar] [CrossRef]
- Abdulkader, S.N.; Atia, A.; Mostafa, M.-S.M. Brain computer interfacing: Applications and challenges. Egypt Inform. J. 2015, 16, 213–230. [Google Scholar] [CrossRef]
- Hoshi, Y. Functional near-infrared optical imaging: Utility and limitations in human brain mapping. Psychophysiology 2003, 40, 511–520. [Google Scholar]
- Miyai, I.; Tanabe, H.C.; Sase, I.; Eda, H.; Oda, I.; Konishi, I.; Tsunazawa, Y.; Suzuki, T.; Yanagida, T.; Kubota, K. Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. Neuroimage 2001, 14, 1186–1192. [Google Scholar] [CrossRef]
- Sitaram, R.; Zhang, H.; Guan, C.; Thulasidas, M.; Hoshi, Y.; Ishikawa, A.; Shimizu, K.; Birbaumer, N. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. Neuroimage 2007, 34, 1416–1427. [Google Scholar] [CrossRef]
- Coyle, S.; Ward, T.; Markham, C.; McDarby, G. On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. Physiol. Meas. 2004, 25, 815–822. [Google Scholar] [CrossRef]
- Yanagisawa, K.; Asaka, K.; Sawai, H.; Tsunashima, H.; Nagaoka, T.; Tsujii, T.; Sakatani, K. Brain-computer interface using near-infrared spectroscopy for rehabilitation. In Proceedings of the 2010 International Conference on Control Automation and Systems (ICCAS), Gyeonggi-do, Korea, 27–30 October 2010; pp. 339–354. [Google Scholar]
- Cheney, M.; Isaacson, D.; Newell, J.C. Electrical Impedance Tomography. SIAM Rev. 1999, 41, 85–101. [Google Scholar] [CrossRef]
- Tidswell, T.; Gibson, A.; Bayford, R.H.; Holder, D.S. Three-dimensional electrical impedance tomography of human brain activity. Neuroimage 2001, 13, 283–294. [Google Scholar] [CrossRef]
- Boas, D.A.; Gaudette, T.; Strangman, G.; Cheng, X.; Marota, J.J.; Mandeville, J.B. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage 2001, 13, 76–90. [Google Scholar] [CrossRef]
- White, B.R.; Snyder, A.Z.; Cohen, A.L.; Petersen, S.E.; Raichle, M.E.; Schlaggar, B.L.; Culver, J.P. Resting-state functional connectivity in the human brain revealed with diffuse optical tomography. Neuroimage 2009, 47, 148–156. [Google Scholar] [CrossRef]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef]
- Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806. [Google Scholar]
- Yang, S.; Xing, D.; Zhou, Q.; Xiang, L.; Lao, Y. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Med. Phys. 2007, 34, 3294–3301. [Google Scholar] [CrossRef]
- Forsberg, A.; Engler, H.; Almkvist, O.; Blomquist, G.; Wall, A.; Ringheim, A.; Bengt, L. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol. Aging 2008, 29, 1456–1465. [Google Scholar] [CrossRef]
- Bose, P.; Karsan, N.; Zelaya, F.; Goadsby, P. 1557 Alterations in cerebral blood flow during the postdrome phase of a migraine attack captured with arterial spin labelled (asl) mri. J. Neurol. Neurosurg. Psychiatry 2017, 88. [Google Scholar] [CrossRef]
- Johnson, N.A.; Jahng, G.; Weiner, M.W.; Miller, B.L.; Chui, H.C.; Jagust, W.J.; Gorno-tempini, M.L.; Schuff, N. Radiology Pattern of Cerebral Hypoperfusion in Alzheimer Disease and Mild Cognitive Impairment Measured with Arterial Spin-labeling MR Imaging: Initial Experience. Radiology 2005, 234, 851–859. [Google Scholar]
- Georgiou-karistianis, N.; Stout, J.C.; Domı, J.F.; Carron, S.P.; Ando, A.; Churchyard, A.; Chua, P.; Dymowski, A.R.; Poudel, G.; Egan, G.F. Functional Magnetic Resonance Imaging of Working Memory in Huntington’s Disease: Cross-Sectional Data From the IMAGE-HD Study. Hum. Brain Mapp. 2014, 1864, 1847–1864. [Google Scholar] [CrossRef]
- Narayana, P.A.; Yu, X.; Hasan, K.M.; Wilde, E.A.; Levin, H.S.; Hunter, J.V.; Miller, E.R.; Kumar, V.; Patel, S.; Robertson, C.S.; et al. Multi-modal MRI of mild traumatic brain injury. NeuroImage Clin. 2015, 7, 87–97. [Google Scholar] [CrossRef]
- Squarcina, L.; Bellani, M.; Rossetti, M.G.; Perlini, C.; Delvecchio, G.; Dusi, N.; Barillari, M.; Ruggeri, M.; Altamura, C.A.; Bertoldo, A.; et al. Similar white matter changes in schizophrenia and bipolar disorder: A tract-based spatial statistics study. PLoS ONE 2017, 12, e0178089. [Google Scholar]
- Zakaria, R.; Platt-Higgins, A.; Rathi, N.; Radon, M.; Das, S.; Das, K.; Bhojak, M.; Brodbelt, A.; Chavredakis, E.; Jenkinson, M.D.; et al. T-Cell Densities in Brain Metastases Are Associated with Patient Survival Times and Diffusion Tensor MRI Changes. Cancer Res. 2018, 78, 610–616. [Google Scholar] [CrossRef]
- Van Schependom, J.; Mieke, D.; Cleynhens, K.; Marie, B.D.; De Keyser, J.; Nagels, G. Detection of cognitive impairment in MS based on an EEG P300 paradigm. In Proceedings of the 2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Philadelphia, PA, USA, 22–24 June 2013; pp. 3–7. [Google Scholar] [CrossRef]
- Courchesne, E.; Karns, C.; Davis, H.; Ziccardi, R.; Carper, R.; Tigue, Z.; Chisum, H.J.; Moses, P.; Pierce, K.; Lord, C.; et al. Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology 2001, 76, 2111. [Google Scholar] [CrossRef]
- Weiskopf, N.; Sitaram, R.; Josephs, O.; Veit, R.; Scharnowski, F.; Goebel, R.; Birbaumer, N.; Deichmann, R.; Mathiak, K. Real-time functional magnetic resonance imaging: Methods and applications. Magn. Reson. Imaging 2007, 25, 989–1003. [Google Scholar] [CrossRef]
- Liu, A.K.; Belliveau, J.W.; Dale, A.M.; Raichle, M.E. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc. Natl. Acad. Sci. USA 1998, 95, 8945–8950. [Google Scholar] [CrossRef]
- Rajya Lakshmi, M.; Prasad, T.V.; Chandra, P.V. Survey on EEG Signal Processing Methods. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2014, 4, 84–91. [Google Scholar]
- Taulu, S.; Hari, R. Removal of magnetoencephalographic artifacts with temporal signal-space separation: Demonstration with single-trial auditory-evoked responses. Hum. Brain Mapp. 2009, 30, 1524–1534. [Google Scholar] [CrossRef]
- Sitaram, R.; Caria, A.; Veit, R.; Gaber, T.; Rota, G.; Kuebler, A.; Birbaumer, N. FMRI brain-computer interface: A tool for neuroscientific research and treatment. Comput. Intell. Neurosci. 2007, 2007, 25487. [Google Scholar] [CrossRef]
- Kim, S.; Richter, W.; Ugurbil, K. Limitations of Temporal Resolution in Functional MRI. Magn. Reson. Med. 1997, 34, 631–636. [Google Scholar]
- Wilson, J.A.; Felton, E.A.; Garell, P.C.; Schalk, G.; Williams, J.C. ECoG factors underlying multimodal control of a brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 246–250. [Google Scholar] [CrossRef]
- Cui, X.; Bray, S.; Bryant, D.M.; Glover, G.H.; Reiss, A.L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 2011, 54, 2808–2821. [Google Scholar] [CrossRef]
- Daly, J.J.; Wolpaw, J.R. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7, 1032–1043. [Google Scholar] [CrossRef]
- Gerson, A.D.; Parra, L.C.; Sajda, P. Cortically Coupled Computer Vision for Rapid Image Search. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 174–179. [Google Scholar] [CrossRef]
- Smetters, D.; Majewska, A.; Yuste, R. Detecting action potentials in neuronal populations with calcium imaging. Methods 1999, 18, 215–221. [Google Scholar] [CrossRef]
- Hu, S. Listening to the Brain with Photoacoustics. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 117–126. [Google Scholar] [CrossRef]
- Lin, C.-T.; Ko, L.-W.; Chang, C.-J.; Wang, Y.-T.; Chung, C.-H.; Yang, F.-S.; Duann, J.-R.; Jung, T.-P.; Chiou, J.-C. Wearable and Wireless Brain-Computer Interface and Its Applications. In Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. FAC 2009; Springer: Berlin, Germany, 2009; pp. 741–748. [Google Scholar]
- Hsieh, K.L.; Sun, K.T.; Yeh, J.K.; Pan, Y.U. Home care by auditory Brain Computer Interface for the blind with severe physical disabilities. In Proceedings of the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 527–530. [Google Scholar]
- Cincotti, F.; Mattia, D.; Aloise, F.; Bufalari, S.; Schalk, G.; Oriolo, G.; Cherubini, A.; Marciani, M.G.; Babiloni, F. Non-invasive brain–computer interface system: Towards its application as assistive technology. Brain Res. Bull. 2008, 75, 796–803. [Google Scholar] [CrossRef]
- Kryger, M.; Wester, B.; Pohlmeyer, E.A.; Rich, M.; John, B.; Beaty, J.; McLoughlin, M.; Boninger, M.; Tyler-Kabara, E.C. Flight simulation using a Brain-Computer Interface: A pilot, pilot study. Exp. Neurol. 2017, 287, 473–478. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandarinathan, G.; Mishra, S.; Nedumaran, A.M.; Padmanabhan, P.; Gulyás, B. The Potential of Cognitive Neuroimaging: A Way Forward to the Mind-Machine Interface. J. Imaging 2018, 4, 70. https://doi.org/10.3390/jimaging4050070
Pandarinathan G, Mishra S, Nedumaran AM, Padmanabhan P, Gulyás B. The Potential of Cognitive Neuroimaging: A Way Forward to the Mind-Machine Interface. Journal of Imaging. 2018; 4(5):70. https://doi.org/10.3390/jimaging4050070
Chicago/Turabian StylePandarinathan, Ganesh, Sachin Mishra, Anu Maashaa Nedumaran, Parasuraman Padmanabhan, and Balázs Gulyás. 2018. "The Potential of Cognitive Neuroimaging: A Way Forward to the Mind-Machine Interface" Journal of Imaging 4, no. 5: 70. https://doi.org/10.3390/jimaging4050070
APA StylePandarinathan, G., Mishra, S., Nedumaran, A. M., Padmanabhan, P., & Gulyás, B. (2018). The Potential of Cognitive Neuroimaging: A Way Forward to the Mind-Machine Interface. Journal of Imaging, 4(5), 70. https://doi.org/10.3390/jimaging4050070