Ensemble of ERDTs for Spectral–Spatial Classification of Hyperspectral Images Using MRS Object-Guided Morphological Profiles
Abstract
:1. Introduction
2. Methods
2.1. Object-Guided MPs
2.2. ExtraTrees
Algorithm 1 Algorithmic steps to build an extremely randomized decision tree (ERDT) [38]. |
|
3. Data Sets
4. Results
4.1. Experimental Configuration
4.2. Results and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shahshahani, B.M.; Landgrebe, D.A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Gamba, P.; Dell’Acqua, F.; Stasolla, M.; Trianni, G.; Lisini, G. Limits and challenges of optical high-resolution satellite remote sensing for urban applications. In Urban Remote Sensing—Monitoring, Synthesis and Modelling in the Urban Environment; Yang, X., Ed.; Wiley: New York, NY, USA, 2011; pp. 35–48. [Google Scholar]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Samat, A.; Du, P.; Liu, S.; Li, J.; Cheng, L. E2LMs: Ensemble Extreme Learning Machines for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1060–1069. [Google Scholar] [CrossRef]
- Chan, J.C.W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Xia, J.; Du, P.; He, X.; Chanussot, J. Hyperspectral remote sensing image classification based on rotation forest. IEEE Geosci. Remote Sens. Lett. 2014, 11, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Samat, A.; Persello, C.; Liu, S.; Li, E.; Miao, Z.; Abuduwaili, J. Classification of VHR Multispectral Images Using ExtraTrees and Maximally Stable Extremal Region-Guided Morphological Profile. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3179–3195. [Google Scholar] [CrossRef]
- Samat, A.; Li, E.; Wang, W.; Liu, S.; Lin, C.; Abuduwaili, J. Meta-XGBoost for hyperspectral image classification using extended MSER-guided morphological profiles. Remote Sens. 2020, 12, 1973. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Benediktsson, J.A. Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [Google Scholar] [CrossRef]
- Shen, L.; Jia, S. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5039–5046. [Google Scholar] [CrossRef]
- Qian, Y.; Ye, M.; Zhou, J. Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2276–2291. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Jia, S.; He, S.; Sun, Y.; Ji, Z.; Shen, L. Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework. Inform. Sci. 2015, 298, 274–287. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, Y.; Chen, C.P. Region-kernel-based support vector machines for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4810–4824. [Google Scholar] [CrossRef]
- Lu, Z.; He, J. Spectral–spatial hyperspectral image classification with adaptive mean filter and jump regression detection. Electron. Lett. 2015, 51, 1658–1660. [Google Scholar] [CrossRef]
- Bourennane, S.; Fossati, C.; Cailly, A. Improvement of classification for hyperspectral images based on tensor modeling. IEEE Geosci. Remote Sens. Lett. 2010, 7, 801–805. [Google Scholar] [CrossRef]
- Jackson, Q.; Landgrebe, D.A. Adaptive Bayesian contextual classification based on Markov random fields. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2454–2463. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [Google Scholar] [CrossRef]
- Zhong, P.; Wang, R. Learning conditional random fields for classification of hyperspectral images. IEEE Trans. Image Process. 2010, 19, 1890–1907. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Discriminative random fields: A discriminative framework for contextual interaction in classification. In Proceedings of the 2003 Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 1150–1157. [Google Scholar]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Geiß, C.; Klotz, M.; Schmitt, A.; Taubenböck, H. Object-based morphological profiles for classification of remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5952–5963. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 2011, 8, 542–546. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Chanussot, J.; Dalla Mura, M.; Huang, X.; Bellens, R.; Gautama, S.; Philips, W. Taking Optimal Advantage of Fine Spatial Resolution: Promoting partial image reconstruction for the morphological analysis of very-high-resolution images. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–28. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J. Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2973–2987. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Wei, Z.; Xiao, L.; Sun, L. Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 2462–2471. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral–spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7738–7749. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.; Geng, J. Spectral–spatial classification of hyperspectral image based on deep auto-encoder. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4073–4085. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [Google Scholar] [CrossRef]
- Samat, A.; Yokoya, N.; Du, P.; Liu, S.; Ma, L.; Ge, Y.; Issanova, G.; Saparov, A.; Abuduwaili, J.; Lin, C. Direct, ECOC, ND and END Frameworks—Which One Is the Best? An Empirical Study of Sentinel-2A MSIL1C Image Classification for Arid-Land Vegetation Mapping in the Ili River Delta, Kazakhstan. Remote Sens. 2019, 11, 1953. [Google Scholar] [CrossRef] [Green Version]
- Petrovic, A.; Escoda, O.D.; Vandergheynst, P. Multiresolution segmentation of natural images: From linear to nonlinear scale-space representations. IEEE Trans. Image Process. 2004, 13, 1104–1114. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Rätsch, G.; Onoda, T.; Müller, K.R. Soft margins for AdaBoost. Mach. Learn. 2001, 42, 287–320. [Google Scholar] [CrossRef]
- Benbouzid, D.; Busa-Fekete, R.; Casagrande, N.; Collin, F.D.; Kégl, B. MultiBoost: A multi-purpose boosting package. J. Mach. Learn. Res. 2012, 13, 549–553. [Google Scholar]
- Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; van Kasteren, T.; Liao, W.; Bellens, R.; Pižurica, A.; Gautama, S.; et al. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2405–2418. [Google Scholar] [CrossRef]
Ensemble Method | Classifier | Raw: | +F1 | +F2 | +F3 | +F4 | PC10: | +F1 | +F2 | +F3 | +F4 |
---|---|---|---|---|---|---|---|---|---|---|---|
None | C4.5 | 65.76,0.58 | 77.42,0.71 | 82.60,0.77 | 83.51,0.80 | 91.89,0.89 | 73.17,0.66 | 78.45,0.73 | 80.34,0.74 | 92.05,0.90 | 95.84,0.95 |
ERDT | 64.66,0.57 | 79.61,0.74 | 81.72,0.76 | 83.62,0.79 | 91.74,0.89 | 62.42,0.54 | 71.83,0.65 | 73.39,0.66 | 90.15,0.87 | 95.06,0.94 | |
SVM | 80.49,0.76 | 87.31,0.84 | 87.24,0.83 | 96.26,0.95 | 92.24,0.90 | 81.51,0.77 | 84.61,0.80 | 83.79,0.79 | 91.49,0.89 | 91.13,0.89 | |
Bagging | C4.5 | 72.18,0.66 | 79.90,0.74 | 86.74,0.82 | 95.94,0.95 | 91.15,0.88 | 76.36,0.70 | 79.90,0.74 | 86.74,0.82 | 95.26,0.94 | 97.75,0.97 |
ERDT | 71.42,0.65 | 84.63,0.80 | 88.74,0.85 | 87.76,0.84 | 95.01,0.93 | 78.56,0.73 | 80.97,0.76 | 82.42,0.77 | 95.95,0.95 | 98.43,0.98 | |
AdaBoost | C4.5 | 74.18,0.68 | 92.44,0.90 | 88.94,0.86 | 93.80,0.92 | 91.41,0.89 | 76.99,0.71 | 92.21,0.90 | 87.93,0.84 | 94.48,0.93 | 98.66,0.98 |
ERDT | 73.67,0.68 | 88.84,0.84 | 89.35,0.86 | 91.15,0.88 | 97.09,0.96 | 77.40,0.72 | 88.42,0.85 | 86.28,0.82 | 97.05,0.96 | 98.29,0.98 | |
MultiBoost | C4.5 | 73.91,0.68 | 92.66,0.90 | 88.80,0.85 | 94.89,0.93 | 90.52,0.87 | 77.49,0.72 | 92.01,0.89 | 88.18,0.84 | 94.52,0.93 | 98.75,0.98 |
ERDT | 72.79,0.66 | 88.15,0.84 | 89.97,0.87 | 90.56,0.87 | 94.22,0.92 | 77.63,0.72 | 83.96,0.79 | 84.92,0.80 | 96.71,0.96 | 98.51,0.98 | |
Random Forest | C4.5 | 71.08,0.64 | 85.65,0.81 | 87.88,0.84 | 90.93,0.88 | 92.94,0.91 | 76.31,0.70 | 82.83,0.78 | 85.06,0.80 | 94.29,0.92 | 97.66,0.97 |
ExtraTrees | ERDT | 72.70,0.66 | 86.58,0.82 | 84.09,0.79 | 88.54,0.85 | 94.96,0.93 | 76.09,0.70 | 85.23,0.81 | 84.60,0.80 | 95.24,0.94 | 97.80,0.96 |
Ensemble Method | Classifier | Raw: | +F1 | +F2 | +F3 | +F4 | PC10: | +F1 | +F2 | +F3 | +F4 |
---|---|---|---|---|---|---|---|---|---|---|---|
None | C4.5 | 80.07,0.78 | 88.93,0.88 | 88.48,0.87 | 89.76,0.89 | 91.43,0.91 | 83.51,0.82 | 86.54,0.85 | 83.97,0.83 | 88.64,0.88 | 91.59,0.91 |
ERDT | 78.74,0.77 | 88.35,0.87 | 85.27,0.84 | 89.07,0.88 | 92.39,0.92 | 81.40,0.80 | 86.98,0.86 | 83.90,0.82 | 88.16,0.87 | 89.41,0.88 | |
SVM | 90.19,0.89 | 94.19,0.94 | 90.42,0.90 | 93.13,0.93 | 96.46,0.96 | 89.72,0.89 | 93.61,0.93 | 91.42,0.91 | 93.51,0.93 | 95.18,0.95 | |
Bagging | C4.5 | 84.90,0.84 | 90.73,0.90 | 79.44,0.78 | 90.87,0.90 | 94.06,0.94 | 86.59,0.85 | 90.26,0.89 | 85.98,0.85 | 94.18,0.94 | 96.30,0.96 |
ERDT | 86.24,0.85 | 93.50,0.93 | 92.06,0.91 | 92.59,0.92 | 94.71,0.94 | 89.78,0.89 | 90.90,0.90 | 91.75,0.91 | 93.91,0.93 | 96.13,0.96 | |
AdaBoost | C4.5 | 85.94,0.85 | 91.44,0.91 | 89.78,0.89 | 92.75,0.92 | 94.04,0.93 | 88.36,0.87 | 91.72,0.91 | 91.54,0.91 | 91.91,0.91 | 94.61,0.94 |
ERDT | 86.50,0.85 | 94.29,0.94 | 92.64,0.92 | 92.91,0.92 | 94.80,0.94 | 89.41,0.88 | 90.81,0.90 | 92.03,0.91 | 94.42,0.94 | 96.59,0.96 | |
MultiBoost | C4.5 | 86.16,0.85 | 91.54,0.91 | 89.73,0.89 | 92.65,0.92 | 94.34,0.93 | 88.45,0.87 | 91.98,0.91 | 91.27,0.90 | 93.77,0.93 | 96.06,0.96 |
ERDT | 86.58,0.85 | 93.68,0.93 | 91.78,0.91 | 93.05,0.92 | 94.86,0.94 | 90.23,0.89 | 91.87,0.91 | 91.99,0.91 | 93.98,0.93 | 95.66,0.95 | |
Random Forest | C4.5 | 85.25,0.84 | 93.61,0.93 | 91.30,0.91 | 92.93,0.92 | 94.65,0.94 | 88.95,0.88 | 89.86,0.89 | 91.63,0.91 | 92.15,0.91 | 95.76,0.95 |
ExtraTrees | ERDT | 86.91,0.86 | 93.20,0.93 | 92.36,0.92 | 92.68,0.92 | 95.06,0.95 | 89.28,0.88 | 90.19,0.89 | 91.70,0.91 | 93.13,0.93 | 95.26,0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samat, A.; Li, E.; Liu, S.; Miao, Z.; Wang, W. Ensemble of ERDTs for Spectral–Spatial Classification of Hyperspectral Images Using MRS Object-Guided Morphological Profiles. J. Imaging 2020, 6, 114. https://doi.org/10.3390/jimaging6110114
Samat A, Li E, Liu S, Miao Z, Wang W. Ensemble of ERDTs for Spectral–Spatial Classification of Hyperspectral Images Using MRS Object-Guided Morphological Profiles. Journal of Imaging. 2020; 6(11):114. https://doi.org/10.3390/jimaging6110114
Chicago/Turabian StyleSamat, Alim, Erzhu Li, Sicong Liu, Zelang Miao, and Wei Wang. 2020. "Ensemble of ERDTs for Spectral–Spatial Classification of Hyperspectral Images Using MRS Object-Guided Morphological Profiles" Journal of Imaging 6, no. 11: 114. https://doi.org/10.3390/jimaging6110114
APA StyleSamat, A., Li, E., Liu, S., Miao, Z., & Wang, W. (2020). Ensemble of ERDTs for Spectral–Spatial Classification of Hyperspectral Images Using MRS Object-Guided Morphological Profiles. Journal of Imaging, 6(11), 114. https://doi.org/10.3390/jimaging6110114