A Hybrid Robust Image Watermarking Method Based on DWT-DCT and SIFT for Copyright Protection
Abstract
:1. Introduction
2. Previous Work
3. Background
3.1. Discrete Cosine Transform
3.2. Discrete Wavelet Transform
3.3. Scale Invariant Feature Transform (Sift)
4. Proposed Scheme
4.1. Embedding Process
Algorithm 1 Watermark embedding |
|
4.2. Extraction Process
Algorithm 2 Watermark extracting |
|
5. Experimental Results
5.1. Experimental Setup
5.2. Evaluation Measures
5.2.1. Imperceptibility
5.2.2. Robustness
5.3. Evaluation of Imperceptibility
5.4. Evaluation of Robustness
5.5. Comparison with Alternative Methods
Comparison of Imperceptibility and Robustness
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Attack | Hu’s Method [34] | Proposed Method |
---|---|---|
Cropping () | 0.9755 | 0.9897 |
Rotation (45°) | 0.9861 | 0.9803 |
Gaussian noise () | 0.9927 | 1.0 |
Histogram equalization | 0.9817 | 1.0 |
JPEG (70) | 0.9975 | 1.0 |
Attack | [29] | Proposed Method |
---|---|---|
Rotation (2°) | 0.9396 | 0.9998 |
Rotation (5°) | 0.9308 | 0.9998 |
Rotation (10°) | 0.8861 | 0.9995 |
JPEG (100) | 0.9818 | 1.0 |
Median filter () | 0.6450 | 0.9802 |
Center cropping () | 0.9743 | 1.0 |
Center cropping () | 0.9803 | 1.0 |
Center cropping () | 0.9803 | 0.9998 |
Salt and pepper noise () | 0.9803 | 1.0 |
Salt and pepper noise () | 0.9698 | 1.0 |
Salt and pepper noise () | 0.9494 | 1.0 |
Salt and pepper noise () | 0.9282 | 0.9998 |
Attack | [44] | Proposed Method |
---|---|---|
Salt and pepper (0.001) | 0.9902 | 0.9907 |
Gaussian (, ) | 0.2631 | 0.8102 |
Median filtering () | 0.9994 | 0.9802 |
Center Cropping (25%) | 0.2793 | 1.0 |
Histogram equalization | 0.1981 | 1.0 |
JPEG (Q = 100) | 0.9696 | 1.0 |
JPEG (Q = 50) | 0.9998 | 0.9999 |
JPEG (Q = 40) | 0.9976 | 0.9681 |
JPEG (Q = 30) | 1.0 | 0.9535 |
Rotation 2° | 0.9914 | 0.9998 |
Rotation 5° | 0.9932 | 0.9998 |
Rotation 10° | 0.9811 | 0.9995 |
Scaling (0.5) | 0.8350 | 0.9987 |
Scaling (0.9) | 0.9996 | 0.9990 |
Scaling (1.2) | 0.9997 | 0.9984 |
[45] | Proposed Method | |||||
---|---|---|---|---|---|---|
Attack | Lena | Mandrill | Peppers | Lena | Mandrill | Peppers |
JPEG (Q = 40) | 0 | 0.0667 | 0.0833 | 0 | 0.0105 | 0.0154 |
JPEG (Q = 30) | 0 | 0.0833 | 0.1167 | 0 | 0.0048 | 0.0012 |
JPEG (Q = 20) | 0 | 0.0667 | 0.2833 | 0.0127 | 0.0210 | 0.0267 |
JPEG (Q = 10) | 0.0667 | 0.2333 | 0.4167 | 0.0354 | 0.0283 | 0.0391 |
scaling 0.6 | 0 | 0.0500 | 0.0333 | 0 | 0.0249 | 0 |
scaling 0.5 | 0 | 0.0500 | 0.0500 | 0 | 0.0108 | 0.0102 |
scaling 0.4 | 0 | 0.0333 | 0.2167 | 0 | 0.0045 | 0.0068 |
Cropping 30% | 0 | 0 | 0 | 0 | 0 | 0 |
Cropping 40% | 0 | 0 | 0 | 0 | 0 | 0 |
Cropping 50% | 0 | 0 | 0 | 0 | 0 | 0 |
Rotation 15° | 0 | 0 | 0 | 0 | 0 | 0 |
Rotation 30° | 0 | 0 | 0 | 0 | 0 | 0 |
Rotation 45° | 0 | 0 | 0 | 0 | 0.0011 | 0.0009 |
Median filtering () | 0 | 0.0667 | 0 | 0 | 0.0027 | 0 |
Attack | Method | |||||
---|---|---|---|---|---|---|
[34] | Proposed Method | |||||
Lena | Peppers | Baboon | Lena | Peppers | Baboon | |
CR (50%) | 0.9755 | 0.9775 | 0.9805 | 1.0 | 1.0 | 1.0 |
ROT(45) | 0.9861 | 0.9814 | 0.9683 | 0.9903 | 0.9804 | 0.9817 |
GN (1%) | 0.9927 | 0.9945 | 0.9885 | 1.0 | 1.0 | 1.0 |
HE | 0.9817 | 0.9927 | 0.9499 | 1.0 | 1.0 | 1.0 |
JPEG (70) | 0.9975 | 0.9977 | 0.9976 | 1.0 | 1.0 | 1.0 |
JPEG2000 (70) | 0.9976 | 0.9976 | 0.9967 | 0.9999 | 1.0 | 0.9999 |
Attack | Method | |||||
---|---|---|---|---|---|---|
[24] | Proposed Method | |||||
Lena | Peppers | Baboon | Lena | Peppers | Baboon | |
CR (50%) | 1.0 | 1.0 | 0.9999 | 1.0 | 1.0 | 1.0 |
ROT(45) | 0.2874 | 0.3120 | 0.1985 | 0.9903 | 0.9804 | 0.9817 |
GN (1%) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
HE | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
JPEG (70) | 0.9998 | 0.9997 | 0.9998 | 1.0 | 1.0 | 1.0 |
JPEG2000 (70) | 0.9784 | 0.9802 | 0.9778 | 0.9999 | 1.0 | 0.9999 |
Attacks | BER |
---|---|
Histogram equalization | 0 |
Gaussian noise ( ) | 0.0001 |
Gaussian noise ( ) | 0.0022 |
Salt & pepper noise ( ) | 0.0018 |
Low-pass Gaussian filtering | |
() | 0.0009 |
() | 0.0011 |
() | 0.0022 |
() | 0.0044 |
() | 0.0075 |
() | 0.0106 |
() | 0.0169 |
() | 0.0283 |
Gaussian smoothing | |
() | 0.0014 |
() | 0.0058 |
() | 0.0157 |
() | 0.0237 |
() | 0.0281 |
() | 0.0328 |
() | 0.0382 |
() | 0.0402 |
JPEG compression | |
90% | 0 |
80% | 0.0012 |
75% | 0.0023 |
70% | 0.0058 |
60% | 0.0087 |
50% | 0.0105 |
40% | 0.0204 |
30% | 0.0210 |
20% | 0.0321 |
10% | 0.0432 |
JPEG2000 compression | |
CR = 2 | 0 |
CR = 4 | 0 |
CR = 6 | 0.0023 |
CR = 8 | 0.0102 |
CR = 10 | 0.0289 |
Cropping | |
25% | 0 |
50% | 0.0001 |
Scaling | |
0.5% | 0.0003 |
1.5% | 0.0097 |
Rotation | |
10% | 0.0001 |
15% | 0.0004 |
25% | 0.0086 |
40% | 0.0104 |
Combination attacks | |
HE + GN () | 0.0092 |
HE + GN () | 0.0201 |
HE + SPN () | 0.0102 |
HE + SPN () | 0.0225 |
GN () + JPEG compression (90%) | 0.0098 |
GN () + JPEG compression (70%) | 0.0100 |
SPN () + JPEG compression (90%) | 0.0140 |
SPN () + JPEG compression (70%) | 0.0190 |
LPGF (, window size ()) + SPN () | 0.0228 |
LPGF (, window size ()) + SPN () | 0.0328 |
Attacks | NC |
---|---|
Histogram equalization | 1 |
Gaussian noise ( ) | 0.9904 |
Gaussian noise ( ) | 0.9889 |
Gaussian noise ( ) | 0.7885 |
Salt & pepper noise ( ) | 0.9907 |
Salt & pepper noise ( ) | 0.7653 |
Low-pass Gaussian filtering | |
() | 0.9975 |
() | 0.9973 |
() | 0.9958 |
() | 0.9934 |
() | 0.9879 |
() | 0.9861 |
() | 0.9836 |
() | 0.9812 |
Gaussian smoothing | |
() | 0.9982 |
() | 0.9971 |
() | 0.9958 |
() | 0.9934 |
() | 0.9891 |
() | 0.9888 |
() | 0.9883 |
() | 0.9802 |
() | 0.2184 |
JPEG compression | |
90% | 1 |
80% | 0.9997 |
70% | 0.9918 |
60% | 0.9825 |
50% | 0.9785 |
40% | 0.8981 |
30% | 0.7710 |
20% | 0.7674 |
10% | 0.7355 |
5% | 0.7182 |
3% | 0.4985 |
JPEG2000 compression | |
CR = 2 | 1.0 |
CR = 4 | 0.9913 |
CR = 6 | 0.9137 |
CR = 8 | 0.8752 |
CR = 10 | 0.7031 |
Cropping | |
25% | 1.0 |
50% | 0.9962 |
Scaling | |
0.5% | 0.9903 |
1.5% | 0.9872 |
Rotation | |
10% | 0.9999 |
15% | 0.9994 |
25% | 0.9896 |
40% | 0.9877 |
Combination attacks | |
HE + GN () | 0.9968 |
HE + GN () | 0.9895 |
HE + SPN () | 0.9888 |
HE + SPN () | 0.9862 |
GN () + JPEG compression (90%) | 0.9998 |
GN () + JPEG compression (70%) | 0.9891 |
SPN () + JPEG compression (90%) | 0.9933 |
SPN () + JPEG compression (70%) | 0.9910 |
LPGF (, window size ()) + SPN () | 0.9834 |
LPGF (, window size ()) + SPN () | 0.9801 |
References
- Hamidi, M.; Chetouani, A.; El Haziti, M.; El Hassouni, M.; Cherifi, H. A Robust Blind 3-D Mesh Watermarking Technique Based on SCS Quantization and Mesh Saliency for Copyright Protection. In International Conference on Mobile, Secure, and Programmable Networking; Springer: Berlin/Heidelberg, Germany, 2019; pp. 211–228. [Google Scholar]
- Hamidi, M.; Chetouani, A.; El Haziti, M.; El Hassouni, M.; Cherifi, H. Blind robust 3D mesh watermarking based on mesh saliency and wavelet transform for copyright protection. Information 2019, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Cox, I.; Miller, M.; Bloom, J.; Fridrich, J.; Kalker, T. Digital Watermarking and Steganography; Morgan Kaufmann: Burlington, MA, USA, 2007. [Google Scholar]
- Su, Q.; Chen, B. Robust color image watermarking technique in the spatial domain. Soft Comput. 2018, 22, 91–106. [Google Scholar] [CrossRef]
- Poljicak, A.; Mandic, L.; Agic, D. Discrete Fourier transform-based watermarking method with an optimal implementation radius. J. Electron. Imaging 2011, 20, 033008. [Google Scholar] [CrossRef]
- Hamidi, M.; El Haziti, M.; Cherifi, H.; Aboutajdine, D. A blind robust image watermarking approach exploiting the DFT magnitude. In Proceedings of the 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA), Marrakech, Morocco, 17–20 November 2015; pp. 1–6. [Google Scholar]
- Das, C.; Panigrahi, S.; Sharma, V.K.; Mahapatra, K. A novel blind robust image watermarking in DCT domain using inter-block coefficient correlation. AEU-Int. J. Electron. Commun. 2014, 68, 244–253. [Google Scholar] [CrossRef]
- Keshavarzian, R.; Aghagolzadeh, A. ROI based robust and secure image watermarking using DWT and Arnold map. AEU-Int. J. Electron. Commun. 2016, 70, 278–288. [Google Scholar] [CrossRef]
- Saha, B.J.; Kabi, K.K.; Pradhan, C. Non blind watermarking technique using enhanced one time pad in DWT domain. In Proceedings of the Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, China, 11–14 July 2014; pp. 1–6. [Google Scholar]
- Fazlali, H.R.; Samavi, S.; Karimi, N.; Shirani, S. Adaptive blind image watermarking using edge pixel concentration. Multimed. Tools Appl. 2017, 76, 3105–3120. [Google Scholar] [CrossRef]
- Qi, X.; Xin, X. A singular-value-based semi-fragile watermarking scheme for image content authentication with tamper localization. J. Vis. Commun. Image Represent. 2015, 30, 312–327. [Google Scholar] [CrossRef]
- Ansari, I.A.; Pant, M.; Ahn, C.W. SVD based fragile watermarking scheme for tamper localization and self-recovery. Int. J. Mach. Learn. Cybern. 2016, 7, 1225–1239. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Zhou, X. RST resilient watermarking scheme based on DWT-SVD and scale-invariant feature transform. Algorithms 2017, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, M.; Chetouani, A.; El Haziti, M.; El Hassouni, M.; Cherifi, H. Blind Robust 3-D Mesh Watermarking Based on Mesh Saliency and QIM Quantization for Copyright Protection. In Iberian Conference on Pattern Recognition and Image Analysis; Springer: Berlin/Heidelberg, Germany, 2019; pp. 170–181. [Google Scholar]
- Liu, X.; Lou, J.; Fang, H.; Chen, Y.; Ouyang, P.; Wang, Y.; Zou, B.; Wang, L. A novel robust reversible watermarking scheme for protecting authenticity and integrity of medical images. IEEE Access 2019, 7, 76580–76598. [Google Scholar] [CrossRef]
- Nam, S.H.; Kim, W.H.; Mun, S.M.; Hou, J.U.; Choi, S.; Lee, H.K. A SIFT features based blind watermarking for DIBR 3D images. Multimed. Tools Appl. 2018, 77, 7811–7850. [Google Scholar] [CrossRef]
- Cui, C.; Wang, S.; Niu, X. A novel watermarking for DIBR 3D images with geometric rectification based on feature points. Multimed. Tools Appl. 2017, 76, 649–677. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Du, J.; Liao, S.; Lou, J.; Zou, B. Robust hybrid image watermarking scheme based on KAZE features and IWT-SVD. Multimed. Tools Appl. 2019, 78, 6355–6384. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Du, S.; Zhang, J.; Jiang, M.; Fang, H. Discriminative and Geometrically Robust Zero-Watermarking Scheme for Protecting DIBR 3D Videos. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar]
- Kalker, T. Considerations on watermarking security. In Proceedings of the 2001 IEEE Fourth Workshop on Multimedia Signal Processing (Cat. No. 01TH8564), Cannes, France, 3–5 October 2001; pp. 201–206. [Google Scholar]
- Liu, R.; Tan, T. An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans. Multimed. 2002, 4, 121–128. [Google Scholar]
- Al-Haj, A. Combined DWT-DCT digital image watermarking. J. Comput. Sci. 2007, 3, 740–746. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.D.; Shie, S.C.; Guo, J.Y. Improving the robustness of DCT-based image watermarking against JPEG compression. Comput. Stand. Interfaces 2010, 32, 54–60. [Google Scholar] [CrossRef]
- Hamidi, M.; El Haziti, M.; Cherifi, H.; El Hassouni, M. Hybrid blind robust image watermarking technique based on DFT-DCT and Arnold transform. Multimed. Tools Appl. 2018, 77, 27181–27214. [Google Scholar] [CrossRef] [Green Version]
- Preishuber, M.; Hütter, T.; Katzenbeisser, S.; Uhl, A. Depreciating motivation and empirical security analysis of chaos-based image and video encryption. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2137–2150. [Google Scholar] [CrossRef]
- Lagzian, S.; Soryani, M.; Fathy, M. A new robust watermarking scheme based on RDWT-SVD. Int. J. Intell. Inf. Process. 2011, 2, 22–29. [Google Scholar]
- Makbol, N.M.; Khoo, B.E. A new robust and secure digital image watermarking scheme based on the integer wavelet transform and singular value decomposition. Digit. Signal Process. 2014, 33, 134–147. [Google Scholar] [CrossRef]
- Singh, S.; Rathore, V.S.; Singh, R.; Singh, M.K. Hybrid semi-blind image watermarking in redundant wavelet domain. Multimed. Tools Appl. 2017, 76, 19113–19137. [Google Scholar] [CrossRef]
- Lyu, W.L.; Chang, C.C.; Nguyen, T.S.; Lin, C.C. Image watermarking scheme based on scale-invariant feature transform. KSII Trans. Internet Inf. Syst. (TIIS) 2014, 8, 3591–3606. [Google Scholar]
- Sadreazami, H.; Amini, M. Highly robust image watermarking in contourlet domain using singular value decomposition. In Proceedings of the 2012 IEEE 11th International Conference on Signal Processing, Beijing, China, 21–25 October 2012; Volume 1, pp. 628–631. [Google Scholar]
- Amini, M.; Ahmad, M.O.; Swamy, M. A robust multibit multiplicative watermark decoder using a vector-based hidden Markov model in wavelet domain. IEEE Trans. Circuits Syst. Video Technol. 2016, 28, 402–413. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Yang, J. Color image watermark decoder by modeling quaternion polar harmonic transform with BKF distribution. Signal Process. Image Commun. 2020, 88, 115946. [Google Scholar] [CrossRef]
- Amini, M.; Sadreazami, H.; Ahmad, M.O.; Swamy, M. A channel-dependent statistical watermark detector for color images. IEEE Trans. Multimed. 2018, 21, 65–73. [Google Scholar] [CrossRef]
- Hu, W.C.; Chen, W.H.; Yang, C.Y. Robust image watermarking based on discrete wavelet transform-discrete cosine transform-singular value decomposition. J. Electron. Imaging 2012, 21, 033005. [Google Scholar] [CrossRef]
- Ali, M.; Ahn, C.W.; Pant, M. A robust image watermarking technique using SVD and differential evolution in DCT domain. Opt. Int. J. Light Electron Opt. 2014, 125, 428–434. [Google Scholar] [CrossRef]
- Mishra, A.; Agarwal, C.; Sharma, A.; Bedi, P. Optimized gray-scale image watermarking using DWT–SVD and Firefly Algorithm. Expert Syst. Appl. 2014, 41, 7858–7867. [Google Scholar] [CrossRef]
- Singh, D.; Singh, S.K. DWT-SVD and DCT based robust and blind watermarking scheme for copyright protection. Multimed. Tools Appl. 2017, 76, 13001–13024. [Google Scholar] [CrossRef]
- Roy, S.; Pal, A.K. A robust blind hybrid image watermarking scheme in RDWT-DCT domain using Arnold scrambling. Multimed. Tools Appl. 2017, 76, 3577–3616. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Bollimpalli, P.; Sahu, N.; Sur, A. SIFT based robust image watermarking resistant to resolution scaling. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 5507–5511. [Google Scholar]
- Lee, H.Y.; Kim, H.; Lee, H.K. Robust image watermarking using local invariant features. Opt. Eng. 2006, 45, 037002. [Google Scholar]
- Zhang, Y.; Wang, C.; Wang, X.; Wang, M. Feature-based image watermarking algorithm using SVD and APBT for copyright protection. Future Internet 2017, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Senapati, R.K.; Srivastava, S.; Mankar, P. RST invariant blind image watermarking schemes based on discrete tchebichef transform and singular value decomposition. Arab. J. Sci. Eng. 2020, 45, 3331–3353. [Google Scholar] [CrossRef]
- Chen, W.; Ren, N.; Zhu, C.; Zhou, Q.; Seppänen, T.; Keskinarkaus, A. Screen-Cam robust image watermarking with feature-based synchronization. Appl. Sci. 2020, 10, 7494. [Google Scholar] [CrossRef]
- Nawaz, S.A.; Li, J.; Bhatti, U.A.; Mehmood, A.; Shoukat, M.U.; Bhatti, M.A. Advance hybrid medical watermarking algorithm using speeded up robust features and discrete cosine transform. PLoS ONE 2020, 15, e0232902. [Google Scholar] [CrossRef] [PubMed]
- Khayam, S.A. The discrete cosine transform (DCT): Theory and application. Mich. State Univ. 2003, 114, 1–31. [Google Scholar]
- Kang, X.b.; Zhao, F.; Lin, G.f.; Chen, Y.j. A novel hybrid of DCT and SVD in DWT domain for robust and invisible blind image watermarking with optimal embedding strength. Multimed. Tools Appl. 2018, 77, 13197–13224. [Google Scholar] [CrossRef]
- Lai, K.; Bo, L.; Ren, X.; Fox, D. A large-scale hierarchical multi-view rgb-d object dataset. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1817–1824. [Google Scholar]
- Zhou, H.; Yuan, Y.; Shi, C. Object tracking using SIFT features and mean shift. Comput. Vis. Image Underst. 2009, 113, 345–352. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in Pascal: The Art of Scientific Computing [disc]; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Li, J. Robust image watermarking scheme against geometric attacks using a computer-generated hologram. Appl. Opt. 2010, 49, 6302–6312. [Google Scholar] [CrossRef]
- Weber, A.G. The USC-SIPI image database version 5. USC-SIPI Rep. 1997, 315, 1–24. [Google Scholar]
- Petrović, V. Subjective tests for image fusion evaluation and objective metric validation. Inf. Fusion 2007, 8, 208–216. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Su, C.C.; Mittal, A.; Bovik, A.C. Subjective evaluation of stereoscopic image quality. Signal Process. Image Commun. 2013, 28, 870–883. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassouni, M.; Cherifi, H.; Aboutajdine, D. HOS-based image sequence noise removal. IEEE Trans. Image Process. 2006, 15, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Rital, S.; Bretto, A.; Cherifi, H.; Aboutajdine, D. A combinatorial edge detection algorithm on noisy images. In Proceedings of the International Symposium on VIPromCom Video/Image Processing and Multimedia Communications, Zadar, Croatia, 16–19 June 2002; pp. 351–355. [Google Scholar]
Test Image | PSNR | SSIM |
---|---|---|
Mandrill | 45.28 | 0.9865 |
Lena | 48.97 | 0.9998 |
Peppers | 49.97 | 0.9988 |
Cameraman | 47.54 | 0.9987 |
Goldhill | 49.37 | 0.9998 |
Walkbridge | 46.24 | 0.9983 |
Womanblonde | 46.57 | 0.9978 |
Livingroom | 48.64 | 0.9986 |
Pirate | 47.33 | 0.9980 |
Lake | 48.11 | 0.9982 |
Aerial1 | 46.31 | 0.9985 |
Aerial2 | 45.88 | 0.9877 |
Airplane_U_2 | 47.23 | 0.9978 |
Airplane1 | 46.75 | 0.9987 |
Airplane2 | 49.53 | 0.9998 |
Airport1 | 49.08 | 0.9990 |
APC | 48.91 | 0.9991 |
Car_and_APCs1 | 47.44 | 0.9989 |
Car_and_APCs2 | 48.17 | 0.9989 |
Chemical_plant | 48.62 | 0.9988 |
Clock | 49.14 | 0.9992 |
Fishing_Boat | 47.49 | 0.9989 |
house | 45.86 | 0.9876 |
Moon_surface | 46.77 | 0.9988 |
Tank1 | 46.33 | 0.9985 |
Tank2 | 47.31 | 0.9979 |
Tank3 | 48.95 | 0.9991 |
Truck | 48.28 | 0.9990 |
Truck_and_APCs | 49.55 | 0.9997 |
Truck_and_APCs2 | 48.72 | 0.9991 |
Average | 47.81 | 0.9976 |
Test Image | ||
---|---|---|
Mandrill | 1.0 | 0.9865 |
Lena | 1.0 | 0.9998 |
Peppers | 0.9998 | 0.9987 |
Cameraman | 1.0 | 0.9996 |
Goldhill | 0.9999 | 0.9998 |
Walkbridge | 1.0 | 0.9982 |
Womanblonde | 0.9999 | 0.9978 |
Livingroom | 1.0 | 0.9986 |
Pirate | 0.9998 | 0.9980 |
Lake | 1.0 | 0.9982 |
Aerial1 | 0.9982 | 0.9975 |
Aerial2 | 0.9908 | 0.9878 |
Airplane_U_2 | 0.9995 | 0.9980 |
Airplane1 | 0.9992 | 0.9986 |
Airplane2 | 1.0 | 0.9998 |
Airport1 | 1.0 | 0.9991 |
APC | 0.9996 | 0.9992 |
Car_and_APCs1 | 0.9991 | 0.9983 |
Car_and_APCs2 | 0.9999 | 0.9985 |
Chemical_plant | 0.9999 | 0.9991 |
Clock | 1.0 | 0.9994 |
Fishing_Boat | 0.9990 | 0.9979 |
house | 0.9912 | 0.9882 |
Moon_surface | 0.9993 | 0.9984 |
Tank1 | 0.9993 | 0.9987 |
Tank2 | 0.9992 | 0.9985 |
Tank3 | 0.9998 | 0.9991 |
Truck | 1.0 | 0.9994 |
Truck_and_APCs | 1.0 | 0.9995 |
Truck_and_APCs2 | 0.9999 | 0.9992 |
Average | 0.9991 | 0.9976 |
Test Image | ||
---|---|---|
Mandrill | 1.0 | 0.9898 |
Lena | 1.0 | 0.9998 |
Peppers | 1.0 | 0.9984 |
Cameraman | 1.0 | 0.9987 |
Goldhill | 1.0 | 0.9998 |
Walkbridge | 1.0 | 0.9983 |
Womanblonde | 0.9996 | 0.9985 |
Livingroom | 1.0 | 0.9989 |
Pirate | 0.9999 | 0.9996 |
Lake | 0.9999 | 0.9993 |
Aerial1 | 0.9986 | 0.9979 |
Aerial2 | 0.9918 | 0.9879 |
Airplane_U_2 | 0.9995 | 0.9982 |
Airplane1 | 0.9995 | 0.9984 |
Airplane2 | 1.0 | 0.9997 |
Airport1 | 1.0 | 0.9990 |
APC | 0.9995 | 0.9993 |
Car_and_APCs1 | 0.9993 | 0.9987 |
Car_and_APCs2 | 1.0 | 0.9985 |
Chemical_plant | 1.0 | 0.9992 |
Clock | 1.0 | 0.9993 |
Fishing_Boat | 0.9992 | 0.9983 |
house | 0.9923 | 0.9881 |
Moon_surface | 0.9994 | 0.9985 |
Tank1 | 0.9994 | 0.9986 |
Tank2 | 0.9993 | 0.9988 |
Tank3 | 0.9996 | 0.9990 |
Truck | 1.0 | 0.9994 |
Truck_and_APCs | 1.0 | 0.9996 |
Truck_and_APCs2 | 1.0 | 0.9994 |
Average | 0.9992 | 0.9975 |
Gaussian Smoothing | Normalized Correlation |
---|---|
1.0 | |
() | 1.0 |
1.0 | |
1.0 | |
() | 1.0 |
1.0 | |
0.9984 | |
() | 0.9962 |
0.9945 | |
0.9939 | |
() | 0.9917 |
0.9901 | |
0.9894 | |
() | 0.9788 |
0.9681 |
LPGF | Normalized Correlation |
---|---|
1.0 | |
() | 1.0 |
1.0 | |
0.9992 | |
() | 0.9986 |
0.9975 |
Quality | Normalized Correlation |
---|---|
90 | 1.0 |
80 | 0.9997 |
70 | 0.9918 |
60 | 0.9825 |
50 | 0.9785 |
40 | 0.8981 |
30 | 0.7710 |
20 | 0.7674 |
10 | 0.7355 |
5 | 0.7182 |
Compression Ratio | Normalized Correlation |
---|---|
1.0 | |
0.9913 | |
0.9137 | |
0.8752 | |
0.7031 |
Rotation | ||||
---|---|---|---|---|
Image | 10° | 20° | 30° | 45° |
Mandrill | 0.9998 | 0.9944 | 0.9877 | 0.9816 |
Lena | 0.9995 | 0.9994 | 0.9987 | 0.9903 |
Peppers | 0.9997 | 0.9945 | 0.9928 | 0.9802 |
Cameraman | 0.9905 | 0.9908 | 0.9912 | 0.9864 |
Goldhill | 0.9976 | 0.9913 | 0.9877 | 0.9820 |
Walkbridge | 0.9999 | 0.9965 | 0.9958 | 0.9901 |
Womanblonde | 0.9991 | 0.9982 | 0.9905 | 0.9856 |
Livingroom | 0.9979 | 0.9956 | 0.9937 | 0.9869 |
Pirate | 0.9993 | 0.9991 | 0.9951 | 0.9906 |
Lake | 0.9973 | 0.9914 | 0.9911 | 0.9822 |
Aerial1 | 0.9992 | 0.9976 | 0.9927 | 0.9857 |
Aerial2 | 0.9995 | 0.9990 | 0.9954 | 0.9868 |
Airplane_U_2 | 0.9993 | 0.9987 | 0.9972 | 0.9861 |
Airplane1 | 0.9997 | 0.9983 | 0.9972 | 0.9842 |
Airplane2 | 0.9995 | 0.9984 | 0.9956 | 0.9905 |
Airport1 | 0.9998 | 0.9992 | 0.9931 | 0.9879 |
APC | 0.9997 | 0.9988 | 0.9928 | 0.9907 |
Car_and_APCs1 | 0.9996 | 0.9986 | 0.9937 | 0.9834 |
Car_and_APCs2 | 0.9995 | 0.9987 | 0.9936 | 0.9883 |
Clock | 0.9999 | 0.9983 | 0.9958 | 0.9861 |
Fishing_Boat | 0.9993 | 0.9981 | 0.9967 | 0.9905 |
House | 0.9995 | 0.9980 | 0.9976 | 0.9874 |
Moon_surface | 0.9991 | 0.9987 | 0.9945 | 0.9867 |
Tank1 | 0.9994 | 0.9985 | 0.9980 | 0.9904 |
Tank2 | 0.9992 | 0.9984 | 0.9975 | 0.9865 |
Tank3 | 0.9997 | 0.9986 | 0.9972 | 0.9906 |
Truck | 0.9996 | 0.9983 | 0.9976 | 0.9887 |
Truck_and_APCs | 0.9994 | 0.9987 | 0.9961 | 0.9905 |
Truck_and_APCs2 | 0.9993 | 0.9990 | 0.9968 | 0.9861 |
Attack | [13] | Proposed Method |
---|---|---|
Rotation (10) + JPEG(100) | 0.9964 | 0.9971 |
Rotation (10) + GN() | 0.9644 | 0.9952 |
Rotation (10) + SPN() | 0.9779 | 0.9951 |
Rotation (10) + center cropping() | 0.9098 | 0.9963 |
Scaling () + JPEG(100) | 0.9920 | 0.9994 |
Scaling () + GN() | 0.9239 | 0.9993 |
Scaling () + SPN() | 0.9348 | 0.9992 |
Scaling () + center cropping() | 0.8807 | 0.9993 |
Horizontal translation + JPEG (100) | 0.9966 | 0.9984 |
Horizontal translation + GN () | 0.9190 | 0.9981 |
Horizontal translation + SPN () | 0.9455 | 0.9979 |
Horizontal translation + center cropping () | 0.8981 | 0.9985 |
Rotation (10) + Scaling() | 0.9857 | 0.9945 |
Scaling () + Horizontal translation | 0.9912 | 0.9944 |
Rotation (10) + Horizontal translation | 0.9851 | 0.9937 |
Attack | NC |
---|---|
HE + GN () | 1.0 |
HE + GN () | 1.0 |
HE + SPN () | 1.0 |
HE + SPN () | 0.9834 |
GN () + JPEG 90 | 0.9999 |
GN () + JPEG 70 | 0.9832 |
SPN () + JPEG 90 | 0.9999 |
SPN () + JPEG 70 | 0.9832 |
LPGF () + GN () | 0.9881 |
LPGF () + GN () | 0.9733 |
LPGF () + GN () | 0.9810 |
LPGF () + GN () | 0.9758 |
LPGF () + SPN () | 0.9732 |
LPGF () + SPN () | 0.9665 |
LPGF () + SPN () | 0.9644 |
LPGF () + SPN () | 0.9602 |
GN () + HE + JPEG 90 | 0.9999 |
SPN () + HE + JPEG 70 | 0.9991 |
GN () + ROT (15) + HE | 0.9996 |
SPN () + SC (0.8) + HE | 0.9993 |
JPEG 70 + ROT (30) + SC (1.2) | 0.9995 |
JPEG 50 + MF () + SC (1.2) | 0.9627 |
CR (50%) + ROT (45) + HE | 0.9732 |
JPEG 40 + ROT (30) + SC (0.8) | 0.9901 |
JPEG 60 + MF () + SC (1.2) | 0.9788 |
CR (50%) + ROT (45) + SC (0.5) | 0.9604 |
Lagzian et al. [26] | Makbol et al. [27] | Singh et al. [28] | Proposed Scheme | |
---|---|---|---|---|
PSNR | 37.52 | 43.6769 | 44.40 | 48.97 |
SSIM | 0.9865 | 0.9872 | 0.9935 | 0.9998 |
Attacks | DWT-DCT | DWT-DCT-SIFT |
---|---|---|
Rotation | ||
2 | 0.3171 | 0.9711 |
5 | 0.2888 | 0.9888 |
10 | 0.2345 | 0.9905 |
30 | 0.0879 | 0.9912 |
Scaling | ||
0.25 | 0.3073 | 0.9831 |
0.5 | 0.1765 | 0.9987 |
0.9 | 0.0913 | 0.9990 |
1.2 | 0.0188 | 0.9984 |
Horizontal translation (128 pixels) | 0.0863 | 0.9971 |
Vertical translation (128 pixels) | 0.0654 | 0.9970 |
Gaussian noise | ||
1.0 | 1.0 | |
0.9998 | 0.9998 | |
Salt and pepper noise | ||
1.0 | 0.9998 | |
1.0 | 0.9998 | |
JPEG | ||
80 | 1.0 | 1.0 |
60 | 0.9998 | 0.9998 |
40 | 0.9681 | 0.9681 |
Low-pass Gaussian filtering | ||
1.0 | 1.0 | |
0.9975 | 0.9975 |
Attack | [26] | Proposed Method |
---|---|---|
Rotation (50°) | 0.8630 | 0.9891 |
Gaussian noise () | 0.9971 | 1.0 |
Gaussian noise () | 0.9792 | 1.0 |
JPEG (50) | 0.9938 | 0.9832 |
Salt and pepper noise () | 0.9959 | 1.0 |
Salt and pepper noise () | 0.9985 | 1.0 |
Median filter () | 0.9942 | 0.9802 |
Histogram equalization | 0.8530 | 1.0 |
Attack | [27] | Proposed Method |
---|---|---|
Gaussian noise () | 0.8822 | 1.0 |
Gaussian noise () | 0.8894 | 0.9002 |
Salt and pepper noise () | 0.9770 | 1.0 |
Rotation (20) | 0.9803 | 0.9994 |
Rotation (50) | 0.9719 | 0.9991 |
JPEG (40) | 0.9776 | 0.9681 |
JPEG (30) | 0.9701 | 0.9532 |
Median filter () | 0.9758 | 0.9802 |
Histogram equalization | 0.9854 | 1.0 |
Attack | [28] | Proposed Method |
---|---|---|
Gaussian noise () | 0.9988 | 1.0 |
Gaussian noise () | 0.9830 | 0.9998 |
Salt and pepper noise () | 0.9877 | 0.9903 |
Salt and pepper noise () | 0.9770 | 0.9778 |
Rotation (10°) | 0.9858 | 0.9995 |
Rotation (20°) | 0.9851 | 0.9994 |
Rotation (30°) | 0.9853 | 0.9987 |
Rotation (40°) | 0.9872 | 0.9990 |
Rotation (50°) | 0.9881 | 0.9991 |
JPEG (90) | 0.9990 | 1.0 |
JPEG (60) | 0.9990 | 0.9999 |
Median filter () | 0.9962 | 0.9802 |
Histogram equalization | 0.9972 | 1.0 |
Attack | [13] | Proposed Method |
---|---|---|
Scaling () | 0.9774 | 0.9831 |
Scaling () | 0.9919 | 0.9987 |
Scaling () | 0.9931 | 0.9990 |
Scaling () | 0.9906 | 0.9984 |
Rotation (2) | 0.9741 | 0.9998 |
Rotation (5) | 0.9813 | 0.9998 |
Rotation (10) | 0.9861 | 0.9995 |
Rotation (30) | 0.9861 | 0.9987 |
Rotation (45) | 0.9828 | 0.9903 |
Horizontal cycling translation (128 pixels) | 0.9964 | 0.9971 |
Vertical cycling translation (128 pixels) | 0.9964 | 0.9970 |
JPEG (100) | 0.9966 | 1.0 |
Median filter () | 0.9913 | 0.9802 |
Center cropping () | 0.9179 | 1.0 |
Gaussian noise () | 0.9788 | 1.0 |
Gaussian noise () | 0.9509 | 1.0 |
Salt and pepper noise () | 0.9758 | 1.0 |
Salt and pepper noise () | 0.9644 | 0.9998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamidi, M.; El Haziti, M.; Cherifi, H.; El Hassouni, M. A Hybrid Robust Image Watermarking Method Based on DWT-DCT and SIFT for Copyright Protection. J. Imaging 2021, 7, 218. https://doi.org/10.3390/jimaging7100218
Hamidi M, El Haziti M, Cherifi H, El Hassouni M. A Hybrid Robust Image Watermarking Method Based on DWT-DCT and SIFT for Copyright Protection. Journal of Imaging. 2021; 7(10):218. https://doi.org/10.3390/jimaging7100218
Chicago/Turabian StyleHamidi, Mohamed, Mohamed El Haziti, Hocine Cherifi, and Mohammed El Hassouni. 2021. "A Hybrid Robust Image Watermarking Method Based on DWT-DCT and SIFT for Copyright Protection" Journal of Imaging 7, no. 10: 218. https://doi.org/10.3390/jimaging7100218
APA StyleHamidi, M., El Haziti, M., Cherifi, H., & El Hassouni, M. (2021). A Hybrid Robust Image Watermarking Method Based on DWT-DCT and SIFT for Copyright Protection. Journal of Imaging, 7(10), 218. https://doi.org/10.3390/jimaging7100218