How Do Roots Interact with Layered Soils?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. X-ray Micro-Computed Tomography
2.3. Image Segmentation
2.4. Quantifying the Void Ratio
2.5. Quantifying the Root Volume Ratio
3. Results and Discussion
3.1. The Influence of Root Growth on Soil Fabric
3.2. The Influence of Soil Fabric on Root Growth
3.3. Effectiveness of the Machine Learning Training Data Set Size
3.4. The Effect of ROI Size
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boldrin, D.; Leung, A.K.; Bengough, A.G. Hydro-mechanical reinforcement of contrasting woody species: A full scale investigation of a field slope. Géotechnique 2020, 71, 970–984. [Google Scholar] [CrossRef]
- Ni, J.J.; Leung, A.K.; Ng, C.W.W.; Shao, W. Modelling hydro-mechanical reinforcements of plants to slope stability. Comput. Geotech. 2018, 95, 99–109. [Google Scholar] [CrossRef]
- Sonnenberg, R.; Bransby, F.; Bengough, A.; Hallett, P. Plant Root Reinforcement of Slopes. In Centrifuge modelling of root reinforcement of slopes. In Proceedings of the International Conference on Ground Improvement and Ground Control, Wollongong, Australia, 30 October–2 November 2012. [Google Scholar]
- Masi, E.B.; Segoni, S.; Tofani, V. Root Reinforcement in Slope Stability Models: A Review. Geosciences 2021, 11, 212. [Google Scholar] [CrossRef]
- Stokes, A.; Atger, C.; Bengough, A.G.; Fourcaud, T.; Sidle, R.C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 2009, 324, 1–30. [Google Scholar] [CrossRef]
- Feliu, T.L.; Angelidakis, V.; Luli, S.; Nadimi, S. Imaging the root-rhizosphere interface using micro computed tomography: Quantifying void ratio and root volume ratio profiles. EPJ Web Conf. 2021, 249, 11005. [Google Scholar]
- Stokes, A.; Douglas, G.B.; Fourcaud, T.; Giadrossich, F.; Gillies, C.; Hubble, T.; Kim, J.H.; Loades, K.W.; Mao, Z.; McIvor, I.R.; et al. Ecological mitigation of hillslope instability: Ten key issues facing researchers and practitioners. Plant Soil 2014, 377, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Bengough, A.G.; Croser, C.; Pritchard, J. A biophysical analysis of root growth under mechanical stress. Plant Soil 1997, 189, 155–164. [Google Scholar] [CrossRef]
- Bengough, A.G.; Bransby, M.F.; Hans, J.; McKenna, S.J.; Roberts, T.J.; Valentine, T.A. Root responses to soil physical condition; growth dynamics from field to cell. J. Exp. Bot. 2005, 57, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Tracy, S.R.; Black, C.R.; Roberts, J.A.; McNeill, A.; Davidson, R.; Tester, M.; Samec, M.; Korošak, D.; Sturrock, C.; Mooney, S.J. Quantifying the effect of soil compaction on three varieties of wheat (Triticum aestivum L.) using X-ray Micro Computed Tomography (CT). Plant Soil 2012, 353, 195–208. [Google Scholar] [CrossRef]
- Lucas, M.; Schlüter, S.; Vogel, H.-J.; Vetterlein, D. Roots compact the surrounding soil depending on the structures they encounter. Sci. Rep. 2019, 9, 16236. [Google Scholar] [CrossRef] [Green Version]
- Anselmucci, F.; Andó, E.; Viggiani, G.; Lenoir, N.; Peyroux, R.; Arson, C.; Sibille, L. Use of X-ray tomography to investigate soil deformation around growing roots. Géotech. Lett. 2021, 11, 96–102. [Google Scholar]
- Helliwell, J.R.; Sturrock, C.J.; Mairhofer, S.; Craigon, J.; Ashton, R.W.; Miller, A.J.; Whalley, W.R.; Mooney, S.J. The emergent rhizosphere: Imaging the development of the porous architecture at the root-soil interface. Sci. Rep. 2017, 7, 14875. [Google Scholar] [CrossRef] [Green Version]
- Nadimi, S.; Fonseca, J.; Andò, E.; Viggiani, G. A micro finite-element model for soil behaviour: Experimental evaluation for sand under triaxial compression. Géotechnique 2020, 70, 931–936. [Google Scholar] [CrossRef]
- Hall, S.A.; Bornert, M.; Desrues, J.; Pannier, Y.; Lenoir, N.; Viggiani, G.; Bésuelle, P. Discrete and continuum analysis of localised deformation in sand using X-ray µCT and volumetric digital image correlation. Géotechnique 2010, 60, 315–322. [Google Scholar] [CrossRef]
- Keyes, S.D.; Gillard, F.; Soper, N.; Mavrogordato, M.N.; Sinclair, I.; Roose, T. Mapping soil deformation around plant roots using in vivo 4D X-ray computed tomography and digital volume correlation. J. Biomech. 2016, 49, 1802–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, D.J.; Smethurst, J.A.; Sinclair, I.; Pierron, F.; Roose, T.; Powrie, W.; Bengough, A.G. Mechanisms of root-reinforcement in soils: An experimental methodology using 4D X-ray computed tomography and digital volume correlation. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190838. [Google Scholar]
- Świtała, B.M.; Wu, W.; Wang, S. Implementation of a coupled hydromechanical model for root-reinfroced soils in finite element code. Comput. Geotech. 2019, 112, 197–203. [Google Scholar] [CrossRef]
- Liang, T.; Knappett, J.A.; Leung, A.; Carnaghan, A.; Bengough, A.G.; Zhao, R. A critical evaluation of predictive models for rooted soil strength with application to predicting the seismic deformation of rooted slopes. Landslides 2020, 17, 93–109. [Google Scholar] [CrossRef] [Green Version]
- Fraccica, A.; Romero, E.; Fourcaud, T.; Sondon, M.; Gandarillas, L. Tensile strength of a vegetated and partially saturated soil. E3S Web Conf. 2020, 195, 03001. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Ni, J.J.; Leung, A.K.; Wang, Z.J. A new and simple water retention model for root-permeated soils. Géotech. Lett. 2016, 6, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Nadimi, S.; Fonseca, J. Enhancing soil sample preparation by thermal cycling. Géotechnique 2016, 66, 953–958. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, A.; Graf, F.; Springman, S.M. On the dilatancy of root-permeated soils under partially saturated conditions. Géotech. Lett. 2020, 10, 227–230. [Google Scholar] [CrossRef]
- Mooney, S.J.; Pridmore, T.P.; Helliwell, J.; Bennett, M.J. Developing X-ray Computed Tomography to non-invasively image 3-D root systems in architecture in soil. Plant Soil 2012, 352, 1–22. [Google Scholar] [CrossRef]
- Feldkamp, L.; Jesion, G. Chapter 2: Imaging, Inversion and Reconstruction. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: New York, NY, USA, 1986; pp. 555–566. [Google Scholar]
- Arganda-Carreras, I.; Kaynig, V.; Reuden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef]
- Koebernick, N.; Daly, K.R.; Keyes, S.D.; Bengough, A.G.; Brown, L.K.; Cooper, L.J.; George, T.S.; Hallett, P.D.; Naveed, M.; Raffan, A.; et al. Imaging microstructure of the barley rhizosphere: Particle packing and root hair influences. New Phytol. 2019, 221, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
- Aravena, J.E.; Berli, M.; Ghezzehei, T.A.; Tyler, S.W. Effects of root-induced compaction on rhizosphere hydraulic properties-X-ray microtomography imaging and numerical simulations. Environ. Sci. Technol. 2011, 45, 425–431. [Google Scholar] [CrossRef]
- Clark, L.J.; Whalley, W.R.; Barraclough, P.B. How do roots penetrate strong soil? Plant Soil 2003, 255, 93–104. [Google Scholar] [CrossRef]
- Kolb, E.; Legué, V.; Bogeat-Triboulot, M.B. Physical Soil-Root Interactions. Phys. Biol. 2017, 14, 1–40. [Google Scholar] [CrossRef]
- Kemp, N.; Angelidakis, V.; Luli, S.; Nadimi, S. Supplementary material to “How do roots interact with layered soils?”. Data Set 2021. [Google Scholar] [CrossRef]
Percentage of Images Used to Train Classifier | Time to Create Classifier (min) | Time to Train (min) |
---|---|---|
5% | 38 | 14 |
10% | 58.5 | 40 |
20% | 128.5 | 42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemp, N.; Angelidakis, V.; Luli, S.; Nadimi, S. How Do Roots Interact with Layered Soils? J. Imaging 2022, 8, 5. https://doi.org/10.3390/jimaging8010005
Kemp N, Angelidakis V, Luli S, Nadimi S. How Do Roots Interact with Layered Soils? Journal of Imaging. 2022; 8(1):5. https://doi.org/10.3390/jimaging8010005
Chicago/Turabian StyleKemp, Nina, Vasileios Angelidakis, Saimir Luli, and Sadegh Nadimi. 2022. "How Do Roots Interact with Layered Soils?" Journal of Imaging 8, no. 1: 5. https://doi.org/10.3390/jimaging8010005
APA StyleKemp, N., Angelidakis, V., Luli, S., & Nadimi, S. (2022). How Do Roots Interact with Layered Soils? Journal of Imaging, 8(1), 5. https://doi.org/10.3390/jimaging8010005