Visualization of Interstitial Pore Fluid Flow
Abstract
:1. Introduction
2. Imaging of Macroscopic Fluid Flow
2.1. Measurments in Opaque Media
2.2. Measurments in Transparent Soils
3. Imaging of Inter-Particle Fluid Flow
3.1. Experimental Methods
3.2. Scaled-Up Synthetic Granular Particles
3.3. Testing Apparatus
3.4. Fluorescent Tracer Particles
3.5. Optical Setup
3.6. Digital Image Correlation
4. Microscale Observation of Fluid Flow
4.1. PIV Analyses
4.2. Discharge Velocities
4.3. Interstitial Seepage Velocities
4.4. Hydraulic Conductivities
4.5. Flow Trajectories
4.6. Measured v. Predicted Interstitial Velocity
5. Practical Implications
6. Conclusions
- Seepage velocity in each pore is different for both Cylindrical particles and Ottawa sands in a uniform geometry. The maximum and standard deviation of velocity in Ottawa Sand exhibit a larger difference. These variations in seepage velocity reflect turbulence which likely resulted from the effects of irregular particle shape in Ottawa Sand.
- The interstitial flow is more turbulent in Ottawa sand compared to cylindrical particles. Angular sands are expected to experience far more turbulence.
- The observed hydraulic gradient is not linear proportional to the discharge velocity and seepage velocity. Particle shape affect the hydraulic conductivity even though in the same void ratio and porosity.
- Smooth curvature of Cylindrical particles and symmetrical geometry is prone to causing small turbulence, while turbulence between Ottawa particles is larger in magnitude. Magnitude of turbulence is related to particle roundness.
- Flow between Ottawa sand is more concentrated in the downward vertical direction than for the Cylindrical particles. Cylindrical particles are perfectly placed, resulting in identical interstitial flow paths while the Ottawa particles are randomly spaced resulting in somewhat arbitrarily sized interstitial flow paths. Water follows the path of least resistance and small differences in the flow channels resulted in a more concentrated downward flow in the Ottawa particles than for the cylindrical ones, similar to the Mathew effect.
- These observations may lead to phenomena such as piping and internal erosion under steady-state and quasi steady-state flow, and have profound implications for a variety of geotechnical, geo-environmental and industrial applications such as filtration, environmental remediation, and resource recovery.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Ck | Kozeny constant |
Cs | Shape constant of cross section |
De | Superficial Effective Diameter |
Dh | Hydraulic diameter: Dh = 4n/Ss |
Dm | Grain diameter |
Pressure difference | |
e | Void ratio: Ratio of volume of voids to the volume of solids |
i | Hydraulic gradient i: |
k | Hydraulic conductivity |
L | Porous medium length |
Le | Length to the actual pore flow path |
µ | Fluid viscosity |
n | Porosity: Ratio of volume of voids to the total volume |
Rh | Hydraulic radius: Flow area divided by wetted perimeter: Rh = Dh/4 |
Ss | Specific surface area |
T | Tortuosity (Hydraulic tortuosity): T = L/Le |
v* | Average interstitial flow velocity |
v | Discharge velocity: Apparent flow velocity through a medium |
vs | Seepage velocity: vs = v/n |
vi | Interstitial velocity: vi: v/nT |
References
- Hazen, H.A. The Verification of Weather Forecasts. American Meteorological Journal. A Mon. Rev. Meteorol. Allied Branches Study (1884–1896) 1892, 8, 392. [Google Scholar]
- Burmister, D.M. The Grading-Density Relations of Granular Materials; ASTM: Philadelphia, PA, USA, 1938; Volume 38, pp. 587–601. [Google Scholar]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 2005; Volume 3. [Google Scholar]
- Pena, A.A.; Garcia-Rojo, R.; Herrmann, H.J. Influence of particle shape on sheared dense granular media. Granul. Matter 2007, 9, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Cho, G.C.; Dodds, J.; Santamarina, J.C. Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands. J. Geotech. Geoenviron. Eng. 2006, 132, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Hryciw, R.D. Index void ratios of sands from their intrinsic properties. J. Geotech. Geoenviron. Eng. 2016, 142, 06016019. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Akbulut, N. Effects of the particle shape and size of sands on the hydraulic conductivity. Acta Geotech. Slov. 2016, 13, 83–93. [Google Scholar]
- Wang, Y.; Ren, Y.; Yang, Q. Experimental study on the hydraulic conductivity of calcareous sand in South China Sea. Mar. Georesour. Geotechnol. 2017, 35, 1037–1047. [Google Scholar] [CrossRef]
- Taylor, H.F.; O’Sullivan, C.; Sim, W.W.; Carr, S.J. Sub-particle-scale investigation of seepage in sands. Soils Found. 2017, 57, 439–452. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Z.; Pereira, J.M.; Gan, Y. Permeability of Uniformly Graded 3D Printed Granular Media. Geophys. Res. Lett. 2021, 48, 5. [Google Scholar] [CrossRef]
- Zięba, Z. Influence of soil particle shape on saturated hydraulic conductivity. J. Hydrol. Hydromech. 2017, 65, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Aimrun, W.; Amin, M.S.M.; Eltaib, S.M. Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma 2004, 121, 197–203. [Google Scholar] [CrossRef]
- Pasha, M.; Hare, C.; Ghadiri, M.; Gunadi, A.; Piccione, P.M. Effect of particle shape on flow in discrete element method simulation of a rotary batch seed coater. Powder Technol. 2016, 296, 29–36. [Google Scholar] [CrossRef] [Green Version]
- McDowell, G.; de Bono, J. Relating Hydraulic Conductivity to Particle Size Using DEM. Int. J. Geomech. 2021, 21, 06020034. [Google Scholar] [CrossRef]
- Khayamyan, S.; Lundström, T.S.; Gren, P.; Lycksam, H.; Hellström, J.G.I. Transitional and turbulent flow in a bed of spheres as measured with stereoscopic particle image velocimetry. Transp. Porous Media 2017, 117, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Hafez, A.; Liu, Q.; Finkbeiner, T.; Alouhali, R.A.; Moellendick, T.E.; Santamarina, J.C. The effect of particle shape on discharge and clogging. Sci. Rep. 2021, 11, 3309. [Google Scholar] [CrossRef]
- Shen, C.; Zhu, J.; Gu, W. Prediction Method for Hydraulic Conductivity considering the Effect of Sizes of Ellipsoid Soil Particles from the Microscopic Perspective. Adv. Civ. Eng. 2019, 2019, 7213094. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Beemer, R.D.; Iskander, M. Granulometry of Two Marine Calcareous Sands. J. Geotech. Geoenviron. Eng. 2021, 147, 04020171. [Google Scholar] [CrossRef]
- Gladden, L.; Akpa, B.; Anadon, L.; Heras, J.; Holland, D.; Mantle, M.; Matthews, S.; Mueller, C.; Sains, M.C.; Sederman, A.J. Dynamic MR imaging of single-and two-phase flows. Chem. Eng. Res. Des. 2006, 84, 272–281. [Google Scholar] [CrossRef]
- Oostrom, M.; Dane, J.H.; Wietsma, T.W. A review of multidimensional, multifluid, intermediate-scale experiments: Flow behavior, saturation imaging, and tracer detection and quantification. Vadose Zone J. 2007, 6, 610–637. [Google Scholar] [CrossRef]
- Darnault, C.J.; Throop, J.A.; DiCarlo, D.A.; Rimmer, A.; Steenhuis, T.S.; Parlange, J.Y. Visualization by light transmission of oil and water contents in transient two-phase flow fields. J. Contam. Hydrol. 1998, 31, 337–348. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Soga, K.; Wiart, P. Multispectral image analysis method to determine dynamic fluid saturation distribution in two-dimensional three-fluid phase flow laboratory experiments. J. Contam. Hydrol. 2000, 46, 265–293. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Soga, K.; Illangasekare, T.H. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone. J. Contam. Hydrol. 2005, 76, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Barns, G.L.; Wilson, R.D.; Thornton, S.F. Fluorescent dye imaging of the volume sampled by single well forced-gradient tracer tests evaluated in a laboratory-scale aquifer physical model. J. Contam. Hydrol. 2012, 128, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Darnault, C.J.G.; DiCarlo, D.A.; Bauters, T.W.J.; Jacobson, A.R.; Throop, J.A.; Montemagno, C.D.; Parlange, J.Y.; Steenhuis, T.S. Measurement of fluid contents by light transmission in transient three-phase oil-water-air systems in sand. Water Resour. Res. 2001, 37, 1859–1868. [Google Scholar] [CrossRef]
- Rahman, M.A.; Jose, S.C.; Nowak, W.; Cirpka, O.A. Experiments on vertical transverse mixing in a large-scale heterogeneous model aquifer. J. Contam. Hydrol. 2005, 80, 130–148. [Google Scholar] [CrossRef]
- Jones, E.H.; Smith, C.C. Non-equilibrium partitioning tracer transport in porous media: 2-D physical modelling and imaging using a partitioning fluorescent dye. Water Res. 2005, 39, 5099–5111. [Google Scholar] [CrossRef]
- McNeil, J.D.; Oldenborger, G.A.; Schincariol, R.A. Quantitative Imaging of Contaminant Distributions in Heterogeneous Porous Media Laboratory Experiments. J. Contam. Hydrol. 2006, 84, 36–54. [Google Scholar] [CrossRef]
- Gheith, H.M.; Schwartz, F.W. Electrical and visual monitoring of small scale three-dimensional experiments. J. Contam. Hydrol. 1998, 34, 191–205. [Google Scholar] [CrossRef]
- Imhoff, P.T.; Thyrum, G.P.; Miller, C.T. Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media: 2. Experimental observations. Water Resour. Res. 1996, 32, 1929–1942. [Google Scholar] [CrossRef]
- Wildenschild, D.; Hopmans, J.W.; Rivers, M.L.; Kent, A.J.R. Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone J. 2005, 4, 112–126. [Google Scholar] [CrossRef]
- Penn, A.; Tsuji, T.; Brunner, D.O.; Boyce, C.M.; Pruessmann, K.P.; Müller, C.R. Real-time probing of granular dynamics with magnetic resonance. Sci. Adv. 2017, 3, e1701879. [Google Scholar] [CrossRef] [Green Version]
- Werth, C.J.; Zhang, C.; Brusseau, M.L.; Oostrom, M.; Baumann, T. A review of non-invasive imaging methods and applications in contaminant hydrogeology research. J. Contam. Hydrol. 2010, 113, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koptyug, I.V. MRI of mass transport in porous media: Drying and sorption processes. Prog. Nucl. Magn. Reson. Spectrosc. 2011, 65, 1–65. [Google Scholar] [CrossRef] [PubMed]
- Wildenschild, D.; Sheppard, A.P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 2013, 51, 217–246. [Google Scholar] [CrossRef]
- Suescun-Florez, E.; Iskander, M.; Kapila, V.; Cain, R. Geotechnical engineering in US elementary schools. Eur. J. Eng. Educ. 2013, 38, 300–315. [Google Scholar] [CrossRef]
- Corapcioglu, Y.M.; Chowdhury, S.; Roosevelt, S.E. Micromodel visualization and quantification of solute transport in porous media. Water Resour. Res. 1997, 33, 2547–2558. [Google Scholar] [CrossRef]
- Jeong, S.W.; Corapcioglu, M.Y.; Roosevelt, S.E. Micromodel study of surfactant foam remediation of residual trichloroethylene. Environ. Sci. Technol. 2000, 34, 3456–3461. [Google Scholar] [CrossRef]
- Huang, W.E.; Smith, C.C.; Lerner, D.N.; Thornton, S.F.; Oram, A. Physical modelling of solute transport in porous media: Evaluation of an imaging technique using UV excited fluorescent dye. Water Res. 2002, 36, 1843–1853. [Google Scholar] [CrossRef]
- Lunati, I.; Kinzelbach, W.; Sørensen, I. Effects of pore volume–transmissivity correlation on transport phenomena. J. Contam. Hydrol. 2003, 67, 195–217. [Google Scholar] [CrossRef]
- Theodoropoulou, M.A.; Karoutsos, V.; Kaspiris, C.; Tsakiroglou, C.D. A new visualization technique for the study of solute dispersion in model porous media. J. Hydrol. 2003, 274, 176–197. [Google Scholar] [CrossRef]
- Gaganis, P.; Skouras, E.D.; Theodoropoulou, M.A.; Tsakiroglou, C.D.; Burganos, V.N. On the evaluation of dispersion coefficients from visualization experiments in artificial porous media. J. Hydrol. 2005, 307, 79–91. [Google Scholar] [CrossRef]
- Iskander, M. Modelling with Transparent Soils: Visualizing Soil Structure Interaction and Multi-Phase Flow, Non-Intrusively; Springer Sci. Bus. Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Black, J.A.; Take, W.A. Quantification of optical clarity of transparent soil using the modulation transfer function. Geotech. Test. J. 2015, 38, 588–602. [Google Scholar] [CrossRef]
- Iskander, M.; Bathurst, R.J.; Omidvar, M. Past, present, and future of transparent soils. Geotech. Test. J. 2015, 38, 557–573. [Google Scholar] [CrossRef]
- Ma, S.; Duan, Z.; Huang, Z.; Liu, Y.; Shao, Y. Study on the stability of shield tunnel face in clay and clay-gravel stratum through large-scale physical model tests with transparent soil. Tunn. Undergr. Space Technol. 2022, 119, 104199. [Google Scholar] [CrossRef]
- Iskander, M.; Sadek, S.; Liu, J. Optical measurement of deformation using transparent silica gel to model sand. Int. J. Phys. Modeling Geotech. 2003, 2, 13–26. [Google Scholar] [CrossRef]
- Ezzein, F.M.; Bathurst, R.J. A Transparent Sand for Geotechnical Laboratory Modeling. Geotech. Test. J. 2011, 34, 590–601. [Google Scholar] [CrossRef]
- Sadek, S.; Iskander, M.; Liu, J. Geotechnical properties of transparent silica. Can. Geotech. J. 2002, 39, 111–124. [Google Scholar] [CrossRef]
- Beemer, R.D.; Aubeny, C. Digital image processing of drag embedment anchors in translucent silicate gel. In GeoManitoba; Canadian Geotechnical Society: Surrey, BC, Canada, 2012. [Google Scholar]
- Wallace, J.; Rutherford, C. Geotechnical properties of Laponite RD. ASTM Geotech. Test. J. 2015, 38, 574–587. [Google Scholar] [CrossRef]
- Ads, A.; Iskander, M.; Bless, S. Shear Strength of a Synthetic Transparent Clay for Simulating Soft Marine Sediments, using A Miniature Ball Penetrometer (MBP) Test. Geotech. Test. J. 2021, 43, 20190020. [Google Scholar] [CrossRef]
- Tabe, K. Transparent aquabeads to model LNAPL ganglia migration through surfactant flushing. Geotech. Test. J. 2015, 38, 787–804. [Google Scholar] [CrossRef]
- Zhao, H.; Ge, L.; Luna, R. Low viscosity pore fluid to manufacture transparent soil. Geotech. Test. J. 2010, 33, 463–468. [Google Scholar]
- Guzman, I.L.; Iskander, M. Geotechnical properties of sucrose-saturated fused quartz for use in physical modeling. Geotech. Test. J. 2013, 36, 448–454. [Google Scholar] [CrossRef]
- Carvalho, T.; Suescun, E.; Omidvar, M.; Iskander, M. A water based transparent soil for modeling mechanical response of saturated sand. ASTM Geotech. Test. J. 2015, 38, 5. [Google Scholar] [CrossRef]
- Kong, G.Q.; Li, H.; Hu, Y.X.; Yu, Y.X.; Xu, W.B. New suitable pore fluid to manufacture transparent soil. Geotech. Test. 2017, 40, 658–672. [Google Scholar] [CrossRef]
- Iskander, M. Transparent soils turn 25: Past, present, and future. In Physical Modelling in Geotechnics; CRC Press: Boca Raton, FL, USA, 2018; pp. 389–394. [Google Scholar]
- Liu, J.; Iskander, M.; Tabe, K.; Kostarelos, K. Flow visualization using transparent synthetic soils. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 12–16 September 2005; Millpress Science: Rotterdam, The Netherlands, 2005; Volume 3b, pp. 2411–2414. [Google Scholar]
- Lo, H.C.; Tabe, K.; Iskander, M.; Yoon, S. Modeling of 2D multiphase flow and surfactant flushing using transparent aquabeads. Geotech. Test. J. 2010, 33, 1–13. [Google Scholar] [CrossRef]
- Fernández-Serrano, R.; Iskander, M.; Tabe, K. Contaminant flow imaging in transparent granular porous media. Geotech. Lett. 2011, 1, 71–78. [Google Scholar] [CrossRef]
- Kashuk, S.; Mercurio, S.R.; Iskander, M. Ideal color space component for reconstruction of contamination plumes. J. Flow Vis. Image Process. 2013, 1, 1–34. [Google Scholar] [CrossRef]
- Macaire, L.; Vandenbroucke, N.; Postaire, J.G. Color image segmentation by analysis of subset connectedness and color homogeneity properties. Comput. Vis. Image Underst. 2006, 102, 105–116. [Google Scholar] [CrossRef]
- Vandenbroucke, N.; Macaire, L.; Postaire, J.G. Color image segmentation by pixel classification in an adapted hybrid color space. Application to soccer image analysis. Comput. Vis. Image Underst. 2003, 90, 190–216. [Google Scholar] [CrossRef]
- Kashuk, S.; Mercurio, S.R.; Iskander, M. Visualization of Dyed NAPL Concentration in Transparent Porous Media Using Color Space Components. J. Contam. Hydrol. 2014, 162–163, 1–16. [Google Scholar] [CrossRef]
- Kashuk, S.; Iskander, M. Evaluation of Color Space Information for the Visualization of Contamination Plumes. J. Vis. 2015, 18, 121–130. [Google Scholar] [CrossRef]
- Kashuk, S.; Iskander, M. Reconstruction of three dimensional convex zones using images at model boundaries. Comput. Geosci. 2015, 78, 96–109. [Google Scholar] [CrossRef]
- Kashuk, S.; Mercurio, S.R.; Iskander, M. Methodology for optical imaging of NAPL 3D distribution in transparent porous media. Geotech. Test. J. 2015, 38. [Google Scholar] [CrossRef]
- Wagner, F.H.; Bretschko, G. Interstitial flow through preferential flow paths in the hyporheic zone of the Oberer Seebach, Austria. Aquat. Sci. 2002, 64, 307–316. [Google Scholar] [CrossRef]
- Hassan, Y.A.; Dominguez-Ontiveros, E.E. Flow Visualization in a Pebble Bed Reactor Experiment Using PIV and Refractive Index Matching Techniques. Nucl. Eng. Des. 2008, 238, 3080–3085. [Google Scholar] [CrossRef]
- Hunter, R.P.; Bowman, E.T. Visualisation of seepage-induced suffusion and suffosion within internally erodible granular media. Géotechnique 2018, 68, 918–930. [Google Scholar] [CrossRef]
- Sanvitale, N.; Zhao, B.D.; Bowman, E.T.; O’Sullivan, C. Particle-scale observation of seepage flow in granular soils using PIV and CFD. Géotechnique 2021, 1–18. [Google Scholar]
- Raffel, M.; Kähler, C.J.; Willert, C.E.; Wereley, S.T.; Scarano, F.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Li, L.; Omidvar, M.; Iskander, M. Flow Visualization Using PIV, Video. 2017. Available online: www.youtube.com/watch?v=WbW6r8kIOsg (accessed on 28 January 2022).
- Li, L.; Iskander, M.; Omidvar, M. Visualisation of inter-granular pore fluid flow. In Physical Modelling in Geotechnics; CRC Press: Boca Raton, FL, USA, 2018; pp. 859–864. [Google Scholar]
- Byron, M.L.; Variano, E.A. Refractive-index-matched hydrogel materials for measuring flow-structure interactions. Exp. Fluids 2013, 54, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Iskander, M. Comparison of 2D and 3D dynamic image analysis for characterization of natural sands. Eng. Geol. 2021, 290, 106052. [Google Scholar] [CrossRef]
- Li, L.; Iskander, M. Evaluation of Dynamic Image Analysis for Characterizing Granular Soils. Geotech. Test. J. 2020, 43, 1149–1173. [Google Scholar] [CrossRef]
- ASTM International. ASTM D2434-68: Standard Test Method for Permeability of Granular Soils (Constant Head); ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Li, L.; Omidvar, M.; Bless, S.; Iskander, M. Visualizing the role of particle shape on 2D inter-particle fluid flow using a transparent soil surrogate. In Proceedings of the Geo-Congress 2019: Geotechnical Materials, Modeling, and Testing, Philadelphia, PA, USA, 24–27 March 2019; pp. 618–627. [Google Scholar] [CrossRef]
- Iskander, M.; Bless, S.; Omidvar, M. Rapid Penetration into Granular Media: Visualizing the Fundamental Physics of Rapid Earth Penetration; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Omidvar, M.; Chen, Z.; Iskander, M. Image-based Lagrangian analysis of granular kinematics. J. Comput. Civ. Eng. 2014, 29, 04014101. [Google Scholar] [CrossRef]
- Chen, Z.; Li, K.; Omidvar, M.; Iskander, M. Guidelines for DIC in geotechnical engineering research. Int. J. Phys. Model. Geotech. 2017, 17, 3–22. [Google Scholar] [CrossRef]
- Shin, C.H. Permeability variation analysis using the superficial diameter correlation with porosity change. Phys. Fluids 2021, 33, 053108. [Google Scholar] [CrossRef]
- Malek, K.; Coppens, M.O. Knudsen self-and Fickian diffusion in rough nanoporous media. J. Chem. Phys. 2003, 119, 2801–2811. [Google Scholar] [CrossRef]
- Chen, Z.; Omidvar, M.; Iskander, M. Observations of multi-scale granular kinematics around driven piles in plane strain condition. Geotech. Test. J. 2016, 39, 827–841. [Google Scholar] [CrossRef]
- Chen, Z.; Omidvar, M.; Li, K.; Iskander, M. Particle rotation of granular materials in plane strain. Int. J. Phys. Model. Geotech. 2017, 17, 23–40. [Google Scholar] [CrossRef]
Cylindrical Particles | Ottawa Sand | |
---|---|---|
Discharge velocity v | 0.024 cm/s | 0.058 cm/s |
Porosity n | 0.37 | 0.37 |
Hydraulic gradient i | 4.6 | 5.7 |
Hydraulic Conductivity (observed) k = v/i | 0.005 cm/s | 0.01 cm/s |
Seepage velocity Theoretical vs = v/n | 0.06 cm/s | 0.16 cm/s |
Seepage velocity Observed via PIV | 0.04 cm/s | 0.2 cm/s |
Tortuosity T | 0.63 | 0.88 |
Interstitial velocity [84] vi = v/nT | 0.10 cm/s | 0.19 cm/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Iskander, M. Visualization of Interstitial Pore Fluid Flow. J. Imaging 2022, 8, 32. https://doi.org/10.3390/jimaging8020032
Li L, Iskander M. Visualization of Interstitial Pore Fluid Flow. Journal of Imaging. 2022; 8(2):32. https://doi.org/10.3390/jimaging8020032
Chicago/Turabian StyleLi, Linzhu, and Magued Iskander. 2022. "Visualization of Interstitial Pore Fluid Flow" Journal of Imaging 8, no. 2: 32. https://doi.org/10.3390/jimaging8020032
APA StyleLi, L., & Iskander, M. (2022). Visualization of Interstitial Pore Fluid Flow. Journal of Imaging, 8(2), 32. https://doi.org/10.3390/jimaging8020032