Image Decomposition Technique Based on Near-Infrared Transmission
Abstract
:1. Introduction
2. Theoretical Development and Analysis
2.1. Beer–Lambert Law
2.2. Sobel Operator
2.3. MSE and PSNR
3. Experimental Setup
4. Results and Discussion
4.1. Decomposition of Margarine
4.2. Decomposition of Silicone Rubber
4.3. Decomposition of Gelatin
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ko, W.; Kwak, Y.; Kim, S. Development of a non-contact diffuse optical tomography system for image reconstruction of blood vessel with NIR light. In World Congress on Medical Physics and Biomedical Engineering 2006; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Wu, H.Y.; Filer, A.; Styles, I.; Dehghani, H. Development of a multi-wavelength diffuse optical tomography system for early diagnosis of rheumatoid arthritis: Simulation, phantoms and healthy human studies. Biomed. Opt. Express 2016, 7, 4769–4786. [Google Scholar] [CrossRef] [PubMed]
- Lighter, D.; Hughes, J.; Styles, I.; Filer, A.; Dehghani, H. Multispectral, non-contact diffuse optical tomography of healthy human finger joints. Biomed. Opt. Express 2018, 9, 1445–1460. [Google Scholar] [CrossRef] [PubMed]
- Kourkoumelis, N.; Tzaphlidou, M. Eye safety related to near infrared radiation exposure to biometric devices. Sci. World J. 2011, 11, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, S.M.; Lim, I.; Lindenberg, L.; Mena, E.; Choyke, P.L.; Turkbey, B. Positron emission tomography (PET) radiotracers for prostate cancer imaging. Abdom. Radiol. 2020, 45, 2165–2175. [Google Scholar] [CrossRef]
- Dorbala, S.; Ananthasubramaniam, K.; Armstrong, I.S.; Chareonthaitawee, P.; DePuey, E.G.; Einstein, A.J.; Gropler, R.J.; Holly, T.A.; Mahmarian, J.J.; Park, M.-A.; et al. Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: Instrumentation, acquisition, processing, and interpretation. J. Nucl. Cardiol. 2018, 25, 1784–1846. [Google Scholar] [CrossRef] [Green Version]
- Lorking, N.; Murray, A.D.; O’Brien, J.T. The use of positron emission tomography/magnetic resonance imaging in dementia: A literature review. Int. J. Geriatr. Psychiatry 2021, 36, 1501–1513. [Google Scholar] [CrossRef]
- Heenan, T.M.; Tan, C.; Hack, J.; Brett, D.J.; Shearing, P.R. Developments in X-ray tomography characterization for electrochemical devices. Mater. Today 2019, 31, 69–85. [Google Scholar] [CrossRef]
- Zhou, B.; Guo, Z.; Lin, Z.; Zhang, L.; Jiang, B.-P.; Shen, X.-C. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg. Chem. Front. 2019, 6, 1116–1128. [Google Scholar] [CrossRef]
- Sevick-Muraca, E.M.; Houston, J.P.; Gurfinkel, M. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr. Opin. Chem. Biol. 2002, 6, 642–650. [Google Scholar] [CrossRef]
- Kauba, C.; Prommegger, B.; Uhl, A. Combined fully contactless finger and hand vein capturing device with a corresponding dataset. Sensors 2019, 19, 5014. [Google Scholar] [CrossRef]
- Merlo, S.; Bello, V.; Bodo, E.; Pizzurro, S. A VCSEL-Based NIR transillumination system for morpho-functional imaging. Sensors 2019, 19, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laistler, E.; Milanic, M. Assessing spectral imaging of the human finger for detection of arthritis. Biomed. Opt. Express 2019, 10, 6555–6568. [Google Scholar]
- Chang, S.; Bowden, A.K. Review of methods and applications of attenuation coefficient measurements with optical coherence tomography. J. Biomed. Opt. 2019, 24, 090901. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Longo, R.; Rigon, L.; Zanconati, F.; De Pellegrin, A.; Arfelli, F.; Dreossi, D.; Menk, R.-H.; Vallazza, E.S.; Xiao, T.Q.; et al. Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography. Phys. Med. Biol. 2010, 55, 4993. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.L. Transmission scanning in emission tomography. Eur. J. Nucl. Med. 1998, 25, 774–787. [Google Scholar] [CrossRef]
- Casasanta, G.; Garra, R. Towards a generalized Beer-Lambert law. Fractal Fract. 2018, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Batteux, F.; Araujo, S.; Delpouve, N.; Saiter, J.-M.; Tan, L.; Negahban, M. Measurement of Beer-Lambert Attenuation Coefficient and Curing Kinetics Power Order: A Method Based on Rapid-Scan FTIR During Laser Curing on an ATR. Macromol. Symp. 2016, 365, 173–179. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef]
- Peymanfar, R.; Javanshir, S.; Naimi-Jamal, M.R.; Cheldavi, A. Preparation and identification of modified La0. 8Sr0. 2FeO3 nanoparticles and study of its microwave properties using silicone rubber or PVC. Mater. Res. Express 2019, 6, 075004. [Google Scholar] [CrossRef]
- Almarhaby, A.; Lees, J.; Bugby, S.; Alqahtani, M.; Jambi, L.; McKnight, W.; Perkins, A. Characterisation of a near-infrared (NIR) fluorescence imaging systems intended for hybrid gamma-NIR fluorescence image guided surgery. J. Instrum. 2019, 14, P07007. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Y. Vulcanization and Thermal Properties of Silicone Rubber/Fluorine Rubber Blends. J. Macromol. Sci. Part B 2019, 58, 579–591. [Google Scholar] [CrossRef]
- Cai, D.; Neyer, A.; Kuckuk, R.; Heise, H.M. Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J. Mol. Struct. 2010, 976, 274–281. [Google Scholar] [CrossRef]
- Liu, J.; Sun, S.; Tan, Z.; Liu, Y. Nondestructive detection of sunset yellow in cream based on near-infrared spectroscopy and interval random forest. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118718. [Google Scholar] [CrossRef] [PubMed]
- Lualdi, M.; Colombo, A.; Farina, B.; Tomatis, S.; Marchesini, R. A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2001, 28, 237–243. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Rotaru, G.; Spano, F.; Affolter, C.; Fortunato, G.; Lehmann, S.; Derler, S.; Spencer, N.; Rossi, R.M. A water-responsive, gelatine-based human skin model. Tribol. Int. 2017, 113, 316–322. [Google Scholar] [CrossRef]
- Cho, J.; Prasad, B.; Kim, J.K. Near-infrared laser irradiation of a multilayer agar-gel tissue phantom to induce thermal effect of traditional moxibustion. J. Innov. Opt. Health Sci. 2018, 11, 1850033. [Google Scholar] [CrossRef] [Green Version]
- Tian, R.; Sun, G.; Liu, X.; Zheng, B. Sobel edge detection based on weighted nuclear norm minimization image denoising. Electronics 2021, 10, 655. [Google Scholar] [CrossRef]
- Maheshan, C.; Kumar, H.P. Performance of image pre-processing filters for noise removal in transformer oil images at different temperatures. SN Appl. Sci. 2020, 2, 67. [Google Scholar] [CrossRef] [Green Version]
- Dytso, A.; Bustin, R.; Poor, H.V.; Shamai, S. Analytical properties of generalized Gaussian distributions. J. Stat. Distrib. Appl. 2018, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Deringer, V.L.; Bartók, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csányi, G. Gaussian process regression for materials and molecules. Chem. Rev. 2021, 121, 10073–10141. [Google Scholar] [CrossRef]
- Fumo, N.; Biswas, M.A. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015, 47, 332–343. [Google Scholar] [CrossRef]
Silicone Rubber (cm−1) | Margarine (cm−1) | Gelatin (cm−1) | |
---|---|---|---|
780 nm | 1.886 ± 0.129 | 3.879 ± 0.276 | 3.018 ± 0.205 |
808 nm | 1.802 ± 0.118 | 3.643 ± 0.260 | 2.857 ± 0.212 |
830 nm | 1.398 ± 0.099 | 2.966 ± 0.280 | 2.554 ± 0.187 |
980 nm | 1.313 ± 0.076 | 2.830 ± 0.263 | 2.496 ± 0.182 |
MSE | PSNR | |
---|---|---|
780 nm | 0.185 | 55.46 |
808 nm | 0.448 | 51.62 |
830 nm | 0.367 | 52.48 |
980 nm | 0.176 | 55.68 |
Ionization | Radiative | Invasive | Image Type | Cost | Resolution | Contrast | Portability | |
---|---|---|---|---|---|---|---|---|
PET | Yes | Yes | Yes | Mixed | Expensive | high | High | No |
SPECT | Yes | Yes | Yes | Mixed | Expensive | high | High | No |
MRI | Yes | Yes | Yes | Mixed | Expensive | high | High | No |
X-ray | Yes | Yes | Yes | Mixed | Expensive | high | High | No |
Image Decom-position Near-Infrared Tomography | No | No | No | Decom-posed | Cheap | High | High | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aminoto, T.; Priambodo, P.S.; Sudibyo, H. Image Decomposition Technique Based on Near-Infrared Transmission. J. Imaging 2022, 8, 322. https://doi.org/10.3390/jimaging8120322
Aminoto T, Priambodo PS, Sudibyo H. Image Decomposition Technique Based on Near-Infrared Transmission. Journal of Imaging. 2022; 8(12):322. https://doi.org/10.3390/jimaging8120322
Chicago/Turabian StyleAminoto, Toto, Purnomo Sidi Priambodo, and Harry Sudibyo. 2022. "Image Decomposition Technique Based on Near-Infrared Transmission" Journal of Imaging 8, no. 12: 322. https://doi.org/10.3390/jimaging8120322
APA StyleAminoto, T., Priambodo, P. S., & Sudibyo, H. (2022). Image Decomposition Technique Based on Near-Infrared Transmission. Journal of Imaging, 8(12), 322. https://doi.org/10.3390/jimaging8120322