A Multimodal Knowledge-Based Deep Learning Approach for MGMT Promoter Methylation Identification
Abstract
:1. Introduction
2. Related Works
3. Considered Cohorts
- The first one is provided by the Brain Tumor AI Challenge (https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification) [17], consisting of 573 subjects obtained by merging the training and validation sets available in the competition. This dataset is composed of 303 patients with MGMT promoter methylation and 270 without. The dataset uses DICOM files, that include a list of metadata in the form of a set of tags, such as Image Orientation, Slice Location, Pixel Spacing, and Spacing Between Slices that are used to generate the acquisition volumes.
- The second dataset is the UPENN-GBM one (https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70225642) [11], consisting of 291 subjects for whom the information about the MGMT promoter methylation is available, of which 121 with methylation and 170 without. Similarly to the first dataset, the UPENN-GBM [11] uses the DICOM file format. This dataset comes from scans obtained from GBM patients of the University of Pennsylvania Health System, which contain other clinical information such as overall survival and patients’ demographics.
4. Proposed Approach
4.1. Data Preparation
4.2. Knowledge-Based Filtering (KBF)
4.3. MGMT Promoter Methylation Identification
5. Experimental Setup
6. Results
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, S. Simjee Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac. J. Cancer Prev 2017, 18, 3–9. [Google Scholar] [PubMed]
- Shukla, G.; Alexander, G.S.; Bakas, S.; Nikam, R.; Talekar, K.; Palmer, J.D.; Shi, W. Advanced magnetic resonance imaging in glioblastoma: A review. Chin. Clin. Oncol. 2017, 6, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, R.M.; Jamshidi, A.; Davis, G.; Sherman, J.H. Current trends in the surgical management and treatment of adult glioblastoma. Ann. Transl. Med. 2015, 3, 121. [Google Scholar] [PubMed]
- Christmann, M.; Verbeek, B.; Roos, W.P.; Kaina, B. O6-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: Enzyme activity, promoter methylation and immunohistochemistry. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2011, 1816, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Haque, W.; Thong, E.; Andrabi, S.; Verma, V.; Butler, E.B.; Teh, B.S. Prognostic and predictive impact of MGMT promoter methylation in grade 3 gliomas. J. Clin. Neurosci. 2021, 85, 115–121. [Google Scholar] [CrossRef]
- Ahn, S.S.; Cha, S. Pre-and Post-Treatment Imaging of Primary Central Nervous System Tumors in the Molecular and Genetic Era. Korean J. Radiol. 2021, 22, 1858. [Google Scholar] [CrossRef]
- Suh, C.; Kim, H.; Jung, S.; Choi, C.; Kim, S. Clinically relevant imaging features for MGMT promoter methylation in multiple glioblastoma studies: A systematic review and meta-analysis. Am. J. Neuroradiol. 2018, 39, 1439–1445. [Google Scholar]
- Han, Y.; Yan, L.F.; Wang, X.B.; Sun, Y.Z.; Zhang, X.; Liu, Z.C.; Nan, H.Y.; Hu, Y.C.; Yang, Y.; Zhang, J.; et al. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: A region of interest based analysis. BMC Cancer 2018, 18, 215. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Yang, Q.; Wang, B.; Ye, G.; Tong, X. The correlation of MGMT promoter methylation and clinicopathological features in gastric cancer: A systematic review and meta-analysis. PLoS ONE 2016, 11, e0165509. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2015, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Bakas, S.; Sako, C.; Akbari, H.; Bilello, M.; Sotiras, A.; Shukla, G.; Rudie, J.D.; Santamaría, N.F.; Kazerooni, A.F.; Pati, S.; et al. The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: Advanced MRI, clinical, genomics, & radiomics. Sci. Data 2022, 9, 453. [Google Scholar]
- Han, L.; Kamdar, M.R. MRI to MGMT: Predicting methylation status in glioblastoma patients using convolutional recurrent neural networks. In Proceedings of the PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018: Proceedings of the Pacific Symposium, Kohala Coast, HI, USA, 3–7 January 2018; pp. 331–342. [Google Scholar]
- Yogananda, C.; Shah, B.; Nalawade, S.; Murugesan, G.; Yu, F.; Pinho, M.; Wagner, B.; Mickey, B.; Patel, T.; Fei, B.; et al. MRI-based deep-learning method for determining glioma MGMT promoter methylation status. Am. J. Neuroradiol. 2021, 42, 845–852. [Google Scholar] [CrossRef]
- Chen, S.; Xu, Y.; Ye, M.; Li, Y.; Sun, Y.; Liang, J.; Lu, J.; Wang, Z.; Zhu, Z.; Zhang, X.; et al. Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics. J. Clin. Med. 2022, 11, 3445. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Das, S. Optimizing prediction of MGMT promoter methylation from MRI scans using adversarial learning. arXiv 2022, arXiv:2201.04416. [Google Scholar]
- Baid, U.; Ghodasara, S.; Mohan, S.; Bilello, M.; Calabrese, E.; Colak, E.; Farahani, K.; Kalpathy-Cramer, J.; Kitamura, F.C.; Pati, S.; et al. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv 2021, arXiv:2107.02314. [Google Scholar]
- Saeed, N.; Hardan, S.; Abutalip, K.; Yaqub, M. Is it Possible to Predict MGMT Promoter Methylation from Brain Tumor MRI Scans using Deep Learning Models? arXiv 2022, arXiv:2201.06086. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Rohlfing, T.; Zahr, N.M.; Sullivan, E.V.; Pfefferbaum, A. The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 2010, 31, 798–819. [Google Scholar] [CrossRef] [Green Version]
- Isensee, F.; Schell, M.; Pflueger, I.; Brugnara, G.; Bonekamp, D.; Neuberger, U.; Wick, A.; Schlemmer, H.P.; Heiland, S.; Wick, W.; et al. Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 2019, 40, 4952–4964. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.C.; Hall, L.O.; Goldgof, D.B.; Velthuizen, R.; Murtagh, R.; Silbiger, M.S. Unsupervised brain tumor segmentation using knowledge-based fuzzy techniques. In Fuzzy and Neuro-Fuzzy Systems in Medicine; CRC Press: Boca Raton, FL, USA, 2017; pp. 137–170. [Google Scholar]
- Fletcher-Heath, L.M.; Hall, L.O.; Goldgof, D.B.; Murtagh, F.R. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif. Intell. Med. 2001, 21, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Gupta, T.; Gandhi, T.K.; Gupta, R.; Panigrahi, B.K. Classification of patients with tumor using MR FLAIR images. Pattern Recognit. Lett. 2020, 139, 112–117. [Google Scholar] [CrossRef]
- Roozpeykar, S.; Azizian, M.; Zamani, Z.; Farzan, M.R.; Veshnavei, H.A.; Tavoosi, N.; Toghyani, A.; Sadeghian, A.; Afzali, M. Contrast-enhanced weighted-T1 and FLAIR sequences in MRI of meningeal lesions. Am. J. Nucl. Med. Mol. Imaging 2022, 12, 63. [Google Scholar] [PubMed]
- Ramachandram, D.; Taylor, G.W. Deep multimodal learning: A survey on recent advances and trends. IEEE Signal Process. Mag. 2017, 34, 96–108. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3319–3328. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833. [Google Scholar]
- Kokhlikyan, N.; Miglani, V.; Martin, M.; Wang, E.; Alsallakh, B.; Reynolds, J.; Melnikov, A.; Kliushkina, N.; Araya, C.; Yan, S.; et al. Captum: A unified and generic model interpretability library for pytorch. arXiv 2020, arXiv:2009.07896. [Google Scholar]
Model | ACC | SPE | SEN | PRE | F1 | AUC |
---|---|---|---|---|---|---|
3D MGMTClassifier | 55.09% | 50.34% | 59.74% | 55.18% | 57.37% | 55.38% |
2D MGMTClassifier | 57.77% | 54.44% | 60.73% | 59.93% | 60.33% | 53.55% |
Tunisia.ai | 52.31% | 33.45% | 69.38% | 53.52% | 60.30% | 53.84% |
Model | ACC | SPE | SEN | PRE | F1 | AUC |
---|---|---|---|---|---|---|
3D MGMTClassifier | 60.06% | 74.03% | 45.35% | 62.40% | 52.53% | 59.80% |
2D MGMTClassifier | 55.66% | 62.98% | 45.31% | 46.40% | 45.85% | 55.57% |
Tunisia.ai | 55.14% | 54.31% | 56.52% | 42.39% | 48.45% | 57.56% |
Model | ACC | SPE | SEN | PRE | F1 | AUC |
---|---|---|---|---|---|---|
3D MGMTClassifier | 48.99% | 57.80% | 40.16% | 48.68% | 44.01% | 48.78% |
2D MGMTClassifier | 52.58% | 59.41% | 42.98% | 42.98% | 42.98% | 51.51% |
Tunisia.ai | 37.30% | 26.72% | 55.07% | 36.54% | 43.93% | 49.58% |
Model | ACC | SPE | SEN | PRE | F1 | AUC |
---|---|---|---|---|---|---|
3D MGMTClassifier | 49.47% | 65.94% | 33.00% | 49.21% | 39.51% | 50.57% |
2D MGMTClassifier | 51.66% | 51.85% | 51.49% | 54.55% | 52.98% | 50.72% |
Tunisia.ai | 51.93% | 28.35% | 73.29% | 52.90% | 61.45% | 50.83% |
Model | ACC | SPE | SEN | PRE | F1 | AUC |
---|---|---|---|---|---|---|
3D MGMTClassifier | 56.81% | 65.13% | 48.58% | 58.44% | 53.06% | 57.59% |
2D MGMTClassifier | 53.74% | 48.11% | 59.63 % | 52.34% | 55.75% | 55.17% |
Tunisia.ai | 56.88% | 48.22% | 65.96% | 54.87% | 59.91% | 58.63% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capuozzo, S.; Gravina, M.; Gatta, G.; Marrone, S.; Sansone, C. A Multimodal Knowledge-Based Deep Learning Approach for MGMT Promoter Methylation Identification. J. Imaging 2022, 8, 321. https://doi.org/10.3390/jimaging8120321
Capuozzo S, Gravina M, Gatta G, Marrone S, Sansone C. A Multimodal Knowledge-Based Deep Learning Approach for MGMT Promoter Methylation Identification. Journal of Imaging. 2022; 8(12):321. https://doi.org/10.3390/jimaging8120321
Chicago/Turabian StyleCapuozzo, Salvatore, Michela Gravina, Gianluca Gatta, Stefano Marrone, and Carlo Sansone. 2022. "A Multimodal Knowledge-Based Deep Learning Approach for MGMT Promoter Methylation Identification" Journal of Imaging 8, no. 12: 321. https://doi.org/10.3390/jimaging8120321
APA StyleCapuozzo, S., Gravina, M., Gatta, G., Marrone, S., & Sansone, C. (2022). A Multimodal Knowledge-Based Deep Learning Approach for MGMT Promoter Methylation Identification. Journal of Imaging, 8(12), 321. https://doi.org/10.3390/jimaging8120321