Estimating Muscle Activity from the Deformation of a Sequential 3D Point Cloud
Abstract
:1. Introduction
2. Related Research
3. Proposed Method
3.1. Data Acquisition
3.2. Non-Rigid Registration
- Initialization.
- Detect texture markers of the target and find matches of each marker on the template.
- Apply global rigid transformation based on rigid ICP using the and terms.
- Iterate the following steps of deformable registration until convergence.
- (a)
- Update the closest point in the target for each vertex of the template.
- (b)
- Calculate E and estimate the acceleration of the transformation parameters of each template vertex by minimizing the energy.
- (c)
- Calculate the position and velocity of the current frame by integrating the acceleration.
3.3. Computation of Strain Tensor
3.4. Predicting Muscle Activity
4. Experiments
4.1. Evaluation of Registration
4.1.1. Evaluation Using Ground-Truth Simulated Deformation
4.1.2. Tracking Real 3D Scans
4.2. Muscle Activity Prediction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sagawa, R.; Ayusawa, K.; Yoshiyasu, Y.; Murai, A. Predicting Muscle Activity and Joint Angle from Skin Shape. In Proceedings of the ECCV 2018 Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Sagawa, R.; Yoshiyasu, Y.; Alspach, A.; Ayusawa, K.; Yamane, K.; Hilton, A. Analyzing muscle activity and force with skin shape captured by non-contact visual sensor. In Proceedings of the Image and Video Technology, (PSIVT2015), Auckland, New Zealand, 25–27 November 2015; pp. 488–501. [Google Scholar]
- Zhang, Z. Microsoft kinect sensor and its effect. IEEE Multimed. 2012, 19, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Zabatani, A.; Surazhsky, V.; Sperling, E.; Moshe, S.B.; Menashe, O.; Silver, D.H.; Karni, T.; Bronstein, A.M.; Bronstein, M.M.; Kimmel, R. Intel® RealSense™ SR300 Coded light depth Camera. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2333–2345. [Google Scholar] [CrossRef] [PubMed]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- De Luca, C.J. The use of surface electromyography in biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef] [PubMed]
- Hill, A. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. 1938, 126, 136–195. [Google Scholar]
- Stroeve, S. Impedance characteristics of a neuro-musculoskeletal model of the human arm I: Posture control. J. Biol. Cybern 1999, 81, 475–494. [Google Scholar] [CrossRef] [PubMed]
- Merletti, R. Standards for reporting EMG data. J. Electromyogr. Kinesiol. 1999, 9, 3–4. [Google Scholar]
- Neugebauer, P. Geometrical cloning of 3D objects via simultaneous registration of multiple range images. In Proceedings of the 1997 International Conference on Shape Modeling and Applications, Aizu-Wakamatsu, Japan, 6 March 1997; pp. 130–139. [Google Scholar]
- Li, H.; Sumner, R.W.; Pauly, M. Global correspondence optimization for non-rigid registration of depth scans. In Computer Graphics Forum; Wiley Online Library: Oxford, UK, 2008; Volume 27, pp. 1421–1430. [Google Scholar]
- Sumner, R.W.; Schmid, J.; Pauly, M. Embedded deformation for shape manipulation. In SIGGRAPH ’07: ACM SIGGRAPH 2007 Papers; Association for Computing Machinery: New York, NY, USA, 2007; p. 80. [Google Scholar]
- Allen, B.; Curless, B.; Popović, Z. The space of human body shapes: Reconstruction and parameterization from range scans. ACM Trans. Graph. (TOG) 2003, 22, 587–594. [Google Scholar] [CrossRef]
- Sumner, R.W.; Popović, J. Deformation transfer for triangle meshes. ACM Trans. Graph. (TOG) 2004, 23, 399–405. [Google Scholar] [CrossRef]
- Amberg, B.; Romdhani, S.; Vetter, T. Optimal step nonrigid ICP algorithms for surface registration. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Huang, Q.X.; Adams, B.; Wicke, M.; Guibas, L.J. Non-rigid registration under isometric deformations. In Computer Graphics Forum; Wiley Online Library: Oxford, UK, 2008; Volume 27, pp. 1449–1457. [Google Scholar]
- Sagawa, R.; Akasaka, K.; Yagi, Y.; Hamer, H.; Van Gool, L. Elastic convolved ICP for the registration of deformable objects. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, Kyoto, Japan, 27 September–4 October 2009; pp. 1558–1565. [Google Scholar]
- Weise, T.; Li, H.; Van Gool, L.; Pauly, M. Face/off: Live facial puppetry. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, LA, USA, 1–2 August 2009; pp. 7–16. [Google Scholar]
- Paillé, G.P.; Poulin, P. As-conformal-as-possible discrete volumetric mapping. Comput. Graph. 2012, 36, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Martinez Esturo, J.; Rössl, C.; Theisel, H. Generalized Metric Energies for Continuous Shape Deformation. In Mathematical Methods for Curves and Surfaces; Springer: Berlin/Heidelberg, Germany, 2014; pp. 135–157. [Google Scholar]
- Yoshiyasu, Y.; Ma, W.C.; Yoshida, E.; Kanehiro, F. As-conformal-as-possible surface registration. In Computer Graphics Forum; Wiley Online Library: Oxford, UK, 2014; Volume 33, pp. 257–267. [Google Scholar]
- Dou, M.; Khamis, S.; Degtyarev, Y.; Davidson, P.; Fanello, S.R.; Kowdle, A.; Escolano, S.O.; Rhemann, C.; Kim, D.; Taylor, J.; et al. Fusion4d: Real-time performance capture of challenging scenes. ACM Trans. Graph. (ToG) 2016, 35, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Slavcheva, M.; Baust, M.; Cremers, D.; Ilic, S. Killingfusion: Non-rigid 3d reconstruction without correspondences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1386–1395. [Google Scholar]
- Li, H.; Luo, L.; Vlasic, D.; Peers, P.; Popović, J.; Pauly, M.; Rusinkiewicz, S. Temporally Coherent Completion of Dynamic Shapes. ACM Trans. Graph. 2012, 31, 1–11. [Google Scholar] [CrossRef]
- Newcombe, R.A.; Fox, D.; Seitz, S.M. Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 343–352. [Google Scholar]
- Montagnat, J.; Delingette, H. 4D deformable models with temporal constraints: Application to 4D cardiac image segmentation. Med. Image Anal. 2005, 9, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Sagawa, R.; Oishi, T.; Nakazawa, A.; Kurazume, R.; Ikeuchi, K. Iterative refinement of range images with anisotropic error distribution. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; Volume 1, pp. 79–85. [Google Scholar]
- Wand, M.; Jenke, P.; Huang, Q.; Bokeloh, M.; Guibas, L.; Schilling, A. Reconstruction of deforming geometry from time-varying point clouds. In Proceedings of the Symposium on Geometry Processing, Barcelona, Spain, 4–6 July 2007; pp. 49–58. [Google Scholar]
- Yu, T.; Guo, K.; Xu, F.; Dong, Y.; Su, Z.; Zhao, J.; Li, J.; Dai, Q.; Liu, Y. Bodyfusion: Real-time capture of human motion and surface geometry using a single depth camera. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 910–919. [Google Scholar]
- Yu, T.; Zheng, Z.; Guo, K.; Zhao, J.; Dai, Q.; Li, H.; Pons-Moll, G.; Liu, Y. Doublefusion: Real-time capture of human performances with inner body shapes from a single depth sensor. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7287–7296. [Google Scholar]
- Johnson, A.E.; Kang, S.B. Registration and integration of textured 3D data. Image Vis. Comput. 1999, 17, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Godin, G.; Rioux, M.; Baribeau, R. Three-dimensional registration using range and intensity information. In Proceedings of the Videometrics III. International Society for Optics and Photonics, Boston, MA, USA, 2–4 November 1994; Volume 2350, pp. 279–290. [Google Scholar]
- Godin, G.; Laurendeau, D.; Bergevin, R. A method for the registration of attributed range images. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 179–186. [Google Scholar]
- Barone, S.; Paoli, A.; Razionale, A.V. Three-dimensional point cloud alignment detecting fiducial markers by structured light stereo imaging. Mach. Vis. Appl. 2012, 23, 217–229. [Google Scholar] [CrossRef]
- Sidorov, K.A.; Richmond, S.; Marshall, D. Efficient groupwise non-rigid registration of textured surfaces. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2401–2408. [Google Scholar]
- Park, J.; Zhou, Q.Y.; Koltun, V. Colored point cloud registration revisited. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 143–152. [Google Scholar]
- Sagawa, R.; Sakashita, K.; Kasuya, N.; Kawasaki, H.; Furukawa, R.; Yagi, Y. Grid-based active stereo with single-colored wave pattern for dense one-shot 3D scan. In Proceedings of the 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich, Switzerland, 13–15 October 2012; pp. 363–370. [Google Scholar]
- Sagawa, R.; Satoh, Y. Illuminant-camera communication to observe moving objects under strong external light by spread spectrum modulation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5097–5105. [Google Scholar]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Sardinia, Italy, 26–28 June 2006; Volume 7. [Google Scholar]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152. [Google Scholar]
- Ayusawa, K.; Suleiman, W.; Yoshida, E. Predictive Inverse Kinematics: Optimizing Future Trajectory through Implicit Time Integration and Future Jacobian Estimation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 3–8 November 2019; pp. 566–573. [Google Scholar]
- Alves, J.; Yamamura, N.; Oda, T.; Teodosiu, C. Numerical simulation of musculo-skeletal systems by V-biomech. In Proceedings of the CMBBE2010 Symposium, Valencia, Spain, 24–27 February 2010. [Google Scholar]
Position Error | x-axis | y-axis | z-axis |
---|---|---|---|
with TC | 0.225 | 0.583 | 0.809 |
without TC | 1.322 | 3.158 | 4.178 |
without TC + filter | 0.921 | 1.450 | 1.627 mm |
Velocity Error | x-axis | y-axis | z-axis |
with TC | 6.919 | 22.464 | 25.888 |
without TC | |||
without TC + filter | mm/s | ||
Acceleration Error | x-axis | y-axis | z-axis |
with TC | |||
without TC | |||
without TC + filter | mm/s2 |
Condition | MAPE of Strain |
---|---|
with TC | 32.5 |
without TC | 3946.9 |
without TC + filter | 160.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, H.; Ito, T.; Desclaux, D.; Ayusawa, K.; Yoshiyasu, Y.; Sagawa, R.; Yoshida, E. Estimating Muscle Activity from the Deformation of a Sequential 3D Point Cloud. J. Imaging 2022, 8, 168. https://doi.org/10.3390/jimaging8060168
Niu H, Ito T, Desclaux D, Ayusawa K, Yoshiyasu Y, Sagawa R, Yoshida E. Estimating Muscle Activity from the Deformation of a Sequential 3D Point Cloud. Journal of Imaging. 2022; 8(6):168. https://doi.org/10.3390/jimaging8060168
Chicago/Turabian StyleNiu, Hui, Takahiro Ito, Damien Desclaux, Ko Ayusawa, Yusuke Yoshiyasu, Ryusuke Sagawa, and Eiichi Yoshida. 2022. "Estimating Muscle Activity from the Deformation of a Sequential 3D Point Cloud" Journal of Imaging 8, no. 6: 168. https://doi.org/10.3390/jimaging8060168
APA StyleNiu, H., Ito, T., Desclaux, D., Ayusawa, K., Yoshiyasu, Y., Sagawa, R., & Yoshida, E. (2022). Estimating Muscle Activity from the Deformation of a Sequential 3D Point Cloud. Journal of Imaging, 8(6), 168. https://doi.org/10.3390/jimaging8060168