Hand-Crafted and Learned Feature Aggregation for Visual Marble Tiles Screening
Abstract
:1. Introduction
2. Dolomitic Marble Texture Description
3. Methodology
3.1. Dataset Description
3.2. Dataset Acquisition
3.3. Hand-Crafted Descriptor Learning
- calculate the real and imaginary response of the filter applied to the image,
- calculate the magnitude between the real and imaginary response, and
- calculate the mean and standard deviation of the magnitudes from all the filters.
- Support Vector Machine (SVM) (with RBF kernel),
- K-Nearest Neighbor (kNN),
- Random Forest (RF),
- Multilayer Perceptron (MLP),
- Logistic Regression (LR),
- Stochastic Gradient Descent (SGD),
- Extreme Gradient Boost (XGB).
3.4. Convolutional Neural Network Training
- Remove the original output layer
- Freeze the model’s weights
- Add a Global Average Pooling 2D layer
- Add a Dropout layer with a 20% rate
- Add a Dense layer (output layer) with a softmax activation function for the three quality classes
- Train only the newly added layers
- Unfreeze the model’s weights
- Train the unfrozen weights
3.5. Feature Aggregation
4. Results
4.1. Hand-Crafted Features Performance
4.2. CNN Learned Features Performance
4.3. Aggregated Features Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Badouna, I.; Koutsovitis, P.; Karkalis, C.; Laskaridis, K.; Koukouzas, N.; Tyrologou, P.; Patronis, M.; Papatrechas, C.; Petrounias, P. Petrological and Geochemical Properties of Greek Carbonate Stones, Associated with Their Physico-Mechanical and Aesthetic Characteristics. Minerals 2020, 10, 507. [Google Scholar] [CrossRef]
- Martinez-Alajarin, J.; Luis-Delgado, J.; Tomas-Balibrea, L. Automatic System for Quality-Based Classification of Marble Textures. IEEE Trans. Syst. Man Cybern. Part Appl. Rev. 2005, 35, 488–497. [Google Scholar] [CrossRef]
- Benavente, N.; Pina, P. Morphological Segmentation and Classification of Marble Textures at Macroscopical Scale. Comput. Geosci. 2009, 35, 1194–1204. [Google Scholar] [CrossRef]
- Ferreira, A.; Giraldi, G. Convolutional Neural Network Approaches to Granite Tiles Classification. Expert Syst. Appl. 2017, 84, 1–11. [Google Scholar] [CrossRef]
- López, M.; Martínez, J.; Matías, J.M.; Taboada, J.; Vilán, J.A. Functional Classification of Ornamental Stone Using Machine Learning Techniques. J. Comput. Appl. Math. 2010, 234, 1338–1345. [Google Scholar] [CrossRef] [Green Version]
- Pence, I.; Şişeci, M. Deep Learning in Marble Slabs Classification. Sci. J. Mehmet Akif Ersoy Univ. 2019, 2, 21–26. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Sidiropoulos, G.K.; Ouzounis, A.G.; Papakostas, G.A.; Sarafis, I.T.; Stamkos, A.; Solakis, G. Texture Analysis for Machine Learning Based Marble Tiles Sorting. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Virtual, 27–30 January 2021; pp. 45–51. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.; Bouwmans, T.; Frélicot, C. An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos. In Proceedings of the 10th International Conference on Computer Vision Theory and Applications, Berlin, Germany, 11–14 March 2015; pp. 395–402. [Google Scholar] [CrossRef] [Green Version]
- Ouzounis, A.; Sidiropoulos, G.; Papakostas, G.; Sarafis, I.; Stamkos, A.; Solakis, G. Interpretable Deep Learning for Marble Tiles Sorting. In Proceedings of the 2nd International Conference on Deep Learning Theory and Applications, Online, 7–9 July 2021; pp. 101–108. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Selvaraju, R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Laskaridis, M.; Patronis, M.; Papatrechas, C.; Xirokostas, N.; Filippou, S. Directory of Greek Ornamental & Structural Stones; Hellenic Survey of Geology & Mineral Exploration: Athens, Greece, 2015. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar] [CrossRef]
- Lindeberg, T. Scale Invariant Feature Transform. Scholarpedia 2012, 7, 10491. [Google Scholar] [CrossRef]
- Liao, S.; Zhao, G.; Kellokumpu, V.; Pietikainen, M.; Li, S. Modeling Pixel Process with Scale Invariant Local Patterns for Background Subtraction in Complex Scenes. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1301–1306. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Patil, H.; Mittal, A. Robust Order-Based Methods for Feature Description. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 334–341. [Google Scholar] [CrossRef]
- Wu, X.; Sun, J. An Extended Center-Symmetric Local Ternary Patterns for Image Retrieval. In Advances in Computer Science, Environment, Ecoinformatics, and Education; Lin, S., Huang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 214, pp. 359–364. [Google Scholar] [CrossRef]
- Xue, G.; Xue, G.; Song, L.; Sun, J.; Wu, M. Hybrid Center-Symmetric Local Pattern for Dynamic Background Subtraction. In Proceedings of the 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 11–15 July 2011. [Google Scholar]
- Parsi, B.; Tyagi, K.; Malwe, S. Combined Center-Symmetric Local Patterns for Image Recognition. In Information Systems Design and Intelligent Applications; Bhateja, V., Nguyen, B., Nguyen, N., Satapathy, S., Le, D.N., Eds.; Springer: Singapore, 2018; Volume 672, pp. 293–303. [Google Scholar] [CrossRef]
- Ferraz, C.; Pereira, O.; Gonzaga, A. Feature Description Based on Center-Symmetric Local Mapped Patterns. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Korea, 24–28 March 2014; pp. 39–44. [Google Scholar] [CrossRef]
- Heikkilä, M.; Pietikäinen, M.; Schmid, C. Description of Interest Regions with Center-Symmetric Local Binary Patterns. In Computer Vision, Graphics and Image Processing; Kalra, P., Peleg, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4338, pp. 58–69. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Caplier, A. Elliptical Local Binary Patterns for Face Recognition. In Computer Vision—ACCV 2012 Workshops; Park, J.I., Kim, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7728, pp. 85–96. [Google Scholar] [CrossRef]
- Ahonen, T.; Hadid, A.; Pietikäinen, M. Face Recognition with Local Binary Patterns. In Computer Vision—ECCV 2004; Pajdla, T., Matas, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3021, pp. 469–481. [Google Scholar] [CrossRef] [Green Version]
- Pietikäinen, M.; Ojala, T.; Xu, Z. Rotation-Invariant Texture Classification Using Feature Distributions. Pattern Recognit. 2000, 33, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification. In Proceedings of the International Conference on Advances in Pattern Recognition, Rio de Janeiro, Brazil, 11–14 March 2001. [Google Scholar] [CrossRef] [Green Version]
- Xue, G.; Sun, J.; Song, L. Dynamic Background Subtraction Based on Spatial Extended Center-Symmetric Local Binary Pattern. In Proceedings of the 2010 IEEE International Conference on Multimedia and Expo, Singapore, 19–23 July 2010; pp. 1050–1054. [Google Scholar] [CrossRef]
- Haralick, R. Statistical and Structural Approaches to Texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Palm, C.; Lehmann, T. Classification of Color Textures by Gabor Filtering. Mach. Graph. Vis. 2002, 11, 195–219. [Google Scholar]
- Haralick, R.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume CVPR’05, pp. 886–893. [Google Scholar] [CrossRef] [Green Version]
- Coelho, L.; Ahmed, A.; Arnold, A.; Kangas, J.; Sheikh, A.S.; Xing, E.; Cohen, W.; Murphy, R. Structured Literature Image Finder: Extracting Information from Text and Images in Biomedical Literature. In Linking Literature, Information, and Knowledge for Biology; Blaschke, C., Shatkay, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6004, pp. 23–32. [Google Scholar] [CrossRef]
- Narayanan, V.; Parsi, B. Center Symmetric Local Descriptors for Image Classification. Int. J. Nat. Comput. Res. 2018, 7, 56–70. [Google Scholar] [CrossRef] [Green Version]
- Pedro Coelho, L. Mahotas: Open Source Software for Scriptable Computer Vision. J. Open Res. Softw. 2013, 1, e3. [Google Scholar] [CrossRef]
- Kong, W.K.; Zhang, D.; Li, W. Palmprint Feature Extraction Using 2-D Gabor Filters. Pattern Recognit. 2003, 36, 2339–2347. [Google Scholar] [CrossRef]
- Wang, X.; Ding, X.; Liu, C. Gabor Filters-Based Feature Extraction for Character Recognition. Pattern Recognit. 2005, 38, 369–379. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, L.; Zhang, D. A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Trans. Image Process. 2010, 19, 1657–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Fieguth, P.; Guo, Y.; Wang, X.; Pietikäinen, M. Local Binary Features for Texture Classification: Taxonomy and Experimental Study. Pattern Recognit. 2017, 62, 135–160. [Google Scholar] [CrossRef] [Green Version]
- Meshkini, K.; Ghassemian, H. Texture Classification Using Shearlet Transform and GLCM. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1845–1850. [Google Scholar] [CrossRef]
- Sutojo, T.; Tirajani, P.S.; Ignatius Moses Setiadi, D.R.; Sari, C.A.; Rachmawanto, E.H. CBIR for Classification of Cow Types Using GLCM and Color Features Extraction. In Proceedings of the 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 1–2 November 2017; pp. 182–187. [Google Scholar] [CrossRef]
- Öztürk, Ş.; Akdemir, B. Application of Feature Extraction and Classification Methods for Histopathological Image Using GLCM, LBP, LBGLCM, GLRLM and SFTA. Procedia Comput. Sci. 2018, 132, 40–46. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv 2016, arXiv:1602.07261. [Google Scholar] [CrossRef]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q. Learning Transferable Architectures for Scalable Image Recognition. arXiv 2018, arXiv:1707.07012. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2017, arXiv:1610.02357. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Rezende, E.; Ruppert, G.; Carvalho, T.; Ramos, F.; de Geus, P. Malicious Software Classification Using Transfer Learning of ResNet-50 Deep Neural Network. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 1011–1014. [Google Scholar] [CrossRef]
- Pan, H.; Pang, Z.; Wang, Y.; Wang, Y.; Chen, L. A New Image Recognition and Classification Method Combining Transfer Learning Algorithm and MobileNet Model for Welding Defects. IEEE Access 2020, 8, 119951–119960. [Google Scholar] [CrossRef]
- Lu, T.; Han, B.; Chen, L.; Yu, F.; Xue, C. A Generic Intelligent Tomato Classification System for Practical Applications Using DenseNet-201 with Transfer Learning. Sci. Rep. 2021, 11, 15824. [Google Scholar] [CrossRef] [PubMed]
- Hosny, K.; Magdy, T.; Lashin, N.; Apostolidis, K.; Papakostas, G. Refined Color Texture Classification Using CNN and Local Binary Pattern. Math. Probl. Eng. 2021, 2021, 5567489. [Google Scholar] [CrossRef]
- Bello-Cerezo, R.; Bianconi, F.; Maria, F.; Napoletano, P.; Smeraldi, F. Comparative Evaluation of Hand-Crafted Image Descriptors vs. Off-the-shelf CNN-Based Features for Colour Texture Classification under Ideal and Realistic Conditions. Appl. Sci. 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Ouzounis, A.; Taxopoulos, G.; Papakostas, G.; Sarafis, I.; Stamkos, A.; Solakis, G. Marble Quality Assessment with Deep Learning Regression. In Proceedings of the 2021 Fifth International Conference on Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 20–22 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
Type of Descriptor | Name | |
---|---|---|
Key-point Detectors and Descriptors | Oriented FAST and rotated BRIEF (ORB) Scale Invariant Feature Transform (SIFT) | |
Local Pattern Descriptors | Local Ternary Patterns (LTP) | SILTP CSLTP CSSILTP XCSLTP |
Local Derivative Patterns (LDP) | Center-Symmetric LDP (CSLDP) Center-Symmetric Local Dritative Mapped Pattern (CSLDMP) | |
Local Mapped Patterns (LMP) | eXtended Center-Symmetric LMP (XCSLMP) Center-Symmetric LMP (CSLMP) | |
Local Binary Patterns (LBP) | eXtended Center-Symmetrical LBP (XCSLBP) Center-Symmetric LBP (CSLBP) Elliptical-LBP (ELBP) LBP-NRI Uniform LBP-ROR LBP-Uniform OLBP SCSLBP VARLBP | |
Other | Haralic Gabor GLCM Histogram of Oriented Gradients (HOG) TAS |
CNN Type | Name |
---|---|
EfficientNet | ENB6 ENB4 ENB0 |
ResNet | RN152 RN101 RN50 |
ResNetV2 | RN152V2 RN50V2 RN101V2 |
Visual Geometry Group | VGG16 VGG19 |
MobileNet | MNV2 NASMN MN |
DenseNet | DN169 DN121 DN201 |
Other | XC IV3 IRNV2 |
Descriptor | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | AUC |
---|---|---|---|---|---|
CSLBP | 58.50 | 58.32 | 58.50 | 58.40 | 0.7743 |
CSLDMP | 56.69 | 56.69 | 56.69 | 56.68 | 0.7166 |
CSLDP | 60.32 | 59.73 | 60.32 | 59.88 | 0.7541 |
CSLMP | 53.29 | 52.97 | 53.29 | 52.96 | 0.7154 |
CSLTP | 55.10 | 55.95 | 55.10 | 55.39 | 0.7336 |
CSSILTP | 58.05 | 58.05 | 58.05 | 58.05 | 0.7588 |
ELBP | 62.36 | 62.20 | 62.36 | 62.27 | 0.7813 |
Gabor | 53.52 | 54.37 | 53.52 | 52.50 | 0.7098 |
GLCM | 54.42 | 54.20 | 54.42 | 54.08 | 0.6946 |
Haralick | 64.85 | 64.47 | 64.85 | 64.47 | 0.7719 |
HOG | 47.39 | 47.58 | 47.39 | 47.08 | 0.6342 |
LBPNRIUniform | 59.64 | 59.65 | 59.64 | 59.64 | 0.7939 |
LBPROR | 48.30 | 48.65 | 48.30 | 48.42 | 0.7056 |
LBPUniform | 57.82 | 57.37 | 57.82 | 57.09 | 0.7348 |
OLBP | 60.77 | 60.52 | 60.77 | 60.62 | 0.7741 |
ORB | 40.14 | 39.09 | 40.14 | 38.42 | 0.6425 |
SCSLBP | 55.78 | 55.18 | 55.78 | 55.17 | 0.7344 |
SIFT | 47.39 | 47.52 | 47.39 | 47.43 | 0.6683 |
SILTP | 66.67 | 66.61 | 66.67 | 66.62 | 0.8315 |
TAS | 51.25 | 51.05 | 51.25 | 51.07 | 0.7048 |
VARLBP | 51.02 | 51.38 | 51.02 | 51.17 | 0.6966 |
XCSLBP | 65.53 | 65.64 | 65.53 | 65.56 | 0.8054 |
XCSLMP | 67.12 | 67.18 | 67.12 | 67.14 | 0.8314 |
XCSLTP | 55.33 | 55.80 | 55.33 | 55.23 | 0.7293 |
Model | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | AUC |
---|---|---|---|---|---|
DenseNet121 | 88.61 | 89.33 | 88.60 | 88.44 | 0.9670 |
DenseNet169 | 90.87 | 91.40 | 90.88 | 90.72 | 0.9783 |
DenseNet201 | 92.18 | 92.49 | 92.18 | 92.05 | 0.9853 |
EfficientNetB0 | 93.02 | 93.41 | 93.02 | 92.94 | 0.9846 |
EfficientNetB4 | 92.97 | 93.20 | 92.97 | 92.89 | 0.9833 |
EfficientNetB6 | 92.35 | 92.57 | 92.35 | 92.25 | 0.9823 |
InceptionResNetV2 | 90.99 | 91.28 | 90.98 | 90.88 | 0.9802 |
InceptionV3 | 84.13 | 84.65 | 84.14 | 83.86 | 0.9526 |
MobileNet | 89.23 | 89.66 | 89.23 | 89.10 | 0.9670 |
MobileNetV2 | 85.88 | 86.38 | 85.89 | 85.69 | 0.9575 |
NASNetMobile | 87.30 | 87.64 | 87.30 | 87.14 | 0.9642 |
ResNet101 | 88.15 | 88.79 | 88.16 | 87.95 | 0.9672 |
ResNet101V2 | 85.71 | 86.24 | 85.72 | 85.55 | 0.9604 |
ResNet152 | 88.94 | 89.45 | 88.95 | 88.80 | 0.9699 |
ResNet152V2 | 84.18 | 84.80 | 84.17 | 84.03 | 0.9495 |
ResNet50 | 88.95 | 89.20 | 88.95 | 88.84 | 0.9697 |
ResNet50V2 | 84.01 | 84.92 | 84.01 | 83.74 | 0.9500 |
VGG16 | 87.64 | 87.98 | 87.64 | 87.58 | 0.9618 |
VGG19 | 87.41 | 87.80 | 87.41 | 87.35 | 0.9564 |
Xception | 82.94 | 83.29 | 82.94 | 82.70 | 0.9415 |
Feature Name | CNN Name | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | AUC |
---|---|---|---|---|---|---|
CSLDP | VGG16 | 95.46 | 95.50 | 95.46 | 95.47 | 0.9940 |
Haralick | VGG16 | 95.46 | 95.50 | 95.46 | 95.47 | 0.9940 |
SIFT | VGG16 | 95.01 | 95.03 | 95.01 | 95.01 | 0.9932 |
SILTP | VGG16 | 95.01 | 95.04 | 95.01 | 95.01 | 0.9944 |
XCSLBP | VGG16 | 95.46 | 95.50 | 95.46 | 95.47 | 0.9939 |
XCSLMP | VGG16 | 95.46 | 95.48 | 95.46 | 95.47 | 0.9941 |
Feature Name | CNN Name | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | AUC |
---|---|---|---|---|---|---|
DenseNet201 | XCSLBP | 92.29 | 92.32 | 92.29 | 92.28 | 0.9804 |
EfficientNetB0 | Haralick | 89.12 | 89.18 | 89.12 | 89.11 | 0.9789 |
InceptionResNetV2 | Haralick | 91.16 | 91.18 | 91.16 | 91.17 | 0.9842 |
MobileNet | CSLDP | 92.06 | 92.14 | 92.06 | 92.05 | 0.9902 |
ResNet101V2 | SILTP | 93.20 | 93.20 | 93.20 | 93.19 | 0.9911 |
ResNet50 | SIFT | 94.10 | 94.11 | 94.10 | 94.10 | 0.9921 |
VGG16 | SILTP | 95.01 | 95.04 | 95.01 | 95.01 | 0.9944 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidiropoulos, G.K.; Ouzounis, A.G.; Papakostas, G.A.; Lampoglou, A.; Sarafis, I.T.; Stamkos, A.; Solakis, G. Hand-Crafted and Learned Feature Aggregation for Visual Marble Tiles Screening. J. Imaging 2022, 8, 191. https://doi.org/10.3390/jimaging8070191
Sidiropoulos GK, Ouzounis AG, Papakostas GA, Lampoglou A, Sarafis IT, Stamkos A, Solakis G. Hand-Crafted and Learned Feature Aggregation for Visual Marble Tiles Screening. Journal of Imaging. 2022; 8(7):191. https://doi.org/10.3390/jimaging8070191
Chicago/Turabian StyleSidiropoulos, George K., Athanasios G. Ouzounis, George A. Papakostas, Anastasia Lampoglou, Ilias T. Sarafis, Andreas Stamkos, and George Solakis. 2022. "Hand-Crafted and Learned Feature Aggregation for Visual Marble Tiles Screening" Journal of Imaging 8, no. 7: 191. https://doi.org/10.3390/jimaging8070191
APA StyleSidiropoulos, G. K., Ouzounis, A. G., Papakostas, G. A., Lampoglou, A., Sarafis, I. T., Stamkos, A., & Solakis, G. (2022). Hand-Crafted and Learned Feature Aggregation for Visual Marble Tiles Screening. Journal of Imaging, 8(7), 191. https://doi.org/10.3390/jimaging8070191