Segmentation of Pancreatic Subregions in Computed Tomography Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Anatomy-Guided Subregional Segmentation
2.2.1. Anatomy of the Pancreatic Subregions
2.2.2. Bayesian Model for Soft Labels
2.2.3. U-Net Model for Segmentation
3. Experimental Setup and Implementation
3.1. Data Preparation and Evaluation Criteria
3.2. Model Training
3.3. Model Testing
4. Results and Discussion
Limitation and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hezel, A.F.; Kimmelman, A.C.; Stanger, B.Z.; Bardeesy, N.; DePinho, R.A. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006, 20, 1218–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhim, A.D.; Stanger, B.Z. Molecular Biology of Pancreatic Ductal Adenocarcinoma Progression: Aberrant activation of developmental pathways. Prog. Mol. Biol. Transl. Sci. 2010, 97, 41–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, T.A.; Javed, S.; Sarmadi, T.; Pandol, S.J.; Li, D. Artificial intelligence and imaging for risk prediction of pancreatic cancer: A narrative review. Chin. Clin. Oncol. 2022, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, T.A.; Gaddam, S.; Wachsman, A.M.; Wang, L.; Azab, L.; Asadpour, V.; Chen, W.; Xie, Y.; Wu, B.; Pandol, S.J.; et al. Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images. Cancer Biomark. 2022, 33, 211–217. [Google Scholar] [CrossRef]
- Ling, Q.; Xu, X.; Zheng, S.-S.; Kalthoff, H. The diversity between pancreatic head and body/tail cancers: Clinical parameters and in vitro models. Hepatobiliary Pancreat. Dis. Int. 2013, 12, 480–487. [Google Scholar] [CrossRef]
- Birnbaum, D.J.; Bertucci, F.; Finetti, P.; Birnbaum, D.; Mamessier, E. Head and Body/Tail Pancreatic Carcinomas Are Not the Same Tumors. Cancers 2019, 11, 497. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Feng, S.; Wang, Q.; Huang, H.; Chen, R.; Xie, Q.; Zhang, W.; Wang, A.; Zhang, S.; Wang, L.; et al. Comparative genomic analysis of head and body/tail of pancreatic ductal adenocarcinoma at early and late stages. J. Cell. Mol. Med. 2021, 25, 1750–1758. [Google Scholar] [CrossRef]
- Mackay, T.M.; Van Erning, F.N.; Van Der Geest, L.G.; De Groot, J.W.B.; Mohammad, N.H.; Lemmens, V.E.; Van Laarhoven, H.W.; Besselink, M.G.; Wilmink, J.W.; for the Dutch Pancreatic Cancer Group. Association between primary origin (head, body and tail) of metastasised pancreatic ductal adenocarcinoma and oncologic outcome: A population-based analysis. Eur. J. Cancer 2019, 106, 99–105. [Google Scholar] [CrossRef]
- Luo, G.; Jin, K.; Cheng, H.; Guo, M.; Gong, Y.; Fan, Z.; Yang, C.; Huang, Q.; Ni, Q.; Liu, C.; et al. Prognosis of distal pancreatic cancers controlled by stage. Exp. Ther. Med. 2020, 20, 1091–1097. [Google Scholar] [CrossRef]
- Tomasello, G.; Ghidini, M.; Costanzo, A.; Ghidini, A.; Russo, A.; Barni, S.; Passalacqua, R.; Petrelli, F. Outcome of head compared to body and tail pancreatic cancer: A systematic review and meta-analysis of 93 studies. J. Gastrointest. Oncol. 2019, 10, 259–269. [Google Scholar] [CrossRef]
- Miura, F.; Takada, T.; Amano, H.; Yoshida, M.; Furui, S.; Takeshita, K. Diagnosis of pancreatic cancer. HPB 2006, 8, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.H.; Lee, J.M.; Cho, J.Y.; Lee, K.B.; Kim, J.E.; Moon, S.K.; Kim, S.J.; Baek, J.H.; Kim, S.H.; Kim, S.H.; et al. Small (≤20 mm) Pancreatic Adenocarcinomas: Analysis of Enhancement Patterns and Secondary Signs with Multiphasic Multidetector CT. Radiology 2011, 259, 442–452. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.S.; Choi, G.C.; Jou, S.S. Pancreas Ductal Adenocarcinoma and its Mimics: Review of Cross-sectional Imaging Findings for Differential Diagnosis. J. Belg. Soc. Radiol. 2018, 102, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.; Xiang, D.; Bian, Y.; Lu, J.; Jiang, H.; Zheng, J. Automatic pancreas segmentation in abdominal CT image with contrast enhancement block. Proc. SPIE 2021, 11596, 115961B. [Google Scholar] [CrossRef]
- Kumar, H.; DeSouza, S.V.; Petrov, M.S. Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review. Comput. Methods Programs Biomed. 2019, 178, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, S.; Holger, R.R.; Dong, Y.; Daguang, X.; Masahiro, O.; Kazunari, M.; Chen, P.T.; Liu, K.L.; Liao, W.-C.; et al. Automated pancreas segmentation using multi-institutional collaborative deep learning. In Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Springer: Cham, Switzerland, 2020; pp. 192–200. [Google Scholar] [CrossRef]
- Bagur, A.T.; Aljabar, P.; Ridgway, G.R.; Brady, M.; Bulte, D.P. Pancreas MRI Segmentation Into Head, Body, and Tail Enables Regional Quantitative Analysis of Heterogeneous Disease. J. Magn. Reson. Imaging, 2022; ahead of print. [Google Scholar] [CrossRef]
- Aldoj, N.; Biavati, F.; Michallek, F.; Stober, S.; Dewey, M. Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Han, X.; Wu, X.; Wang, S.; Xu, L.; Xu, H.; Zheng, D.; Yu, N.; Hong, Y.; Yu, Z.; Yang, D.; et al. Automated segmentation of liver segment on portal venous phase MR images using a 3D convolutional neural network. Insights Imaging 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Korfiatis, P.; Denic, A.; Edwards, M.E.; Gregory, A.V.; Wright, D.E.; Mullan, A.; Augustine, J.; Rule, A.D.; Kline, T.L. Automated Segmentation of Kidney Cortex and Medulla in CT Images: A Multisite Evaluation Study. J. Am. Soc. Nephrol. 2022, 33, 420–430. [Google Scholar] [CrossRef]
- Liu, L.; Wolterink, J.M.; Brune, C.; Veldhuis, R.N.J. Anatomy-aided deep learning for medical image segmentation: A review. Phys. Med. Biol. 2021, 66, 11TR01. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar]
- Roth, H.R.; Farag, A.; Turkbey, E.B.; Lu, L.; Lui, J.; Summers, R.M. Data from Pancreas-CT. Cancer Imaging Arch. 2016, 9349, 556–564. [Google Scholar]
- Talathi, S.S.; Zimmerman, R.; Young, M. Anatomy, Abdomen and Pelvis, Pancreas; StatPearls Publishing: Tampa, FL, USA, 2021. [Google Scholar]
- Kreel, L.; Haertel, M.; Katz, D. Computed Tomography of the Normal Pancreas. J. Comput. Assist. Tomogr. 1977, 1, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, T.A.; Lynch, C.; Azab, L.; Xie, Y.; Gaddam, S.; Pandol, S.J.; Li, D. Morphology-guided deep learning framework for segmentation of pancreas in computed tomography images. J. Med. Imaging 2022, 9, 024002. [Google Scholar] [CrossRef] [PubMed]
- Kleeff, J.; Diener, M.K.; Z’Graggen, K.; Hinz, U.; Wagner, M.; Bachmann, J.; Zehetner, J.; Müller, M.W.; Friess, H.; Büchler, M.W. Distal Pancreatectomy: Risk factors for surgical failure in 302 consecutive cases. Ann. Surg. 2007, 245, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Changazi, S.H.; Ahmed, Q.A.; Bhatti, S.; Siddique, S.; Raffay, E.A.; Farooka, M.W.; Ayyaz, M. Whipple Procedure: A Five-Year Clinical Experience in Tertiary Care Center. Cureus 2020, 12, e11466. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, T.A.; Wang, L.; Gaddam, S.; Wang, N.; Deng, Z.; Lo, S.A.; Hendifar, A.; Fan, Z.; Pandol, S.; Li, D. Radiomics of Magnetic Resonance Imaging of Pancreas-Towards Improved Diagnosis and Management of Pancreatic Cancer. In Proceedings of the 27th Annual Meeting and Exhibition by International Society for Magnetic Resonance in Medicine, Montreal, QC, Canada, 11–16 May 2019. [Google Scholar]
Data | Model | Head | Body | Tail | Overall |
---|---|---|---|---|---|
NIH | U-Net | 88.8 ± 0.5 | 86.9 ± 1.4 | 86.5 ± 1.3 | 87.5 |
Proposed | 96.1 ± 1.1 | 93.8 ± 1.0 | 92.9 ± 1.1 | 94.5 | |
D1 | U-Net | 86.9 ± 0.6 | 86.5 ± 0.8 | 88.5 ± 0.4 | 87.2 |
Proposed | 97.0 ± 0.8 | 95.0 ± 1.2 | 94.3 ± 0.2 | 95.6 | |
D2 | U-Net | 80.8 ± 1.2 | 81.3 ± 1.1 | 82.5 ± 1.0 | 81.6 |
Proposed | 89.3 ± 1.5 | 90.1 ± 0.3 | 90.6 ± 0.4 | 89.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, S.; Qureshi, T.A.; Deng, Z.; Wachsman, A.; Raphael, Y.; Gaddam, S.; Xie, Y.; Pandol, S.J.; Li, D. Segmentation of Pancreatic Subregions in Computed Tomography Images. J. Imaging 2022, 8, 195. https://doi.org/10.3390/jimaging8070195
Javed S, Qureshi TA, Deng Z, Wachsman A, Raphael Y, Gaddam S, Xie Y, Pandol SJ, Li D. Segmentation of Pancreatic Subregions in Computed Tomography Images. Journal of Imaging. 2022; 8(7):195. https://doi.org/10.3390/jimaging8070195
Chicago/Turabian StyleJaved, Sehrish, Touseef Ahmad Qureshi, Zengtian Deng, Ashley Wachsman, Yaniv Raphael, Srinivas Gaddam, Yibin Xie, Stephen Jacob Pandol, and Debiao Li. 2022. "Segmentation of Pancreatic Subregions in Computed Tomography Images" Journal of Imaging 8, no. 7: 195. https://doi.org/10.3390/jimaging8070195
APA StyleJaved, S., Qureshi, T. A., Deng, Z., Wachsman, A., Raphael, Y., Gaddam, S., Xie, Y., Pandol, S. J., & Li, D. (2022). Segmentation of Pancreatic Subregions in Computed Tomography Images. Journal of Imaging, 8(7), 195. https://doi.org/10.3390/jimaging8070195