Fast Compressed Sensing of 3D Radial T1 Mapping with Different Sparse and Low-Rank Models
Abstract
:1. Introduction
2. Theory
2.1. Total Variation Model (sTV + cTV)
2.2. Huber Model (sH + cH)
2.3. Locally Low-Rank Model (LLR)
2.4. Spatial Total Variation and Locally Low-Rank Model (sTV + LLR)
2.5. Primal-Dual Proximal Splitting Algorithm
Algorithm 1. Primal-dual proximal splitting. |
Choose and such that |
while not converged do |
end while |
Algorithm 2. Preconditioned primal-dual proximal splitting for least squares. |
Choose and such that |
while not converged do |
end while |
2.6. Variable Flip Angle Acquisition
3. Methods
3.1. Ex Vivo Multi-Band-SWIFT Acquisition
3.2. Simulated Phantom
3.3. Error Metrics
3.4. Computation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1. Preconditioned primal-dual proximal splitting for the TV model of Equation (4). |
Choose and such that |
while not converged do |
end while |
Algorithm A2. Preconditioned primal-dual proximal splitting for the Huber model of Equation (6). |
Choose and such that |
while not converged do |
end while |
Algorithm A3. Preconditioned primal-dual proximal splitting for the locally low-rank model of Equation (7). |
while not converged do |
end while |
Algorithm A4. Preconditioned primal-dual proximal splitting for the spatial total variation combined with locally low-rank model of Equation (8). |
while not converged do |
end while |
References
- Donoho, D.L. Compressed Sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging. Magn. Reson. Med. 2007, 58, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Lustig, M.; Donoho, D. Compressed Sensing MRI. IEEE Signal Process Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Huang, C.; Graff, C.G.; Clarkson, E.W.; Bilgin, A.; Altbach, M.I. T2 Mapping from Highly Undersampled Data by Reconstruction of Principal Component Coefficient Maps Using Compressed Sensing. Magn. Reson. Med. 2012, 67, 1355–1366. [Google Scholar] [CrossRef] [Green Version]
- Doneva, M.; Börnert, P.; Eggers, H.; Stehning, C.; Sénégas, J.; Mertins, A. Compressed Sensing Reconstruction for Magnetic Resonance Parameter Mapping. Magn. Reson. Med. 2010, 64, 1114–1120. [Google Scholar] [CrossRef]
- Velikina, J.V.; Alexander, A.L.; Samsonov, A. Accelerating MR Parameter Mapping Using Sparsity-Promoting Regularization in Parametric Dimension. Magn. Reson. Med. 2013, 70, 1263–1273. [Google Scholar] [CrossRef] [Green Version]
- Tamir, J.I.; Ong, F.; Anand, S.; Karasan, E.; Wang, K.; Lustig, M. Computational MRI with Physics-Based Constraints: Application to Multicontrast and Quantitative Imaging. IEEE Signal Process Mag. 2020, 37, 94–104. [Google Scholar] [CrossRef]
- Zhang, T.; Pauly, J.M.; Levesque, I.R. Accelerating Parameter Mapping with a Locally Low Rank Constraint. Magn. Reson. Med. 2015, 73, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Hanhela, M.; Paajanen, A.; Nissi, M.J.; Kolehmainen, V. Embedded Quantitative MRI T1ρ Mapping Using Non-Linear Primal-Dual Proximal Splitting. J. Imaging 2022, 8, 157. [Google Scholar] [CrossRef]
- Lazarus, C.; Weiss, P.; El Gueddari, L.; Mauconduit, F.; Massire, A.; Ripart, M.; Vignaud, A.; Ciuciu, P. 3D Variable-Density SPARKLING Trajectories for High-Resolution T2*-Weighted Magnetic Resonance Imaging. NMR Biomed. 2020, 33, e4349. [Google Scholar] [CrossRef]
- Fessler, J.A.; Sutton, B.P. Nonuniform Fast Fourier Transforms Using Min-Max Interpolation. IEEE Trans. Signal Process. 2003, 51, 560–574. [Google Scholar] [CrossRef] [Green Version]
- Ong, F.; Uecker, M.; Lustig, M. Accelerating Non-Cartesian MRI Reconstruction Convergence Using k-Space Preconditioning. IEEE Trans. Med. Imaging 2020, 39, 1646–1654. [Google Scholar] [CrossRef]
- Alamidi, D.F.; Smailagic, A.; Bidar, A.W.; Parker, N.S.; Olsson, M.; Hockings, P.D.; Lagerstrand, K.M.; Olsson, L.E. Variable Flip Angle 3D Ultrashort Echo Time (UTE) T1 Mapping of Mouse Lung: A Repeatability Assessment. J. Magn. Reson. Imaging 2018, 48, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Everett, R.J.; Stirrat, C.G.; Semple, S.I.R.; Newby, D.E.; Dweck, M.R.; Mirsadraee, S. Assessment of Myocardial Fibrosis with T1 Mapping MRI. Clin. Radiol. 2016, 71, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Armstrong, T.; Li, X.; Wu, H.H. A Variable Flip Angle Golden-Angle-Ordered 3D Stack-of-Radial MRI Technique for Simultaneous Proton Resonant Frequency Shift and T1-Based Thermometry. Magn. Reson. Med. 2019, 82, 2062–2076. [Google Scholar] [CrossRef]
- Tamada, D.; Wakayama, T.; Onishi, H.; Motosugi, U. Multiparameter Estimation Using Multi-Echo Spoiled Gradient Echo with Variable Flip Angles and Multicontrast Compressed Sensing. Magn. Reson. Med. 2018, 80, 1546–1555. [Google Scholar] [CrossRef]
- Chambolle, A.; Pock, T. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. J. Math. Imaging Vis. 2011, 40, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Pock, T.; Chambolle, A. Diagonal Preconditioning for First Order Primal-Dual Algorithms in Convex Optimization. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1762–1769. [Google Scholar]
- Sidky, E.Y.; Jorgensen, J.H.; Pan, X. Convex Optimization Problem Prototyping for Image Reconstruction in Computed Tomography with the ChambollePock Algorithm. Phys. Med. Biol. 2012, 57, 3065–3091. [Google Scholar] [CrossRef]
- Hanhela, M.; Kettunen, M.; Gröhn, O.; Vauhkonen, M.; Kolehmainen, V. Temporal Huber Regularization for DCE-MRI. J. Math. Imaging Vis. 2020, 62, 1334–1346. [Google Scholar] [CrossRef]
- Trzasko, J.; Manduca, A. Local versus Global Low-Rank Promotion in Dynamic MRI Series Reconstruction. In Proceedings of the 19th Annual Meeting of ISMRM, Montreal, QC, Canada, 29 April 2011; p. 4371. [Google Scholar]
- Zhang, T.; Cheng, J.Y.; Potnick, A.G.; Barth, R.A.; Alley, M.T.; Uecker, M.; Lustig, M.; Pauly, J.M.; Vasanawala, S.S. Fast Pediatric 3D Free-Breathing Abdominal Dynamic Contrast Enhanced MRI with High Spatiotemporal Resolution. J. Magn. Reson. Imaging 2015, 41, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.J.; Recht, B.; Todd Candès, M.E.; Recht, B. Exact Matrix Completion via Convex Optimization. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef] [Green Version]
- Tamir, J.I.; Uecker, M.; Chen, W.; Lai, P.; Alley, M.T.; Vasanawala, S.S.; Lustig, M. T2 Shuffling: Sharp, Multicontrast, Volumetric Fast Spin-Echo Imaging. Magn. Reson. Med. 2017, 77, 180–195. [Google Scholar] [CrossRef] [Green Version]
- Lingala, S.G.; Hu, Y.; Dibella, E.; Jacob, M. Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure: K-t SLR. IEEE Trans. Med. Imaging 2011, 30, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Haldar, J.P.; Christodoulou, A.G.; Liang, Z.P. Image Reconstruction from Highly under Sampled (k, t)-Space Data with Joint Partial Separability and Sparsity Constraints. IEEE Trans. Med. Imaging 2012, 31, 1809–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L. 4D Golden-Angle Radial MRI at Subsecond Temporal Resolution. NMR Biomed. 2023, 36, e4844. [Google Scholar] [CrossRef]
- Wang, H.Z.; Riederer, S.J.; Lee, J.N. Optimizing the Precision in T1 Relaxation Estimation Using Limited Flip Angles. Magn. Reson. Med. 1987, 5, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Deoni, S.C.L.; Peters, T.M.; Rutt, B.K. Determination of Optimal Angles for Variable Nutation Proton Magnetic Spin-Lattice, T1, and Spin-Spin, T2, Relaxation Times Measurement. Magn. Reson. Med. 2004, 51, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Corum, C.A.; Idiyatullin, D.; Garwood, M.; Zhao, Q. T1 Estimation for Aqueous Iron Oxide Nanoparticle Suspensions Using a Variable Flip Angle SWIFT Sequence. Magn. Reson. Med. 2013, 70, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K. A New Look at the Method of Variable Nutation Angle for the Measurement of Spin-Lattice Relaxation Times Using Fourier Transform NMR. J. Magn. Reson. 1977, 25, 231–235. [Google Scholar] [CrossRef]
- Idiyatullin, D.; Corum, C.A.; Garwood, M. Multi-Band-SWIFT. J. Magn. Reson. 2015, 251, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hänninen, N.E.; Liimatainen, T.; Hanni, M.; Gröhn, O.; Nieminen, M.T.; Nissi, M.J. Relaxation Anisotropy of Quantitative MRI Parameters in Biological Tissues. Sci. Rep. 2022, 12, 12155. [Google Scholar] [CrossRef] [PubMed]
- Schabel, M. 3D Shepp-Logan Phantom. Available online: https://www.mathworks.com/matlabcentral/fileexchange/9416-3d-shepp-logan-phantom (accessed on 1 October 2022).
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Zibetti, M.V.W.; Sharafi, A.; Otazo, R.; Regatte, R.R. Accelerated Mono- and Biexponential 3D-T1ρ Relaxation Mapping of Knee Cartilage Using Golden Angle Radial Acquisitions and Compressed Sensing. Magn. Reson. Med. 2019, 83, 1291–1309. [Google Scholar] [CrossRef] [PubMed]
- Knoll, F.; Bredies, K.; Pock, T.; Stollberger, R. Second Order Total Generalized Variation (TGV) for MRI. Magn. Reson. Med. 2011, 65, 480–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela-Mattatall, G.; Baron, C.A.; Menon, R.S. Automatic Determination of the Regularization Weighting for Wavelet-Based Compressed Sensing MRI Reconstructions. Magn. Reson. Med. 2021, 86, 1403–1419. [Google Scholar] [CrossRef] [PubMed]
- Hanhela, M.; Gröhn, O.; Kettunen, M.; Niinimäki, K.; Vauhkonen, M.; Kolehmainen, V. Data-Driven Regularization Parameter Selection in Dynamic MRI. J. Imaging 2021, 7, 38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paajanen, A.; Hanhela, M.; Hänninen, N.; Nykänen, O.; Kolehmainen, V.; Nissi, M.J. Fast Compressed Sensing of 3D Radial T1 Mapping with Different Sparse and Low-Rank Models. J. Imaging 2023, 9, 151. https://doi.org/10.3390/jimaging9080151
Paajanen A, Hanhela M, Hänninen N, Nykänen O, Kolehmainen V, Nissi MJ. Fast Compressed Sensing of 3D Radial T1 Mapping with Different Sparse and Low-Rank Models. Journal of Imaging. 2023; 9(8):151. https://doi.org/10.3390/jimaging9080151
Chicago/Turabian StylePaajanen, Antti, Matti Hanhela, Nina Hänninen, Olli Nykänen, Ville Kolehmainen, and Mikko J. Nissi. 2023. "Fast Compressed Sensing of 3D Radial T1 Mapping with Different Sparse and Low-Rank Models" Journal of Imaging 9, no. 8: 151. https://doi.org/10.3390/jimaging9080151
APA StylePaajanen, A., Hanhela, M., Hänninen, N., Nykänen, O., Kolehmainen, V., & Nissi, M. J. (2023). Fast Compressed Sensing of 3D Radial T1 Mapping with Different Sparse and Low-Rank Models. Journal of Imaging, 9(8), 151. https://doi.org/10.3390/jimaging9080151