Mantises Jump from Smooth Surfaces by Pushing with “Heel” Pads of Their Hind Legs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effect of Normal Force on Adhesive Pad Contact Area
2.2. High-Speed Contact-Area Recordings of Jumps
3. Results
3.1. Morphology
3.2. Load Dependence of Heel Pads
3.3. Kinematics and Tarsal Contact During Take-Off
4. Discussion
4.1. Division of Labour Between Attachment Pads During the Acceleration Phase of Jumps
4.2. Contribution of Middle and Hind Legs to the Jump
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walcher, F.; Kral, K. Visual deprivation and distance estimation in the praying mantis larva. Physiol. Entomol. 1994, 19, 230–240. [Google Scholar] [CrossRef]
- Burrows, M.; Cullen, D.A.; Dorosenko, M.; Sutton, G.P. Mantises exchange angular momentum between three rotating body parts to jump precisely to targets. Curr. Biol. 2015, 25, 786–789. [Google Scholar] [CrossRef] [PubMed]
- Sutton, G.P.; Doroshenko, M.; Cullen, D.A.; Burrows, M. Take-off speed in jumping mantises depends on body size and a power-limited mechanism. J. Exp. Biol. 2016, 219, 2127–2136. [Google Scholar] [CrossRef]
- Dai, Z.; Gorb, S.N.; Schwarz, U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 2002, 205, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Clemente, C.J.; Goetzke, H.H.; Bullock, J.M.R.; Sutton, G.P.; Burrows, M.; Federle, W. Jumping without slipping: Leafhoppers (Hemiptera: Cicadellidae) possess special tarsal structures for jumping from smooth surfaces. J. R. Soc. Interface 2017, 14, 20170022. [Google Scholar] [CrossRef]
- Goetzke, H.H.; Pattrick, J.G.; Federle, W. Froghoppers jump from smooth plant surfaces by piercing them with sharp spines. Proc. Natl. Acad. Sci. USA 2019, 116, 3012–3017. [Google Scholar] [CrossRef]
- Bullock, J.M.R.; Federle, W. Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: Effective elastic modulus and attachment performance. J. Exp. Biol. 2009, 212, 1876–1888. [Google Scholar] [CrossRef] [PubMed]
- Labonte, D.; Federle, W. Functionally different pads on the same foot allow control of attachment: Stick insects have load-sensitive “heel” pads for friction and shear-sensitive “toe” pads for adhesion. PLoS ONE 2013, 8, e81943. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, C.; Henze, M.J.; Nørgaard, T.; Gorb, S.N. Two functional types of attachment pads on a single foot in the Namibia bush cricket Acanthoproctus diadematus (Orthoptera: Tettigoniidae). Proc. R. Soc. B 2015, 282, 20142976. [Google Scholar] [CrossRef] [PubMed]
- Clemente, C.J.; Federle, W. Pushing versus pulling: Division of labour between tarsal attachment pads in cockroaches. Proc. R. Soc. B 2008, 275, 1329–1336. [Google Scholar] [CrossRef]
- Labonte, D.; Williams, J.A.; Federle, W. Surface contact and design of fibrillar ‘friction pads’ in stick insects (Carausius morosus): Mechanisms for large friction coefficients and negligible adhesion. J. R. Soc. Interface 2014, 11, 20140034. [Google Scholar] [CrossRef]
- Clemente, C.J.; Dirks, J.-H.; Barbero, D.R.; Steiner, U.; Federle, W. Friction ridges in cockroach climbing pads: Anisotropy of shear stress measured on transparent, microstructured substrates. J. Comp. Physiol. A 2009, 195, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Beutel, R.G.; Gorb, S.N. Ultrastructure of attachment specializations of hexapods (Arthropoda): Evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 2001, 39, 177–207. [Google Scholar] [CrossRef]
- Beutel, R.G.; Gorb, S.N. A revised interpretation of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthrop. Syst. Phyl. 2006, 64, 3–25. [Google Scholar] [CrossRef]
- Gorb, S.; Jiao, Y.; Scherge, M. Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J. Comp. Physiol. A 2000, 186, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Büscher, T.H.; Gorb, S.N. Complementary effect of attachment devices in stick insects (Phasmatodea). J. Exp. Biol. 2019, 222, jeb209833. [Google Scholar] [CrossRef] [PubMed]
- Niederegger, S.; Gorb, S. Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J. Insect Physiol. 2003, 49, 611–620. [Google Scholar] [CrossRef]
- Bullock, J.; Drechsler, P.; Federle, W. Comparison of smooth and hairy attachment pads in insects: Friction, adhesion and mechanisms for direction-dependence. J. Exp. Biol. 2008, 211, 3333–3343. [Google Scholar] [CrossRef] [PubMed]
- Burrows, M. Jumping performance of froghopper insects. J. Exp. Biol. 2006, 209, 4607–4621. [Google Scholar] [CrossRef] [PubMed]
- Burrows, M. Jumping performance of planthoppers (Hemiptera, Issidae). J. Exp. Biol. 2009, 212, 2844–2855. [Google Scholar] [CrossRef]
- Burrows, M. Jumping mechanisms in dictyopharid planthoppers (Hemiptera, Dicytyopharidae). J. Exp. Biol. 2014, 217, 402. [Google Scholar] [CrossRef] [PubMed]
- Tautz, J.; Hölldobler, B.; Danker, T. The ants that jump: Different techniques to take off. Zoology 1994, 98, 1–6. [Google Scholar]
- Baroni-Urbani, C.; Boyan, G.S.; Blarer, A.; Billen, J.; Musthak Ali, T.M. A novel mechanism for jumping in the indian ant Harpegnathos saltator (Jerdon) (Formicidae, Ponerinae). Experientia 1994, 50, 63–71. [Google Scholar] [CrossRef]
- Burrows, M. Jumping mechanisms and performance of snow fleas (Mecoptera, Boreidae). J. Exp. Biol. 2011, 214, 2362–2374. [Google Scholar] [CrossRef]
- Burrows, M. Jumping from the surface of water by the long-legged fly Hydrophorus (Diptera, Dolichopodidae). J. Exp. Biol. 2013, 216, 1973–1981. [Google Scholar] [CrossRef] [PubMed]
- Burrows, M.; Dorosenko, M. Jumping mechanisms in lacewings (Neuroptera, Chrysopidae and Hemerobiidae). J. Exp. Biol. 2014, 217, 4252–4261. [Google Scholar] [CrossRef] [PubMed]
- Burrows, M.; Morris, O. Jumping in a winged stick insect. J. Exp. Biol. 2002, 205, 2399–2412. [Google Scholar] [CrossRef] [PubMed]
- Burrows, M.; Dorosenko, M. Jumping mechanisms and strategies in moths (Lepidoptera). J. Exp. Biol. 2015, 218, 1655. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.S.; Yang, E.; Jung, G.P.; Jung, S.P.; Son, J.H.; Lee, S.I.; Jablonski, P.G.; Wood, R.J.; Kim, H.Y.; Cho, K.J. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects. Science 2015, 349, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Goetzke, H.-H.; Federle, W. Role of legs and foot adhesion in salticid spiders jumping from smooth surfaces. J. Comp. Physiol. A 2021, 207, 165–177. [Google Scholar] [CrossRef]
- Parry, D.A.; Brown, R.H.J. The jumping mechanism of Salticid spiders. J. Exp. Biol. 1959, 36, 654–664. [Google Scholar] [CrossRef]
- Weihmann, T.; Karner, M.; Full, R.; Blickhan, R. Jumping kinematics in the wandering spider Cupiennius salei. J. Comp. Physiol. A 2010, 196, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, M. Untersuchungen über Formen aktiver Lokomotion bei Spinnen. Zool. Jb. Syst. 1939, 72, 373–499. [Google Scholar]
- Sutton, G.; Burrows, M. The mechanics of elevation control in locust jumping. J. Comp. Physiol. A 2008, 194, 557–563. [Google Scholar] [CrossRef]
- Sutton, G.P.; Burrows, M. The mechanics of azimuth control in jumping by froghopper insects. J. Exp. Biol. 2010, 213, 1406–1416. [Google Scholar] [CrossRef]
- Sutton, G.P.; Mendoza, E.; Azizi, E.; Longo, S.J.; Olberding, J.P.; Ilton, M.; Patek, S.N. Why do large animals never actuate their jumps with latch-mediated springs? Because they can jump higher without them. Integr. Comp. Biol. 2019, 59, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Burrows, M. Kinematics of jumping in leafhopper insects (Hemiptera, Auchenorrhyncha, Cicadellidae). J. Exp. Biol. 2007, 210, 3579–3589. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goetzke, H.H.; Burrows, M.; Federle, W. Mantises Jump from Smooth Surfaces by Pushing with “Heel” Pads of Their Hind Legs. Biomimetics 2025, 10, 69. https://doi.org/10.3390/biomimetics10020069
Goetzke HH, Burrows M, Federle W. Mantises Jump from Smooth Surfaces by Pushing with “Heel” Pads of Their Hind Legs. Biomimetics. 2025; 10(2):69. https://doi.org/10.3390/biomimetics10020069
Chicago/Turabian StyleGoetzke, Hanns Hagen, Malcolm Burrows, and Walter Federle. 2025. "Mantises Jump from Smooth Surfaces by Pushing with “Heel” Pads of Their Hind Legs" Biomimetics 10, no. 2: 69. https://doi.org/10.3390/biomimetics10020069
APA StyleGoetzke, H. H., Burrows, M., & Federle, W. (2025). Mantises Jump from Smooth Surfaces by Pushing with “Heel” Pads of Their Hind Legs. Biomimetics, 10(2), 69. https://doi.org/10.3390/biomimetics10020069