A 3D Face Recognition Algorithm Directly Applied to Point Clouds
Abstract
:1. Introduction
- (1)
- Deep learning methods mostly rely on data, necessitating large-scale training datasets for optimal outcomes. However, the largest available 3D face dataset currently contains only tens of thousands of training images, paling in comparison to the nearly one million images in 2D face recognition datasets like ArcFace [7], MS-Celeb-1M [8], and FaceNet [9].
- (2)
- Developing effective network models is the foundation of deep learning methods. Existing models often operate on 2D images, neglecting the characteristics of 3D data. Point clouds, often representing 3D face data, exhibit rich geometric information and an unstructured data format. While some researchers have endeavored to employ existing deep learning networks directly on point cloud data [10,11,12,13,14,15], the efficacy of such models has primarily been demonstrated on rigid objects like chairs and tables. The uncertainties associated with face data, stemming from its unique expression and posture changes, pose significant challenges for feature extraction. This complexity underscores the need for specific deep learning network models when applied to 3D face point cloud data.
- (1)
- To diversify the training data for 3D face recognition, encompassing various identities, expressions, and poses, we introduce a data-enhanced learning framework guided by a Gaussian Process Morphable Model (GPMM). This framework enables effective network training, even with a limited amount of real data.
- (2)
- We propose a dual-branch network structure based on KPConv, adding a local neighborhood adaptive feature learning module designed for direct facial feature extraction from point clouds.
- (3)
- We conduct extensive experiments on established 3D face recognition benchmarks. The results show the competitiveness of our 3D face recognition method and its efficacy in addressing challenging face identification tasks in 3D space.
2. Related Work
2.1. On 3D Face Recognition
2.2. Deep Learning on Point Clouds
2.3. On 3D Face Generation
3. Method
3.1. Generation of 3D Face Data
3.2. Network Architecture
3.2.1. KPConv-Based Dual-Branch Network Structure
3.2.2. Adaptive Feature Learning Module for Local Neighborhood
3.3. Loss Function
3.4. Implementation Details
4. Experiments
4.1. Datasets
4.2. Data Preprocessing
4.3. Ablation Study
4.3.1. Effectiveness of the Local Neighborhood Feature Learning Module (AFL)
4.3.2. Effectiveness of the Dual-Branch Network Structure
4.3.3. Effectiveness of the 3DRecNet Network Architecture
4.3.4. Effectiveness of the Real-Data-Guided Generation
4.3.5. Effectiveness of the Training Data Volume
4.4. Comparison with Other Methods
4.4.1. Results on FRGC v2.0
4.4.2. Results on Bosphorus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chadha, A.R.; Vaidya, P.P.; Roja, M.M. Face recognition using discrete cosine transform for global and local features. In Proceedings of the 2011 International Conference on Recent Advancements in Electrical, Electronics and Control Engineering, Sivakasi, India, 15–17 December 2011; pp. 502–505. [Google Scholar] [CrossRef]
- Akhtar, Z.; Rattani, A. A Face in any Form: New Challenges and Opportunities for Face Recognition Technology. Computer 2017, 50, 80–90. [Google Scholar] [CrossRef]
- Zhalehpour, S.; Akhtar, Z.; Eroglu Erdem, C. Multimodal emotion recognition with automatic peak frame selection. In Proceedings of the 2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings, Alberobello, Italy, 23–25 June 2014; pp. 116–121. [Google Scholar] [CrossRef]
- Turk, M.; Pentland, A. Face recognition using eigenfaces. In Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI, USA, 3–6 June 1991; pp. 586–591. [Google Scholar] [CrossRef]
- Belhumeur, P.; Hespanha, J.; Kriegman, D. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720. [Google Scholar] [CrossRef]
- Ahonen, T.; Hadid, A.; Pietikäinen, M. Face Recognition with Local Binary Patterns. In Proceedings of the Computer Vision-ECCV 2004, Prague, Czech Republic, 11–14 May 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 469–481. [Google Scholar]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4685–4694. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. MS-celeb-1M: A dataset and benchmark for large-scale face recognition. In Proceedings of the Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 87–102. [Google Scholar] [CrossRef]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar] [CrossRef]
- Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6410–6419. [Google Scholar] [CrossRef]
- Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 5100–5109. [Google Scholar]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution on X-transformed points. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 820–830. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph Cnn for learning on point clouds. ACM Trans. Graph. 2019, 38, 146. [Google Scholar] [CrossRef]
- Liu, J.; Ni, B.; Li, C.; Yang, J.; Tian, Q. Dynamic Points Agglomeration for Hierarchical Point Sets Learning. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7545–7554. [Google Scholar] [CrossRef]
- Cai, Y.; Lei, Y.; Yang, M.; You, Z.; Shan, S. A fast and robust 3D face recognition approach based on deeply learned face representation. Neurocomputing 2019, 363, 375–397. [Google Scholar] [CrossRef]
- Zhang, Z.; Da, F.; Yu, Y. Learning directly from synthetic point clouds for “in-the-wild” 3D face recognition. Pattern Recognit. 2022, 123, 108394. [Google Scholar] [CrossRef]
- Kim, D.; Hernandez, M.; Choi, J.; Medioni, G. Deep 3D face identification. In Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 133–142. [Google Scholar] [CrossRef]
- Soltani, A.A.; Huang, H.; Wu, J.; Kulkarni, T.D.; Tenenbaum, J.B. Synthesizing 3D Shapes via Modeling Multi-view Depth Maps and Silhouettes with Deep Generative Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2511–2519. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, Z.; Wu, Z.; Chen, Y.; Li, W. Research of 3D face recognition algorithm based on deep learning stacked denoising autoencoder theory. In Proceedings of the 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, China, 4–6 June 2016; pp. 663–667. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Z.; Zhao, X.; Ji, R.; Gao, Y. GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 264–272. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and Multi-view CNNs for Object Classification on 3D Data. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5648–5656. [Google Scholar] [CrossRef]
- Jackson, A.S.; Bulat, A.; Argyriou, V.; Tzimiropoulos, G. Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1031–1039. [Google Scholar] [CrossRef]
- Richardson, E.; Sela, M.; Kimmel, R. 3D Face Reconstruction by Learning from Synthetic Data. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 460–469. [Google Scholar] [CrossRef]
- Lüthi, M.; Gerig, T.; Jud, C.; Vetter, T. Gaussian Process Morphable Models. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1860–1873. [Google Scholar] [CrossRef]
- Savran, A.; Alyuz, N.; Dibeklioglu, H.; Celiktutan, O.; Gokberk, B.; Sankur, B.; Akarun, L. Bosphorus database for 3D face analysis. In Proceedings of the Biometrics and Identity Management: First European Workshop, Roskilde, Denmark, 7–9 May 2008; pp. 47–56. [Google Scholar]
- Phillips, P.; Flynn, P.; Scruggs, T.; Bowyer, K.; Chang, J.; Hoffman, K.; Marques, J.; Min, J.; Worek, W. Overview of the face recognition grand challenge. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 947–954. [Google Scholar] [CrossRef]
- Li, M.; Huang, B.; Tian, G. A comprehensive survey on 3D face recognition methods. Eng. Appl. Artif. Intell. 2022, 110, 104669. [Google Scholar] [CrossRef]
- Guha, R. A Report on Automatic Face Recognition: Traditional to Modern Deep Learning Techniques. In Proceedings of the 2021 6th International Conference for Convergence in Technology (I2CT), Pune, India, 2–4 April 2021. [Google Scholar]
- Besl, P.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Yu, Y.; Da, F.; Guo, Y. Sparse ICP With Resampling and Denoising for 3D Face Verification. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1917–1927. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Z.; Li, H.; Sun, J.; Xu, Z. Meta-learning-based adversarial training for deep 3D face recognition on point clouds. Pattern Recognit. 2023, 134, 109065. [Google Scholar] [CrossRef]
- Kong, W.; You, Z.; Lv, X. 3D face recognition algorithm based on deep Laplacian pyramid under the normalization of epidemic control. Comput. Commun. 2023, 199, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Da, F. Expression-Invariant 3D Face Recognition Based on Local Descriptors. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/J. Comput.-Aided Des. Comput. Graph. 2019, 31, 1086–1094. [Google Scholar] [CrossRef]
- Guo, Y.; Lei, Y.; Liu, L.; Wang, Y.; Bennamoun, M.; Sohel, F. EI3D: Expression-invariant 3D face recognition based on feature and shape matching. Pattern Recognit. Lett. 2016, 83, 403–412. [Google Scholar] [CrossRef]
- Liang, B.; Wang, Z.; Huang, B.; Zou, Q.; Wang, Q.; Liang, J. Depth map guided triplet network for deepfake face detection. Neural Netw. 2023, 159, 34–42. [Google Scholar] [CrossRef]
- Jin, B.; Cruz, L.; Gonçalves, N. Pseudo RGB-D Face Recognition. IEEE Sens. J. 2022, 22, 21780–21794. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, J.; Deng, B. Robust RGB-D Face Recognition Using Attribute-Aware Loss. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2552–2566. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, X.; Zhang, D.; Zhang, G.; Wang, Z.; Liu, H. FM-3DFR: Facial Manipulation-Based 3-D Face Reconstruction. IEEE Trans. Cybern. 2023, 54, 209–218. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, C.; Huang, D.; Lei, Z.; Wang, H.; Li, S.Z. Beyond 3DMM: Learning to Capture High-Fidelity 3D Face Shape. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 1442–1457. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Q.; Liu, X.; Zeng, D. Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 664–678. [Google Scholar] [CrossRef]
- Wang, C.; Samari, B.; Siddiqi, K. Local Spectral Graph Convolution for Point Set Feature Learning. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 11208, pp. 56–71. [Google Scholar]
- Bhople, A.R.; Shrivastava, A.M.; Prakash, S. Point cloud based deep convolutional neural network for 3D face recognition. Multimed. Tools Appl. 2021, 80, 30237–30259. [Google Scholar] [CrossRef]
- Bhople, A.R.; Prakash, S. Learning similarity and dissimilarity in 3D faces with triplet network. Multimed. Tools Appl. 2021, 80, 35973–35991. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, J.; Xu, S.; Chen, D.; Jia, Y.; Tong, X. Accurate 3D Face Reconstruction With Weakly-Supervised Learning: From Single Image to Image Set. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 285–295. [Google Scholar] [CrossRef]
- Blanz, V.; Vetter, T. A morphable model for the synthesis of 3D faces. In Seminal Graphics Papers: Pushing the Boundaries; Association for Computing Machinery: New York, NY, USA, 2023; Volume 2, pp. 157–164. [Google Scholar]
- Guo, J.; Zhu, X.; Yang, Y.; Yang, F.; Lei, Z.; Li, S.Z. Towards Fast, Accurate and Stable 3D Dense Face Alignment. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Volume 12364, pp. 152–168. [Google Scholar]
- Zulqarnain Gilani, S.; Mian, A. Learning from Millions of 3D Scans for Large-Scale 3D Face Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1896–1905. [Google Scholar] [CrossRef]
- Yu, Y.; Da, F.; Zhang, Z. Few-data guided learning upon end-to-end point cloud network for 3D face recognition. Multimed. Tools Appl. 2022, 81, 12795–12814. [Google Scholar] [CrossRef]
- Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 212–220. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Huang, D.; Ardabilian, M.; Wang, Y.; Chen, L. 3-D Face Recognition Using eLBP-Based Facial Description and Local Feature Hybrid Matching. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1551–1565. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Huang, D.; Zhang, Z.; Chen, L. Learning the Spherical Harmonic Features for 3-D Face Recognition. IEEE Trans. Image Process. 2013, 22, 914–925. [Google Scholar] [CrossRef]
- Elaiwat, S.; Bennamoun, M.; Boussaid, F.; El-Sallam, A. A Curvelet-based approach for textured 3D face recognition. Pattern Recognit. 2015, 48, 1235–1246. [Google Scholar] [CrossRef]
- Lei, Y.; Guo, Y.; Hayat, M.; Bennamoun, M.; Zhou, X. A Two-Phase Weighted Collaborative Representation for 3D partial face recognition with single sample. Pattern Recognit. 2016, 52, 218–237. [Google Scholar] [CrossRef]
- Gilani, S.Z.; Mian, A.; Shafait, F.; Reid, I. Dense 3D Face Correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1584–1598. [Google Scholar] [CrossRef]
- Berretti, S.; Werghi, N.; Del Bimbo, A.; Pala, P. Matching 3D face scans using interest points and local histogram descriptors. Comput. Graph. 2013, 37, 509–525. [Google Scholar] [CrossRef]
Method | Rank-1 Identification Rate (%) |
---|---|
Baseline | 95.51 |
AFL-non | 96.01 |
AFL-sum | 94.37 |
AFL-sub | 97.19 |
AFL-Con | 96.34 |
Optimizer | Initial Learning Rate | Learning Rate Scheduler | Dropout | Loss | Batch Size | |
---|---|---|---|---|---|---|
PointNet | Adam | 0.001 | Step | No | NLL | 32 |
PointNet++ | Adam | 0.001 | Step | No | NLL | 24 |
KPConv | SGD | 0.001 | Exponential | Yes | NLL | 10 |
Dual-branch KPConv | SGD | 0.001 | Exponential | No | NLL | 10 |
Method | Modality | Rank-1 Identification Rate (%) |
---|---|---|
PointNet | Points | 87.53 |
PointNet++ | Points | 92.03 |
KPConv | Points | 95.47 |
Dual-branch KPConv | Points | 97.29 |
PointNet | Points+Normals | 91.60 |
PointNet++ | Points+Normals | 94.10 |
KPConv | Points+Normals | 96.75 |
Dual-branch KPConv | Points+Normals | 98.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, X.; Zhao, X. A 3D Face Recognition Algorithm Directly Applied to Point Clouds. Biomimetics 2025, 10, 70. https://doi.org/10.3390/biomimetics10020070
You X, Zhao X. A 3D Face Recognition Algorithm Directly Applied to Point Clouds. Biomimetics. 2025; 10(2):70. https://doi.org/10.3390/biomimetics10020070
Chicago/Turabian StyleYou, Xingyi, and Xiaohu Zhao. 2025. "A 3D Face Recognition Algorithm Directly Applied to Point Clouds" Biomimetics 10, no. 2: 70. https://doi.org/10.3390/biomimetics10020070
APA StyleYou, X., & Zhao, X. (2025). A 3D Face Recognition Algorithm Directly Applied to Point Clouds. Biomimetics, 10(2), 70. https://doi.org/10.3390/biomimetics10020070