Bioinspired Design and Applications of Liquid Gating Gas Valve Membranes
Abstract
:1. Introduction
2. Design Principle and Strategy of LGVMs
3. Progress of LGVMs
4. Challenges and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohn, H.; Federle, W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. USA 2004, 101, 14138–14143. [Google Scholar] [CrossRef] [PubMed]
- Kaštelan, S.; Gabrić, K.; Mikuličić, M.; Mrazovac, Z.; Karabatić, M.; Gverović, A. The influence of tear film quality on visual function. Vision 2024, 8, 8. [Google Scholar] [CrossRef]
- Braun, R. Dynamics of the tear film. Annu. Rev. Fluid Mech. 2012, 44, 267–297. [Google Scholar] [CrossRef]
- Verberne, G.; Schroeder, A.; Halperin, G.; Barenholz, Y.; Etsion, I. Liposomes as potential biolubricant additives for wear reduction in human synovial joints. Wear 2010, 268, 1037–1042. [Google Scholar] [CrossRef]
- Fragassi, A.; Greco, A.; Palomba, R. Lubricant strategies in osteoarthritis treatment: Transitioning from natural lubricants to drug delivery particles with lubricant properties. J. Xenobiot. 2024, 14, 1268–1292. [Google Scholar] [CrossRef] [PubMed]
- Chopra, N.; Melrose, J.; Gu, Z.; Diwan, A. Biomimetic proteoglycans for intervertebral disc (IVD) regeneration. Biomimetics 2024, 9, 722. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, L.; Punta, M.; Bruni, R.; Hillerich, B.; Kloss, B.; Rost, B.; Love, J.; Siegelbaum, S.; Hendrickson, W. Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 2010, 467, 1074–1080. [Google Scholar] [CrossRef]
- Pu, L.; Zhu, M.; Shen, X.; Wu, S.; Wei, W.; Li, S. Stomata-inspired smart bilayer catalyst with the dual-responsive ability, capable of single/tandem catalysis. Polymer 2021, 234, 124238. [Google Scholar] [CrossRef]
- Hu, Q.; Lin, X.; Ren, G.; Lü, J.; Wang, W.; Zhang, D.; Zhou, S. Hydrovoltaic electricity generation induced by living leaf transpiration. Nat. Water 2024, 2, 988–998. [Google Scholar] [CrossRef]
- Hou, K.; Nie, Y.; Mugaanire, I.; Guo, Y.; Zhu, M. A novel leaf inspired hydrogel film based on fiber reinforcement as rapid steam sensor. Chem. Eng. J. 2020, 382, 122948. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, F.; Wang, L.; Ding, Y.; Zhao, H.; Wang, H.; Liu, J. A stomata-inspired superhydrophobic portable filter system. RSC Adv. 2021, 11, 18783–18786. [Google Scholar] [CrossRef]
- Chen, H.; Sun, L.; Wang, Y.; Cai, L.; Zhao, Y.; Shang, L. Biomimetic air purification with liquid-gating topological gradient microfluidics. Nat. Chem. Eng. 2024, 1, 650–660. [Google Scholar] [CrossRef]
- Namati, E.; Thiesse, J.; de Ryk, J.; McLennan, G. Alveolar dynamics during respiration. Am. J. Respir. Cell Mol. Biol. 2008, 38, 572–578. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Yi, B.; Wang, Z.; Huang, X.; Jiang, L.; Yao, X. Bio-inspired elastic liquid-infused material for on-demand underwater manipulation of air bubbles. ACS Nano 2019, 13, 10596–10602. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Hu, Y.; Grinthal, A.; Khan, M.; Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 2015, 519, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Jiang, Y.; Yu, L.; Wang, H.; Pan, L.; Zhang, J.; Zhang, Y.; Hou, X. Liquid-solid composites with confined interface behaviors. Natl. Sci. Rev. 2025, 12, nwae423. [Google Scholar] [CrossRef] [PubMed]
- San Román, M.; Bringas, E.; Ibañez, R.; Ortiz, I. Liquid membrane technology: Fundamentals and review of its applications. J. Chem. Technol. Biotechnol. 2009, 85, 2–10. [Google Scholar] [CrossRef]
- Kocherginsky, N.; Yang, Q.; Seelam, L. Recent advances in supported liquid membrane technology. Sep. Purif. Technol. 2007, 53, 171–177. [Google Scholar] [CrossRef]
- Cao, J.; An, Q.; Liu, Z.; Jin, M.; Yan, Z.; Lin, W.; Chen, L.; Li, P.; Wang, X.; Zhou, G. Electrowetting on liquid-infused membrane for flexible and reliable digital droplet manipulation and application. Sensor. Actuat. B-Chem. 2019, 291, 470–477. [Google Scholar] [CrossRef]
- Mai, V.; Hou, S.; Pillai, P.; Lim, T.; Duan, H. Universal and switchable omni-repellency of liquid-infused surfaces for on demand separation of multiphase liquid. ACS Nano 2021, 15, 6977–6986. [Google Scholar] [CrossRef] [PubMed]
- Regan, D.; Fong, C.; Bond, A.; Desjardins, C.; Hardcastle, J.; Hung, S.; Holmes, A.; Schiffman, J.; Maginnis, M.; Howell, C. Improved recovery of captured airborne bacteria and viruses with liquid-coated air filters. ACS Appl. Mater. Interfaces 2022, 14, 50543–50556. [Google Scholar] [CrossRef]
- Liu, L.; Luan, J.; Li, S.; Shao, C.; Dong, T.; Chen, Y.; You, H. pH-Responsive Janus membrane with liquid gating property for crop protection and demulsification. Chem. Eng. J. 2024, 484, 149803. [Google Scholar] [CrossRef]
- Hiraide, S.; Sakanaka, Y.; Kajiro, H.; Kawaguchi, S.; Miyahara, M.; Tanaka, H. High-throughput gas separation by flexible metal–organic frameworks with fast gating and thermal management capabilities. Nat. Commun. 2020, 11, 3867. [Google Scholar] [CrossRef] [PubMed]
- Kabwe, A.; Fester, G.; Slatter, T. Prediction of non-Newtonian head losses through diaphragm valves at different opening positions. Chem. Eng. Res. Des. 2010, 88, 959–970. [Google Scholar] [CrossRef]
- Triantafyllidou, S.; Raetz, M.; Parks, J.; Edwards, M. Understanding how brass ball valves passing certification testing can cause elevated lead in water when installed. Water Res. 2012, 46, 3240–3250. [Google Scholar] [CrossRef]
- Wang, T.; Chen, H.; Liu, K.; Li, Y.; Xue, P.; Yu, Y.; Wang, S.; Zhang, J.; Kumacheva, E.; Yang, B. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas–liquid separation. Nanoscale 2014, 6, 3846–3853. [Google Scholar] [CrossRef]
- Tow, E.; Warsinger, D.; Trueworthy, A.; Swaminathan, J.; Thiel, G.; Zubair, S.; Myerson, A.; Lienhard, V.J. Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. J. Membr. Sci. 2018, 556, 352–364. [Google Scholar] [CrossRef]
- Villegas, M.; Zhang, Y.; Abu Jarad, N.; Soleymani, L.; Didar, T. Liquid-infused surfaces: A review of theory, design, and applications. ACS Nano 2019, 13, 8517–8536. [Google Scholar] [CrossRef]
- Grinthal, A.; Aizenberg, J. Mobile interfaces: Liquids as a perfect structural material for multifunctional, antifouling surfaces. Chem. Mater. 2014, 26, 698–708. [Google Scholar] [CrossRef]
- Howell, C.; Grinthal, A.; Sunny, S.; Aizenberg, M.; Aizenberg, J. Designing liquid-infused surfaces for medical applications: A review. Adv. Mater. 2018, 30, 1802724. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, M.; Jusufi, A.; Deighton, S.; Ide, M.; Siskin, M.; Jaishankar, A.; Maldarelli, C.; Bertolini, P.; Natarajan, B.; Vreeland, J.; et al. Solid with infused reactive liquid (SWIRL): A novel liquid-based separation approach for effective CO2 capture. Sci. Adv. 2022, 8, eabm0144. [Google Scholar] [CrossRef]
- Sheng, Z.; Wang, H.; Tang, Y.; Wang, M.; Huang, L.; Min, L.; Meng, H.; Chen, S.; Jiang, L.; Hou, X. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport. Sci. Adv. 2018, 4, eaao6724. [Google Scholar] [CrossRef] [PubMed]
- Bazazi, P.; Stone, H.; Hejazi, S. Spongy all-in-liquid materials by in-situ formation of emulsions at oil-water interfaces. Nat. Commun. 2022, 13, 4162. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, J.; Ainge, Y.; Williams, C.; Maltz, A.; Blough, T.; Khan, M.; Aizenberg, J. Research Update: Liquid gated membrane filtration performance with inorganic particle suspensions. APL Mater. 2018, 6, 100703. [Google Scholar] [CrossRef]
- Wen, L.; Tian, Y.; Jiang, L. Bioinspired super-wettability from fundamental research to practical applications. Angew. Chem. Int. Ed. 2015, 54, 3387–3399. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, L. Intrinsically robust hydrophobicity. Nat. Mater. 2013, 12, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lei, J.; Xu, J.; Fu, H.; Jing, Y.; Chen, B.; Hou, X. Bioinspired photo-responsive liquid gating membrane. Biomimetics 2022, 7, 47. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, R.; Hou, Y.; Zhang, J.; Chen, S.; Han, Y.; Chen, X.; Hou, X. Light-responsive and corrosion-resistant gas valve with non-thermal effective liquid-gating positional flow control. Light: Sci. Appl. 2021, 10, 127. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, Z.; Zhang, M.; Li, J.; Zhang, Y.; Xu, X.; Yu, S.; Cao, M.; Hou, X. Non-Newtonian fluid gating membranes with acoustically responsive and self-protective gas transport control. Mater. Horiz. 2023, 10, 899–907. [Google Scholar] [CrossRef]
- Zeng, G.; Zhang, Y.; Fang, Z.; Yu, L.; Zhang, Y.; Wang, S.; Hou, X. Electrostatically responsive liquid gating system for controlled microbubble generation. Ind. Chem. Mater. 2024, 2, 424–431. [Google Scholar] [CrossRef]
- Li, X.; Chen, T.; Zheng, Z.; Gao, J.; Wu, Y.; Wu, X.; Jiang, T.; Zhu, Z.; Ronald, X. Magnetic liquid gating valve terminal for patterned droplet generation and transportation of highly viscous bioactive fluids. Small 2024, 20, 2404952. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, M.; Hou, Y.; Wang, H.; Zhang, R.; Fan, Y.; Chen, X.; Hou, X. Energy saving thermal adaptive liquid gating system. Innovation 2022, 3, 100231. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, X.; Lei, Y.; Zhang, M.; Sheng, Z.; Wang, H.; Cao, M.; Zhang, J.; Hou, X. Liquid gating meniscus-shaped deformable magnetoelastic membranes with self-driven regulation of gas/liquid release. Adv. Mater. 2022, 34, 2108462. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Hou, Y.; Wang, H.; Fan, Y.; Zhang, Y.; Chen, B.; Yu, S.; Hou, X. Carbon dioxide chemically responsive switchable gas valves with protonation-induced liquid gating self-adaptive systems. Angew. Chem. Int. Ed. 2022, 61, e202201109. [Google Scholar] [CrossRef]
- Han, Y.; Huang, X.; Chi, K.; Liu, J.; Zhang, Y.; Zhang, J.; Hou, X. Crystallization-induced liquid gate for tunable gas flow control. J. Phys. Chem. Lett. 2024, 15, 8997–9002. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Y.; Ji, X.; Zang, D.; Qiao, L.; Sheng, Z.; Wang, C.; Wang, S.; Wang, M.; Hou, Y.; et al. Continuous air purification by aqueous interface filtration and absorption. Nature 2022, 610, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, G.; Yue, J. Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes. J. Flow Chem. 2020, 10, 103–121. [Google Scholar] [CrossRef]
External Stimuli | Responsive Materials | Applications | |
---|---|---|---|
Solid Porous Membranes | Gating Liquids | ||
Ultraviolet [42] | Azobenzene-based stainless-steel mesh | Krytox 103 | Positional flow control |
Ultraviolet [37] | Nylon porous substrate | Photoresponsive surfactant molecule | Precise and contactless control of microfluidics |
Acoustic field [39] | Copper foam | Corn starch suspension | Transport of hazardous and explosive gases |
Ultrasound stimulation [45] | Stainless-steel mesh | Sodium acetate trihydrate | Infrared-monitored flow-regulating valve |
Electric field [46] | Stainless-steel mesh with sodium dodecyl benzene-sulfonate | LiClO4 aqueous solution | Air purification |
Chemical stimulation [44] | Nylon porous membrane | Amphiphilic molecule | Gas separation, CO2 capture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, Y.; Xu, R.; Liu, J.; Hou, X. Bioinspired Design and Applications of Liquid Gating Gas Valve Membranes. Biomimetics 2025, 10, 77. https://doi.org/10.3390/biomimetics10020077
Li Y, Liu Y, Xu R, Liu J, Hou X. Bioinspired Design and Applications of Liquid Gating Gas Valve Membranes. Biomimetics. 2025; 10(2):77. https://doi.org/10.3390/biomimetics10020077
Chicago/Turabian StyleLi, Yiyao, Yang Liu, Rui Xu, Jing Liu, and Xu Hou. 2025. "Bioinspired Design and Applications of Liquid Gating Gas Valve Membranes" Biomimetics 10, no. 2: 77. https://doi.org/10.3390/biomimetics10020077
APA StyleLi, Y., Liu, Y., Xu, R., Liu, J., & Hou, X. (2025). Bioinspired Design and Applications of Liquid Gating Gas Valve Membranes. Biomimetics, 10(2), 77. https://doi.org/10.3390/biomimetics10020077