Textured Building Façades: Utilizing Morphological Adaptations Found in Nature for Evaporative Cooling
Abstract
:1. Introduction
2. Background
2.1. Facades
2.2. Evaporative Cooling
2.3. Elephant Skin
3. Materials and Methods
Experiment Set-Up
4. Experiments and Results
4.1. Investigation 1: Proof of Concept
4.2. Investigation 2: Assembly of Morphology
4.3. Investigation 3: Texture Depth
4.4. Investigation 4: Texture Scale
4.5. Investigation 5: Panel Colour
4.6. Investigation 6: Material
4.7. Investigation 7: Hydrophobicity
4.8. Investigation 8: Panel Thickness
4.9. Investigation 9: Patterns
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lillywhite, H.B.; Stein, B.R. Surface sculpturing and water retention of elephant skin. J. Zool. 1987, 211, 727–734. [Google Scholar] [CrossRef]
- Grobman, Y.J.; Elimelech, Y. Microclimate on building envelopes: Testing geometry manipulations as an approach for increasing building envelopes’ thermal performance. Archit. Sci. Rev. 2015, 59, 269–278. [Google Scholar] [CrossRef]
- Blocken, B.; Derome, D.; Carmeliet, J. Rainwater runoff from building facades: A review. Build. Environ. 2013, 60, 339–361. [Google Scholar] [CrossRef]
- Badarnah, L. Environmental adaptation of buildings through morphological differentiation. In Proceedings of the 15th Conference on Advanced Building Skins, Bern, Switzerland, 1–2 October 2018; pp. 281–286. [Google Scholar]
- Rathee, A.; Mitrofanova, E.; Santayanon, P. Hydroceramic. Master’s Thesis, Advanced Architecture, Institute of Advanced Architecture of Catalonia, Barcelona, Spain, 2014. [Google Scholar]
- Castro, I.E.; Manosong, M.; Chang, Y.C.; Alkani, Z. Water-Driven Breathing Skin. Master’s Thesis, Advanced Architecture, Institute for Advanced Architecture of Catalonia, Barcelona, Spain, 2018. [Google Scholar]
- Laver, J.; Clifford, D.; Vollen, J. High performance masonry wall systems: Principles derived from natural analogues. WIT Trans. Ecol. Environ. 2008, 114, 243–252. [Google Scholar]
- Rael, R.; San Fratello, V. Printing Architecture: Innovative Recipes for 3d Printing; Princeton Architectural Press: New York, NY, USA, 2018. [Google Scholar]
- Grobman, Y.J. Cellular building envelopes. In Icord’13; Chakrabarti, A., Prakash, R.V., Eds.; Springer: Delhi, India, 2013; pp. 951–963. [Google Scholar]
- Davies, M. A wall for all seasons. Riba J. R. Inst. Br. Archit. 1981, 88, 55–57. [Google Scholar]
- Fecheyr-Lippens, D.; Bhiwapurkar, P. Applying biomimicry to design building envelopes that lower energy consumption in a hot-humid climate. Archit. Sci. Rev. 2017, 60, 360–370. [Google Scholar] [CrossRef]
- Badarnah, L.; Farchi, Y.N.; Knaack, U. Solutions from nature for building envelope thermoregulation. In Design & Nature V: Comparing Design in Nature with Science and Engineering; Carpi, A., Brebbia, C.A., Eds.; WIT Press: Pisa, Italy, 2010; pp. 251–262. [Google Scholar]
- Tejero-González, A.; Andrés-Chicote, M.; García-Ibáñez, P.; Velasco-Gómez, E.; Rey-Martínez, F.J. Assessing the applicability of passive cooling and heating techniques through climate factors: An overview. Renew. Sustain. Energy Rev. 2016, 65, 727–742. [Google Scholar] [CrossRef] [Green Version]
- Needham, A.; Dawson, T.; Hales, J. Forelimb blood flow and saliva spreading in the thermoregulation of the red kangaroo, megaleia rufa. Comp. Biochem. Physiol. Part A Physiol. 1974, 49, 555–565. [Google Scholar] [CrossRef]
- Cooke, L. The Truth about Animals: Stoned Sloths, Lovelorn Hippos, and Other Tales from the Wild Side of Wildlife; Basic Books: New York, NY, USA, 2018. [Google Scholar]
- Myhrvold, C.L.; Stone, H.A.; Bou-Zeid, E. What is the use of elephant hair? PLoS ONE 2012, 7, e47018. [Google Scholar] [CrossRef] [Green Version]
- Weissenböck, N.M.; Weiss, C.M.; Schwammer, H.M.; Kratochvil, H. Thermal windows on the body surface of african elephants (loxodonta africana) studied by infrared thermography. J. Therm. Biol. 2010, 35, 182–188. [Google Scholar] [CrossRef]
- Mole, M.A.; Rodrigues DÁraujo, S.; Van Aarde, R.J.; Mitchell, D.; Fuller, A. Coping with heat: Behavioural and physiological responses of savanna elephants in their natural habitat. Conserv. Physiol. 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, A.F.; Bennett, N.C.; Clavel, S.; Groenewald, H.; Hensman, S.; Hoby, S.; Joris, A.; Manger, P.R.; Milinkovitch, M.C. Locally-curved geometry generates bending cracks in the african elephant skin. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badarnah, L. Form follows environment: Biomimetic approaches to building envelope design for environmental adaptation. Buildings 2017, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Badarnah, L.; Kadri, U. A methodology for the generation of biomimetic design concepts. Archit. Sci. Rev. 2015, 58, 120–133. [Google Scholar] [CrossRef]
- Frayling, C. Research in art and design. R. Coll. Art Res. Pap. 1993, 1, 1. [Google Scholar]
- Collins, A.; Joseph, D.; Bielaczyc, K. Design research: Theoretical and methodological issues. J. Learn. Sci. 2004, 13, 15–42. [Google Scholar] [CrossRef]
- Hales, T.C. The honeycomb conjecture. Discret. Comput. Geom. 2001, 25, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Watt, C.; Mitchell, S.; Salewski, V. Bergmann’s rule; a concept cluster? Oikos 2010, 119, 89–100. [Google Scholar] [CrossRef]
- Allen, J.A. The influence of physical conditions in the genesis of species. Radic. Rev. 1877, 1, 108–140. [Google Scholar]
- Radhi, H.; Assem, E.; Sharples, S. On the colours and properties of building surface materials to mitigate urban heat islands in highly productive solar regions. Build. Environ. 2014, 72, 162–172. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H. Effects of composition and exposure on the solar reflectance of portland cement concrete. Cem. Concr. Res. 2002, 32, 1679–1698. [Google Scholar] [CrossRef] [Green Version]
- Naidu, S.; Hattingh, J. Water balance and osmoregulation in physadesmia globosa, a diurnal tenebrionid beetle from the namib desert. J. Insect Physiol. 1988, 34, 911–917. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peeks, M.; Badarnah, L. Textured Building Façades: Utilizing Morphological Adaptations Found in Nature for Evaporative Cooling. Biomimetics 2021, 6, 24. https://doi.org/10.3390/biomimetics6020024
Peeks M, Badarnah L. Textured Building Façades: Utilizing Morphological Adaptations Found in Nature for Evaporative Cooling. Biomimetics. 2021; 6(2):24. https://doi.org/10.3390/biomimetics6020024
Chicago/Turabian StylePeeks, Megan, and Lidia Badarnah. 2021. "Textured Building Façades: Utilizing Morphological Adaptations Found in Nature for Evaporative Cooling" Biomimetics 6, no. 2: 24. https://doi.org/10.3390/biomimetics6020024
APA StylePeeks, M., & Badarnah, L. (2021). Textured Building Façades: Utilizing Morphological Adaptations Found in Nature for Evaporative Cooling. Biomimetics, 6(2), 24. https://doi.org/10.3390/biomimetics6020024