Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction
Abstract
:1. Introduction
2. Force Measurement Methods
2.1. Global External Forcing
2.2. Local Forcing
Whole Animal Measurements
2.3. Limbs and Below
3. Discussion
3.1. Limitations
3.2. Trade-Offs in Study Design
3.3. Beyond Adhesion and Friction Measurements
3.4. Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
Adhesion | [Newtons; N] the attractive contact force acting perpendicular to the substrate. |
Friction | [Newtons; N] the contact force resisting motion parallel to the substrate. |
Static friction | [Newtons; N] the friction force acting on a stationary object. |
Dynamic friction | [Newtons; N] the friction force acting on a sliding object. |
Contact area | [square meters; m2] the area of an adhesive in direct contact with a substrate. |
Adhesive stress (Tenacity) | [Newtons per square meter; N/m2] the adhesion force per unit contact area. It provides a scale-independent representation of adhesive capacity. |
Shear stress | [Newtons per square meter; N/m2] the friction force per unit contact area. |
Fluid viscosity | [Newton seconds per square meter; N-s/m2] the resistance of a fluid to shearing. For example, honey is 10,000 times more viscous than water. |
Substrate roughness | [nanometer; nm] the average height of the bumps, features, and asperities on a substrate. |
Substrate energy | [milli-Newton per meter; mN/m] the excess energy that a surface of a material has compared to its bulk. If a substrate has high energy, then, generally, liquids and solids interact strongly with it. |
Surface tension | [milli-Newton per meter; mN/m] the force (per unit length) acting tangential to a liquid-air interface. It is what enables insects to stand on the water surface and drives water drops to become spherical. |
Young’s modulus (Stiffness) | [Pascals; Pa] the physical property that represents how easily a material can stretch or deform. |
References
- Langowski, J.K.A.; Dodou, D.; Kamperman, M.; van Leeuwen, J.L. Tree frog attachment: Mechanisms, challenges, and perspectives. Front. Zool. 2018, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny, T.W.; Fearing, R.; Full, R.J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Sitti, M.; Liang, Y.A.; Peattie, A.M.; Hansen, W.R.; Sponberg, S.; Kenny, T.W.; Fearing, R.; Israelachvili, J.N.; Full, R.J. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 2002, 99, 12252–12256. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Yao, H.; Gorb, S.; Arzt, E. Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 2005, 37, 275–285. [Google Scholar] [CrossRef]
- Gorb, S.N. The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proc. R. Soc. Lond. Series B Biol. Sci. 1998, 265, 747–752. [Google Scholar] [CrossRef]
- Gorb, S.; Beutel, R. Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 2001, 88, 530–534. [Google Scholar] [CrossRef]
- Gorb, S.N. Uncovering insect stickiness: Structure and properties of hairy attachment devices. Am. Entomol. 2005, 51, 31–35. [Google Scholar] [CrossRef]
- Federle, W.; Labonte, D. Dynamic biological adhesion: Mechanisms for controlling attachment during locomotion. Philos. Trans. R. Soc. B 2019, 374, 20190199. [Google Scholar] [CrossRef]
- Endlein, T.; Barnes, W.J.P.; Samuel, D.S.; Crawford, N.A.; Biaw, A.B.; Grafe, U. Sticking under wet conditions: The remarkable attachment abilities of the torrent frog, Staurois guttatus. PLoS ONE 2013, 8, e73810. [Google Scholar] [CrossRef]
- Langowski, J.K.; Rummenie, A.; Pieters, R.P.; Kovalev, A.; Gorb, S.N.; van Leeuwen, J.L. Estimating the maximum attachment performance of tree frogs on rough substrates. Bioinspir. Biomim. 2019, 14, 025001. [Google Scholar] [CrossRef] [Green Version]
- Gorb, S. Attachment Devices of Insect Cuticle; Kluwer Academic: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Song, Y.; Dai, Z.; Wang, Z.; Ji, A.; Gorb, S.N. The synergy between the insect-inspired claws and adhesive pads increases the attachment ability on various rough surfaces. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Labonte, D.; Clemente, C.J.; Dittrich, A.; Kuo, C.Y.; Crosby, A.J.; Irschick, D.J.; Federle, W. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proc. Natl. Acad. Sci. USA 2016, 113, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Persson, B.; Gorb, S. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J. Chem. Phys. 2003, 119, 11437–11444. [Google Scholar] [CrossRef]
- Endlein, T.; Ji, A.; Samuel, D.; Yao, N.; Wang, Z.; Barnes, W.J.P.; Federle, W.; Kappl, M.; Dai, Z. Sticking like sticky tape: Tree frogs use friction forces to enhance attachment on overhanging surfaces. J. R. Soc. Interface 2013, 10, 20120838. [Google Scholar] [CrossRef] [PubMed]
- Amador, G.J.; Endlein, T.; Sitti, M. Soiled adhesive pads shear clean by slipping: A robust self-cleaning mechanism in climbing beetles. J. R. Soc. Interface 2017, 14, 20170134. [Google Scholar] [CrossRef]
- Amador, G.J.; Hu, D.L. Cleanliness is next to godliness: Mechanisms for staying clean. J. Exp. Biol. 2015, 218, 3164–3174. [Google Scholar] [CrossRef] [PubMed]
- Crawford, N.; Endlein, T.; Barnes, W.J.P. Self-cleaning in tree frog toe pads; a mechanism for recovering from contamination without the need for grooming. J. Exp. Biol. 2012, 215, 3965–3972. [Google Scholar] [CrossRef]
- Hansen, W.R.; Autumn, K. Evidence for self-cleaning in gecko setae. Proc. Natl. Acad. Sci. USA 2005, 102, 385–389. [Google Scholar] [CrossRef]
- Hawkes, E.W.; Christensen, D.L.; Han, A.K.; Jiang, H.; Cutkosky, M.R. Grasping without squeezing: Shear adhesion gripper with fibrillar thin film. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2305–2312. [Google Scholar]
- Song, S.; Majidi, C.; Sitti, M. Geckogripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 4624–4629. [Google Scholar]
- Zhou, M.; Tian, Y.; Sameoto, D.; Zhang, X.; Meng, Y.; Wen, S. Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface. ACS Appl. Mater. Interfaces 2013, 5, 10137–10144. [Google Scholar] [CrossRef]
- Henrey, M.; Ahmed, A.; Boscariol, P.; Shannon, L.; Menon, C. Abigaille-III: A versatile, bioinspired hexapod for scaling smooth vertical surfaces. J. Bionic Eng. 2014, 11, 1–17. [Google Scholar] [CrossRef]
- Kim, S.; Spenko, M.; Trujillo, S.; Heyneman, B.; Santos, D.; Cutkosky, M.R. Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 2008, 24, 65–74. [Google Scholar]
- Murphy, M.P.; Kute, C.; Mengüç, Y.; Sitti, M. Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. Int. J. Robot. Res. 2011, 30, 118–133. [Google Scholar] [CrossRef]
- Bergeles, C.; Yang, G.Z. From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots. IEEE Trans. Biomed. Eng. 2013, 61, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Glass, P.; Cheung, E.; Sitti, M. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Trans. Biomed. Eng. 2008, 55, 2759–2767. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Cheung, E.; Park, S.; Sitti, M. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. Biomed. Mater. 2006, 1, 216. [Google Scholar] [CrossRef] [PubMed]
- Langowski, J.K.A.; Sharma, P.; Shoushtari, A.L. In the soft grip of nature. Sci. Robot. 2020, 5, eabd9120. [Google Scholar] [CrossRef] [PubMed]
- Salerno, G.; Rebora, M.; Gorb, E.; Gorb, S. Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Salerno, G.; Rebora, M.; Kovalev, A.; Gorb, E.; Gorb, S. Contribution of different tarsal attachment devices to the overall attachment ability of the stink bug Nezara viridula. J. Comp. Physiol. A 2018, 204, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Bräuer, P.; Neinhuis, C.; Voigt, D. Attachment of honeybees and greenbottle flies to petal surfaces. Arthropod-Plant Interact. 2017, 11, 171–192. [Google Scholar] [CrossRef]
- Amador, G.J.; Hu, D.L. Sticky solution provides grip for the first robotic pollinator. Chem 2017, 2, 162–164. [Google Scholar] [CrossRef]
- Féat, A.; Federle, W.; Kamperman, M.; Murray, M.; van der Gucht, J.; Taylor, P. Slippery paints: Eco-friendly coatings that cause ants to slip. Prog. Org. Coatings 2019, 135, 331–344. [Google Scholar] [CrossRef]
- Féat, A.; Federle, W.; Kamperman, M.; van der Gucht, J. Coatings preventing insect adhesion: An overview. Prog. Org. Coatings 2019, 134, 349–359. [Google Scholar] [CrossRef]
- Pashazanusi, L.; Lwoya, B.; Oak, S.; Khosla, T.; Albert, J.N.; Tian, Y.; Bansal, G.; Kumar, N.; Pesika, N.S. Enhanced adhesion of mosquitoes to rough surfaces. ACS Appl. Mater. Interfaces 2017, 9, 24373–24380. [Google Scholar] [CrossRef] [PubMed]
- Voigt, D.; Gorb, S. Functional morphology of tarsal adhesive pads and attachment ability in ticks Ixodes ricinus (Arachnida, Acari, Ixodidae). J. Exp. Biol. 2017, 220, 1984–1996. [Google Scholar] [CrossRef] [PubMed]
- Irschick, D.J.; Austin, C.C.; Petren, K.; Fisher, R.N.; Losos, J.B.; Ellers, O. A comparative analysis of clinging ability among pad-bearing lizards. Biol. J. Linn. Soc. 1996, 59, 21–35. [Google Scholar] [CrossRef]
- Smith, J.M.; Barnes, W.J.; Downie, J.R.; Ruxton, G.D. Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs. J. Comp. Physiol. A 2006, 192, 1193–1204. [Google Scholar] [CrossRef]
- Labonte, D.; Federle, W. Scaling and biomechanics of surface attachment in climbing animals. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140027. [Google Scholar] [CrossRef]
- Labonte, D.; Struecker, M.Y.; Birn-Jeffery, A.V.; Federle, W. Shear-sensitive adhesion enables size-independent adhesive performance in stick insects. Proc. R. Soc. B 2019, 286, 20191327. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Hsieh, S.T.; Dudek, D.M.; Chen, J.; Chitaphan, C.; Full, R.J. Dynamics of geckos running vertically. J. Exp. Biol. 2006, 209, 260–272. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, Z.; Ji, A. Dynamics of gecko locomotion: A force-measuring array to measure 3D reaction forces. J. Exp. Biol. 2011, 214, 703–708. [Google Scholar] [CrossRef]
- Hanna, G.; Jon, W.; Barnes, W.J. Adhesion and detachment of the toe pads of tree frogs. J. Exp. Biol. 1991, 155, 103–125. [Google Scholar] [CrossRef]
- Reinhardt, L.; Weihmann, T.; Blickhan, R. Dynamics and kinematics of ant locomotion: Do wood ants climb on level surfaces? J. Exp. Biol. 2009, 212, 2426–2435. [Google Scholar] [CrossRef]
- Endlein, T.; Federle, W. On heels and toes: How ants climb with adhesive pads and tarsal friction hair arrays. PLoS ONE 2015, 10, e0141269. [Google Scholar] [CrossRef] [PubMed]
- Endlein, T.; Ji, A.; Yuan, S.; Hill, I.; Wang, H.; Barnes, W.J.P.; Dai, Z.; Sitti, M. The use of clamping grips and friction pads by tree frogs for climbing curved surfaces. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162867. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.; Yuan, S.; Endlein, T.; Hill, I.D.; Wang, W.; Wang, H.; Jiang, N.; Zhao, Z.; Barnes, W.J.P.; Dai, Z. A force-measuring and behaviour-recording system consisting of 24 individual 3D force plates for the study of single limb forces in climbing animals on a quasi-cylindrical tower. Bioinspir. Biomim. 2019, 14, 046004. [Google Scholar] [CrossRef]
- Full, R.; Yamauchi, A.; Jindrich, D. Maximum single leg force production: Cockroaches righting on photoelastic gelatin. J. Exp. Biol. 1995, 198, 2441–2452. [Google Scholar] [CrossRef] [PubMed]
- Federle, W.; Endlein, T. Locomotion and adhesion: Dynamic control of adhesive surface contact in ants. Arthropod Struct. Dev. 2004, 33, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Hill, I.D.; Dong, B.; Barnes, W.J.P.; Ji, A.; Endlein, T. The biomechanics of tree frogs climbing curved surfaces: A gripping problem. J. Exp. Biol. 2018, 221, jeb168179. [Google Scholar] [CrossRef]
- Eason, E.V.; Hawkes, E.W.; Windheim, M.; Christensen, D.L.; Libby, T.; Cutkosky, M.R. Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor. Bioinspir. Biomim. 2015, 10, 016013. [Google Scholar] [CrossRef]
- Gorb, E.; Gorb, S. Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol. Exp. Appl. 2002, 105, 13–28. [Google Scholar] [CrossRef]
- Voigt, D.; Gorb, E.; Gorb, S. Plant surface–bug interactions: Dicyphus errans stalking along trichomes. Arthropod-Plant Interact. 2007, 1, 221–243. [Google Scholar] [CrossRef]
- Barnes, W.J.; Oines, C.; Smith, J.M. Whole animal measurements of shear and adhesive forces in adult tree frogs: Insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. J. Comp. Physiol. A 2006, 192, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Brainerd, E. Adhesion force of ants on smooth surfaces. Am. Zool. 1994, 34, 128. [Google Scholar]
- Federle, W.; Rohrseitz, K.; Holldobler, B. Attachment forces of ants measured with a centrifuge: Better ‘wax-runners’ have a poorer attachment to a smooth surface. J. Exp. Biol. 2000, 203, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Federle, W.; Riehle, M.; Curtis, A.S.; Full, R.J. An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants. Integr. Comp. Biol. 2002, 42, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Al Bitar, L.; Voigt, D.; Zebitz, C.P.; Gorb, S.N. Tarsal morphology and attachment ability of the codling moth Cydia pomonella L.(Lepidoptera, Tortricidae) to smooth surfaces. J. Insect Physiol. 2009, 55, 1029–1038. [Google Scholar] [CrossRef]
- Voigt, D.; Gorb, S.N. Attachment ability of sawfly larvae to smooth surfaces. Arthropod Struct. Dev. 2012, 41, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Gorb, S.; Gorb, E.; Kastner, V. Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). J. Exp. Biol. 2001, 204, 1421–1431. [Google Scholar] [CrossRef]
- Lüken, D.; Voigt, D.; Gorb, S.N.; Zebitz, C. Die Tarsenmorphologie und die Haftfähigkeit des Schwarzen Batatenkäfers Cylas puncticollis (Boheman) auf glatten Oberflächen mit unterschiedlichen physiko-chemischen Eigenschaften. Mitteilungen Der Dtsch. Ges. Fur Allg. Und Angew. Entomol. 2009, 17, 109–113. [Google Scholar]
- Grohmann, C.; Blankenstein, A.; Koops, S.; Gorb, S.N. Attachment of Galerucella nymphaeae (Coleoptera, Chrysomelidae) to surfaces with different surface energy. J. Exp. Biol. 2014, 217, 4213–4220. [Google Scholar]
- Al Bitar, L.; Voigt, D.; Zebitz, C.P.; Gorb, S.N. Attachment ability of the codling moth Cydia pomonella L. to rough substrates. J. Insect Physiol. 2010, 56, 1966–1972. [Google Scholar] [CrossRef] [PubMed]
- Labonte, D.; Federle, W. Rate-dependence of ‘wet’ biological adhesives and the function of the pad secretion in insects. Soft Matter 2015, 11, 8661–8673. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.; Yulf, A.; Ratcliffe, J. The adhesive organ of the blowfly, Calliphora vomitoria: A functional approach (Diptera: Calliphoridae). J. Zool. 1985, 205, 297–307. [Google Scholar] [CrossRef]
- Gorb, E.; Voigt, D.; Eigenbrode, S.D.; Gorb, S. Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthropod-Plant Interact. 2008, 2, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Gorb, E.; Hosoda, N.; Miksch, C.; Gorb, S. Slippery pores: Anti-adhesive effect of nanoporous substrates on the beetle attachment system. J. R. Soc. Interface 2010, 7, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- England, M.W.; Sato, T.; Yagihashi, M.; Hozumi, A.; Gorb, S.N.; Gorb, E.V. Surface roughness rather than surface chemistry essentially affects insect adhesion. Beilstein J. Nanotechnol. 2016, 7, 1471–1479. [Google Scholar] [CrossRef]
- Salerno, G.; Rebora, M.; Piersanti, S.; Gorb, E.; Gorb, S. Mechanical ecology of fruit-insect interaction in the adult Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae). Zoology 2020, 139, 125748. [Google Scholar] [CrossRef]
- Pugno, N.; Lepore, E.; Toscano, S.; Pugno, F. Normal adhesive force-displacement curves of living geckos. J. Adhes. 2011, 87, 1059–1072. [Google Scholar] [CrossRef]
- Jiao, Y.; Gorb, S.; Scherge, M. Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J. Exp. Biol. 2000, 203, 1887–1895. [Google Scholar] [CrossRef]
- Spinner, M.; Westhoff, G.; Gorb, S.N. Subdigital setae of chameleon feet: Friction-enhancing microstructures for a wide range of substrate roughness. Sci. Rep. 2014, 4, 1–9. [Google Scholar] [CrossRef]
- Drechsler, P.; Federle, W. Biomechanics of smooth adhesive pads in insects: Influence of tarsal secretion on attachment performance. J. Comp. Physiol. A 2006, 192, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Robinson, A.; Steiner, U.; Federle, W. Insect adhesion on rough surfaces: Analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates. J. R. Soc. Interface 2014, 11, 20140499. [Google Scholar] [CrossRef] [PubMed]
- Federle, W.; Barnes, W.; Baumgartner, W.; Drechsler, P.; Smith, J. Wet but not slippery: Boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 2006, 3, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Dittmore, A.; Santos, D.; Spenko, M.; Cutkosky, M. Frictional adhesion: A new angle on gecko attachment. J. Exp. Biol. 2006, 209, 3569–3579. [Google Scholar] [CrossRef] [Green Version]
- Gillies, A.G.; Henry, A.; Lin, H.; Ren, A.; Shiuan, K.; Fearing, R.S.; Full, R.J. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces. J. Exp. Biol. 2014, 217, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.; Gorb, S.N.; Spolenak, R.; Arzt, E. Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol. Lett. 2005, 1, 2–4. [Google Scholar] [CrossRef]
- Huber, G.; Mantz, H.; Spolenak, R.; Mecke, K.; Jacobs, K.; Gorb, S.N.; Arzt, E. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 2005, 102, 16293–16296. [Google Scholar] [CrossRef]
- Huber, G.; Gorb, S.N.; Hosoda, N.; Spolenak, R.; Arzt, E. Influence of surface roughness on gecko adhesion. Acta Biomater. 2007, 3, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Langer, M.G.; Ruppersberg, J.P.; Gorb, S. Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 2209–2215. [Google Scholar] [CrossRef]
- Betts, R.; Duckworth, T.; Austin, I.; Crocker, S.; Moore, S. Critical light reflection at a plastic/glass interface and its application to foot pressure measurements. J. Med. Eng. Technol. 1980, 4, 136–142. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.K.; Deban, S.M. The effects of roughness and wetness on salamander cling performance. Integr. Comp. Biol. 2020, 60, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.; Croghan, P.; Gowing, R. The mechanism by which aphids adhere to smooth surfaces. J. Exp. Biol. 1990, 152, 243–253. [Google Scholar] [CrossRef]
- Federle, W.; Baumgartner, W.; Holldobler, B. Biomechanics of ant adhesive pads: Frictional forces are rate-and temperature-dependent. J. Exp. Biol. 2004, 207, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Goodman, M.B.; Pruitt, B.L. Analysis of nematode mechanics by piezoresistive displacement clamp. Proc. Natl. Acad. Sci. USA 2007, 104, 17376–17381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappl, M.; Kaveh, F.; Barnes, W.J.P. Nanoscale friction and adhesion of tree frog toe pads. Bioinspir. Biomim. 2016, 11, 035003. [Google Scholar] [CrossRef]
- Geim, A.K.; Dubonos, S.; Grigorieva, I.; Novoselov, K.; Zhukov, A.; Shapoval, S.Y. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Walton, O.R. Review of adhesion fundamentals for micron-scale particles. KONA Powder Part. J. 2008, 26, 129–141. [Google Scholar] [CrossRef]
- Gingell, D.; Todd, I. Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. Biophys. J. 1979, 26, 507–526. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, H.; Guo, Y.; Wang, Y.; Jiang, Y.; Zhang, D.; Ma, L.; Luo, J.; Jiang, L. Micro–nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs. Adv. Sci. 2020, 7, 2001125. [Google Scholar] [CrossRef]
- Langowski, J.K.; Singla, S.; Nyarko, A.; Schipper, H.; van den Berg, F.T.; Kaur, S.; Astley, H.C.; Gussekloo, S.W.; Dhinojwala, A.; van Leeuwen, J.L. Comparative and functional analysis of the digital mucus glands and secretions of tree frogs. Front. Zool. 2019, 16, 1–17. [Google Scholar] [CrossRef]
- Beattie, A.J.; Turnbull, C.; Hough, T.; Jobson, S.; Knox, R.B. The vulnerability of pollen and fungal spores to ant secretions: Evidence and some evolutionary implications. Am. J. Bot. 1985, 72, 606–614. [Google Scholar] [CrossRef]
- Clarke, B.T. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol. Rev. 1997, 72, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Peisker, H.; Heepe, L.; Kovalev, A.E.; Gorb, S.N. Comparative study of the fluid viscosity in tarsal hairy attachment systems of flies and beetles. J. R. Soc. Interface 2014, 11, 20140752. [Google Scholar] [CrossRef] [PubMed]
- Vötsch, W.; Nicholson, G.; Müller, R.; Stierhof, Y.D.; Gorb, S.; Schwarz, U. Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem. Mol. Biol. 2002, 32, 1605–1613. [Google Scholar] [CrossRef]
- Geiselhardt, S.F.; Geiselhardt, S.; Peschke, K. Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology 2009, 19, 185–193. [Google Scholar] [CrossRef]
- Drotlef, D.M.; Stepien, L.; Kappl, M.; Barnes, W.J.P.; Butt, H.J.; del Campo, A. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Adv. Funct. Mater. 2013, 23, 1137–1146. [Google Scholar] [CrossRef]
- Kaimaki, D.M.; Andrew, C.N.; Attipoe, A.E.; Labonte, D. The physical properties of the stick insect pad secretion are independent of body size. J. R. Soc. Interface 2022, 19, 20220212. [Google Scholar] [CrossRef]
- Gernay, S.; Federle, W.; Lambert, P.; Gilet, T. Elasto-capillarity in insect fibrillar adhesion. J. R. Soc. Interface 2016, 13, 20160371. [Google Scholar] [CrossRef]
- Gilet, T.; Heepe, L.; Lambert, P.; Compère, P.; Gorb, S.N. Liquid secretion and setal compliance: The beetle’s winning combination for a robust and reversible adhesion. Curr. Opin. Insect Sci. 2018, 30, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Peisker, H.; Michels, J.; Gorb, S.N. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Scholz, I.; Baumgartner, W.; Federle, W. Micromechanics of smooth adhesive organs in stick insects: Pads are mechanically anisotropic and softer towards the adhesive surface. J. Comp. Physiol. A 2008, 194, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Scholz, I.; Barnes, W.J.P.; Smith, J.M.; Baumgartner, W. Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White. J. Exp. Biol. 2009, 212, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.J.; Goodwyn, P.J.P.; Nokhbatolfoghahai, M.; Gorb, S.N. Elastic modulus of tree frog adhesive toe pads. J. Comp. Physiol. A 2011, 197, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.L.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 1971, 324, 301–313. [Google Scholar]
- Gilman, C.A.; Imburgia, M.J.; Bartlett, M.D.; King, D.R.; Crosby, A.J.; Irschick, D.J. Geckos as springs: Mechanics explain across-species scaling of adhesion. PLoS ONE 2015, 10, e0134604. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.P. A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). J. Zool. 1975, 176, 437–476. [Google Scholar] [CrossRef]
- Ye, Z.; Lum, G.Z.; Song, S.; Rich, S.; Sitti, M. Phase change of gallium enables highly reversible and switchable adhesion. Adv. Mater. 2016, 28, 5088–5092. [Google Scholar] [CrossRef]
- Niederegger, S.; Gorb, S. Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J. Insect Physiol. 2003, 49, 611–620. [Google Scholar] [CrossRef]
- Gernay, S.M.; Labousse, S.; Lambert, P.; Compère, P.; Gilet, T. Multi-scale tarsal adhesion kinematics of freely-walking dock beetles. J. R. Soc. Interface 2017, 14, 20170493. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, M.; Federle, W.; Full, R.; Kenny, T. Small insect measurements using a custom MEMS force sensor. In Proceedings of the TRANSDUCERS’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers (Cat. No.03TH8664). Boston, MA, USA, 8–12 June 2003; Volume 2, pp. 1039–1042. [Google Scholar]
- Bartsch, M.S.; Federle, W.; Full, R.J.; Kenny, T.W. A multiaxis force sensor for the study of insect biomechanics. J. Microelectromech. Syst. 2007, 16, 709–718. [Google Scholar] [CrossRef]
- Lin, H.T.; Trimmer, B.A. A new bi-axial cantilever beam design for biomechanics force measurements. J. Biomech. 2012, 45, 2310–2314. [Google Scholar] [CrossRef] [PubMed]
Level 1 | Forcing 2 | Method | Configuration | Subject Class | Dependent Variables | Independent Variables | Measurable Range | Study |
---|---|---|---|---|---|---|---|---|
Wh | Gl | 3D force platforms | Single platform | Geckos | Reaction force | Walking direction | - | [42,43] |
Wh | Gl | Tree frogs | Reaction force | Walking direction | [44] | |||
Li | Gl | Insects | Reaction force | - | [45,46] | |||
Wh | Gl | Force Measurement Array (FMA) | Geckos | Reaction force | Surface roughness | [43] | ||
Wh | Gl | Tree frogs | Reaction force | Surface roughness, platform angle | [15,47,48] | |||
Wh | Gl | Photo-elastic gelatin | - | Insects | Reaction force | - | - | [49] |
Wh | Gl | Frustrated total internal reflection (FTIR) | - | Insects | Contact area | Load | [50] | |
Wh | Gl | - | Tree frogs | Contact area | Substrate curvature | [47,51] | ||
Wh | Gl | Rotation platform | Tree frogs | Contact area | Surface roughness | [9,10] | ||
Li | Gl | Optic tactile | - | Geckos | Normal stress | Load angle | [52] | |
Wh | Gl | Rotation platforms | - | Arachnids | Adhesion % | Surface roughness | {0.7 mN, –} SF = {0.1, 7.0} | [37] |
Wh | Gl | Insects | Adhesion % | Surface type, roughness, and structure | [53,54] | |||
Wh | Gl | Tree frogs | Adhesion and shear force | Surface roughness | [10,18,55] | |||
Wh | Gl | Force centrifuges | Adhesion | Insects | Adhesion force | Angular velocity, subject orientation | {500 µN, 500 mN} | [40,41,56,57,58,59,60] |
Wh | Gl | Friction | Insects | Dynamic friction force | Surface chemistry and roughness, angular velocity | [37,60,61,62,63,64] | ||
Wh | Lo | Tethered studies | Adhesion | Geckos | Adhesion force | Load | {200 µN, 10 mN} | [65] |
Wh | Lo | Friction | Insects | Static friction force | Surface chemistry and roughness | [30,31,32,54,57,66,67,68,69,70] | ||
Li | Lo | 1D (uniaxial) force transducers | Adhesion | Insects | Adhesive force | Preload, retraction speed | {80 µN, 100 mN} | [19,71,72] |
Li | Lo | Friction | Geckos | Friction force | Surface curvature and roughness, retraction speed | [73] | ||
Li | Lo | 2D (biaxial) force transducers | - | Geckos | Friction force | Surface chemistry, preload | [2,3] | |
Li | Lo | Insects | Friction force | Surface roughness, humidity, preload, sliding speed, retraction speed | [41,74,75] | |||
Li | Lo | Tree frogs | Friction force | Surface roughness, preload | [18,47,76] | |||
Li | Lo | Multiaxial force transducers | 3-axis | Geckos | Friction force | Drag direction | [77] | |
Li | Lo | 6-axis | Geckos | Friction force | Substrate roughness | [78] | ||
Su | Lo | Atomic force miscroscopy (AFM) | - | Geckos | Adhesion force | Surface roughnes and chemistry, humidity, preload | {200 pN, 1 µN} | [3,79,80,81] |
Su | Lo | Insects | Adhesion force | Surface roughness, humidity | [36] | |||
Li | Lo | Insects | Adhesion force | Buffer presence | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Boogaart, L.M.; Langowski, J.K.A.; Amador, G.J. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics 2022, 7, 134. https://doi.org/10.3390/biomimetics7030134
van den Boogaart LM, Langowski JKA, Amador GJ. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics. 2022; 7(3):134. https://doi.org/10.3390/biomimetics7030134
Chicago/Turabian Stylevan den Boogaart, Luc M., Julian K. A. Langowski, and Guillermo J. Amador. 2022. "Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction" Biomimetics 7, no. 3: 134. https://doi.org/10.3390/biomimetics7030134
APA Stylevan den Boogaart, L. M., Langowski, J. K. A., & Amador, G. J. (2022). Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics, 7(3), 134. https://doi.org/10.3390/biomimetics7030134