Neodymium Selenide Nanoparticles: Greener Synthesis and Structural Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Synthesis of Nd2Se3 NPs
2.2. Characterization of Green Synthesized Nd2Se3 NPs
3. Results
Possible Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furdyna, J.K.; Dong, S.-N.; Lee, S.; Liu, X.; Dobrowolska, M. The Ubiquitous Nature of Chalcogenides in Science and Technology. In Chalcogenide; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–30. [Google Scholar]
- Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P.H. Quantum Dots and Their Multimodal Applications: A Review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, E.; Kafshdooz, T.; Bakhtiary, M.; Nikzamir, N.; Nikzamir, N.; Nikzamir, M.; Mohammadian, M.; Akbarzadeh, A. Biomedical and Biological Applications of Quantum Dots. Artif. Cells Nanomed. Biotechnol. 2016, 44, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, M. Biomimetics: Materials Fabrication through Biology. Proc. Natl. Acad. Sci. USA 1999, 96, 14183–14185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.G. Silver-Based Crystalline Nanoparticles, Microbially Fabricated. Proc. Natl. Acad. Sci. USA 1999, 96, 13611–13614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, R.Y.; Mao, C.; Gao, X.; Burt, J.L.; Belcher, A.M.; Georgiou, G.; Iverson, B.L. Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chem. Biol. 2004, 11, 1553–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M.I.; Kumar, R.; Sastry, M. Enzyme Mediated Extracellular Synthesis of CdS Nanoparticles by the Fungus, Fusarium Oxysporum. J. Am. Chem. Soc. 2002, 124, 12108–12109. [Google Scholar] [CrossRef] [PubMed]
- Kowshik, M.; Deshmukh, N.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Microbial Synthesis of Semiconductor CdS Nanoparticles, Their Characterization, and Their Use in the Fabrication of an Ideal Diode. Biotechnol. Bioeng. 2002, 78, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Iram, S.; Khan, S.; Ansary, A.A.; Arshad, M.; Siddiqui, S.; Ahmad, E.; Khan, R.H.; Khan, M.S. Biogenic Terbium Oxide Nanoparticles as the Vanguard against Osteosarcoma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 168, 123–131. [Google Scholar] [CrossRef]
- Brus, L.E. Electron–Electron and Electron-hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. J. Chem. Phys. 1984, 80, 4403–4409. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.B.; Faisal, M.; Rahman, M.M.; Akhtar, K.; Asiri, A.M.; Khan, A.; Alamry, K.A. Effect of Particle Size on the Photocatalytic Activity and Sensing Properties of CeO2 Nanoparticles. Int. J. Electrochem. Sci. 2013, 8, 7284–7297. [Google Scholar]
- Yanchatuña Aguayo, O.P.; Mouheb, L.; Villota Revelo, K.; Vásquez-Ucho, P.A.; Pawar, P.P.; Rahman, A.; Jeffryes, C.; Terencio, T.; Dahoumane, S.A. Biogenic Sulfur-Based Chalcogenide Nanocrystals: Methods of Fabrication, Mechanistic Aspects, and Bio-Applications. Molecules 2022, 27, 458. [Google Scholar] [CrossRef]
- Feng, Y.; Marusak, K.E.; You, L.; Zauscher, S. Biosynthetic Transition Metal Chalcogenide Semiconductor Nanoparticles: Progress in Synthesis, Property Control and Applications. Curr. Opin. Colloid Interface Sci. 2018, 38, 190–203. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Wang, H. Synthesis of Metal Chalcogenide Nanoparticles. In Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: Stevenson Ranch, CA, USA, 2004; Volume 10, pp. 347–367. [Google Scholar]
- Asuigui, D.R.; Atif, R.; Swanson, J.; Glaser, P.; Garskaite, E.; Žarkov, A.; Stoll, S.L. Synthesis of Lanthanide Chalcogenide Nanoparticles. Nanomater. Single-Source Precursors 2022, 219–243. [Google Scholar] [CrossRef]
- Zawadzki, M.; Kępiński, L. Synthesis and Characterization of Neodymium Oxide Nanoparticles. J. Alloys Compd. 2004, 380, 255–259. [Google Scholar] [CrossRef]
- Kumar, S.A.; Abyaneh, M.K.; Gosavi, S.W.; Kulkarni, S.K.; Ahmad, A.; Khan, M.I. Sulfite Reductase-mediated Synthesis of Gold Nanoparticles Capped with Phytochelatin. Biotechnol. Appl. Biochem. 2007, 47, 191–195. [Google Scholar]
- Kumar, S.A.; Abyaneh, M.K.; Gosavi, S.W.; Kulkarni, S.K.; Pasricha, R.; Ahmad, A.; Khan, M.I. Nitrate Reductase-Mediated Synthesis of Silver Nanoparticles from AgNO3. Biotechnol. Lett. 2007, 29, 439–445. [Google Scholar] [CrossRef]
- Ansary, A.A.; Kumar, S.A.; Krishnasastry, M.V.; Abyaneh, M.K.; Kulkarni, S.K.; Ahmad, A.; Khan, M.I. CDS Quantum Dots: Enzyme Mediated in vitro Synthesis, Characterization and Conjugation with Plant Lectins. J. Biomed. Nanotechnol. 2007, 3, 406–413. [Google Scholar] [CrossRef]
- Mitchell, D.T.; Lee, S.B.; Trofin, L.; Li, N.; Nevanen, T.K.; Söderlund, H.; Martin, C.R. Smart Nanotubes for Bioseparations and Biocatalysis. J. Am. Chem. Soc. 2002, 124, 11864–11865. [Google Scholar] [CrossRef]
- Hamachi, I.; Fujita, A.; Kunitake, T. Enhanced N-Demethylase Activity of Cytochrome c Bound to a Phosphate-Bearing Synthetic Bilayer Membrane. J. Am. Chem. Soc. 1994, 116, 8811–8812. [Google Scholar] [CrossRef]
- Fang, J.; Knobler, C.M. Phase-Separated Two-Component Self-Assembled Organosilane Monolayers and Their Use in Selective Adsorption of a Protein. Langmuir 1996, 12, 1368–1374. [Google Scholar] [CrossRef]
- Stonehuerner, J.G.; Zhao, J.; O’Daly, J.P.; Crumbliss, A.L.; Henkens, R.W. Comparison of Colloidal Gold Electrode Fabrication Methods: The Preparation of a Horseradish Peroxidase Enzyme Electrode. Biosens. Bioelectron. 1992, 7, 421–428. [Google Scholar] [CrossRef]
- Zhao, J.; O’daly, J.P.; Henkens, R.W.; Stonehuerner, J.; Crumbliss, A.L. A Xanthine Oxidase/Colloidal Gold Enzyme Electrode for Amperometric Biosensor Applications. Biosens. Bioelectron. 1996, 11, 493–502. [Google Scholar] [CrossRef]
- Crumbliss, A.L.; Perine, S.C.; Stonehuerner, J.; Tubergen, K.R.; Zhao, J.; Henkens, R.W.; O’Daly, J.P. Colloidal Gold as a Biocompatible Immobilization Matrix Suitable for the Fabrication of Enzyme Electrodes by Electrodeposition. Biotechnol. Bioeng. 1992, 40, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Uddin, I.; Poddar, P.; Ahmad, A. Extracellular Biosynthesis of Water Dispersible, Protein Capped Mn5O8 Nanoparticles Using the Fungus Fusarium Oxysporum and Study of Their Magnetic Behavior. J. Nanoeng. Nanomanufacturing 2013, 3, 91–97. [Google Scholar] [CrossRef]
- Li, Q.; Jin, X.; Yang, Y.; Wang, H.; Xu, H.; Cheng, Y.; Wei, T.; Qin, Y.; Luo, X.; Sun, W. Nd2 (S, Se, Te)3 Colloidal Quantum Dots: Synthesis, Energy Level Alignment, Charge Transfer Dynamics, and Their Applications to Solar Cells. Adv. Funct. Mater. 2016, 26, 254–266. [Google Scholar] [CrossRef]
- Li, X.; Hou, Y.; Zhao, Q.; Wang, L. A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J. Colloid Interface Sci. 2011, 358, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Soltani, T.; Entezari, M.H. Photolysis and Photocatalysis of Methylene Blue by Ferrite Bismuth Nanoparticles under Sunlight Irradiation. J. Mol. Catal. A Chem. 2013, 377, 197–203. [Google Scholar] [CrossRef]
- Lacey, D.L.; Timms, E.; Tan, H.L.; Kelley, M.J.; Dunstan, C.R.; Burgess, T.; Elliott, R.; Colombero, A.; Elliott, G.; Scully, S. Osteoprotegerin Ligand Is a Cytokine That Regulates Osteoclast Differentiation and Activation. Cell 1998, 93, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Brancolini, G.; Kokh, D.B.; Calzolai, L.; Wade, R.C.; Corni, S. Docking of Ubiquitin to Gold Nanoparticles. ACS Nano 2012, 6, 9863–9878. [Google Scholar] [CrossRef]
- Battocchio, C.; Porcaro, F.; Mukherjee, S.; Magnano, E.; Nappini, S.; Fratoddi, I.; Quintiliani, M.; Russo, M.V.; Polzonetti, G. Gold Nanoparticles Stabilized with Aromatic Thiols: Interaction at the Molecule–Metal Interface and Ligand Arrangement in the Molecular Shell Investigated by SR-XPS and NEXAFS. J. Phys. Chem. C 2014, 118, 8159–8168. [Google Scholar] [CrossRef]
- Sharma, G.; Gupta, V.K.; Agarwal, S.; Kumar, A.; Thakur, S.; Pathania, D. Fabrication and Characterization of Fe@ MoPO Nanoparticles: Ion Exchange Behavior and Photocatalytic Activity against Malachite Green. J. Mol. Liq. 2016, 219, 1137–1143. [Google Scholar] [CrossRef]
- Vinayagam, R.; Varadavenkatesan, T.; Selvaraj, R. Evaluation of the Anticoagulant and Catalytic Activities of the Bridelia Retusa Fruit Extract-Functionalized Silver Nanoparticles. J. Clust. Sci. 2017, 28, 2919–2932. [Google Scholar] [CrossRef]
- Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles-Novel Materials for Chemical and Physical Applications. New J. Chem. 1998, 22, 1179–1201. [Google Scholar] [CrossRef]
- Sharma, G.; Naushad, M.; Kumar, A.; Devi, S.; Khan, M.R. Lanthanum/Cadmium/Polyaniline Bimetallic Nanocomposite for the Photodegradation of Organic Pollutant. Iran. Polym. J. 2015, 24, 1003–1013. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansary, A.A.; Syed, A.; Elgorban, A.M.; Bahkali, A.H.; Varma, R.S.; Khan, M.S. Neodymium Selenide Nanoparticles: Greener Synthesis and Structural Characterization. Biomimetics 2022, 7, 150. https://doi.org/10.3390/biomimetics7040150
Ansary AA, Syed A, Elgorban AM, Bahkali AH, Varma RS, Khan MS. Neodymium Selenide Nanoparticles: Greener Synthesis and Structural Characterization. Biomimetics. 2022; 7(4):150. https://doi.org/10.3390/biomimetics7040150
Chicago/Turabian StyleAnsary, Abu A., Asad Syed, Abdallah M. Elgorban, Ali H. Bahkali, Rajender S. Varma, and Mohd Sajid Khan. 2022. "Neodymium Selenide Nanoparticles: Greener Synthesis and Structural Characterization" Biomimetics 7, no. 4: 150. https://doi.org/10.3390/biomimetics7040150
APA StyleAnsary, A. A., Syed, A., Elgorban, A. M., Bahkali, A. H., Varma, R. S., & Khan, M. S. (2022). Neodymium Selenide Nanoparticles: Greener Synthesis and Structural Characterization. Biomimetics, 7(4), 150. https://doi.org/10.3390/biomimetics7040150