In-Situ Surface Modification of ITO Substrate via Bio-Inspired Mussel Chemistry for Organic Memory Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements and Instrument
2.3. Synthesis of Iridium Complex
2.4. Preparation of Al/PDA-PPy3Ir/ITO Device
2.5. Surface-Initiated Atom-Transfer Radical Polymerization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stathopoulos, S.; Michalas, L.; Khiat, A.; Serb, A.; Prodromakis, T. An electrical characterisation methodology for benchmarking memristive device technologies. Sci. Rep. 2019, 9, 19412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldrop, M.M. The chips are down for Moore’s law. Nat. News 2016, 530, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, C.; Qu, Z.; Ren, Y.; Zhai, Y.; Chen, J.; Gao, L.; Zhou, Y.; Han, S. Grain boundary confinement of silver imidazole for resistive switching. Adv. Funct. Mater. 2021, 32, 2108598. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, Y.; Yang, L.; Xiong, Z.; Lv, Z.; Xing, X.; Han, S.T. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 2021, 31, 2100144. [Google Scholar] [CrossRef]
- Ding, G.; Wang, Y.; Zhang, G.; Zhou, K.; Zeng, K.; Li, Z.; Han, S.T. 2D metal-organic framework nanosheets with time-dependent and multilevel memristive switching. Adv. Funct. Mater. 2019, 29, 1806637. [Google Scholar] [CrossRef]
- Lv, Z.; Hu, Q.; Xu, Z.X.; Wang, J.; Chen, Z.; Wang, Y.; Han, S.T. Organic memristor utilizing copper phthalocyanine nanowires with infrared response and cation regulating properties. Adv. Funct. Mater. 2019, 5, 1800793. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Q.; Zhu, X.; Li, Y.; Zhang, M.; Li, J.; Ma, C.; Li, H.; Lu, J.; Zhang, Q. Recent advances in organic-based materials for resistive memory applications. InfoMat 2020, 2, 995–1033. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, B.; Tang, J.; Qian, H.; Wu, H. Reliability of analog resistive switching memory for neuromorphic computing. Appl. Phys. Rev. 2020, 7, 011301. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, F.; Xue, W.; Liu, G.; Fu, Y.; Zhuang, X.; Xu, X.-H.; Gu, J.; Li, R.-W.; Chen, Y. Redox gated polymer memristive processing memory unit. Nat. Commun. 2019, 10, 736. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, C.; Gu, P.; Wang, Z.; Li, Z.; Li, H.; Lu, J.; Zhang, Q. Nonvolatile Tri-State Resistive Memory Behavior of a Stable Pyrene-Fused N-Heteroacene with Ten Linearly-Annulated Rings. Chem. Eur. J. 2018, 24, 7845–7851. [Google Scholar] [CrossRef]
- Hao, R.; Jia, N.; Tian, G.; Qi, S.; Shi, L.; Wang, X.; Wu, D. Flash memory effects and devices based on functional polyimides bearing pendent ferrocene group. Mater. Des. 2018, 139, 298–303. [Google Scholar] [CrossRef]
- Koo, B.; Baek, H.; Cho, J. Control over Memory Performance of Layer-by-Layer Assembled Metal Phthalocyanine Multilayers via Molecular-Level Manipulation. Chem. Mater. 2012, 24, 1091–1099. [Google Scholar] [CrossRef]
- Khan, Q.U.; Jia, N.; Tian, G.; Qi, S.; Wu, D. Triggering WORM/SRAM Memory Conversion in a Porphyrinated Polyimide via Zn Complexation as the Internal Electrode. J. Phys. Chem. C 2017, 121, 9153–9161. [Google Scholar] [CrossRef]
- Lim, Z.X.; Cheong, K.Y. Nonvolatile Memory Device Based on Bipolar and Unipolar Resistive Switching in Bio-Organic Aloe Polysaccharides Thin Film. Adv. Mater. Technol. 2018, 3, 1800007. [Google Scholar] [CrossRef]
- Shao, J.-Y.; Cui, B.-B.; Tang, J.-H.; Zhong, Y.-W. Resistive memory switching of transition-metal complexes controlled by ligand design. Coord. Chem. Rev. 2019, 393, 21–36. [Google Scholar] [CrossRef]
- Paul, N.D.; Rana, U.; Goswami, S.; Mondal, T.K.; Goswami, S. Azo Anion Radical Complex of Rhodium as a Molecular Memory Switching Device: Isolation, Characterization, and Evaluation of Current–Voltage Characteristics. J. Am. Chem. Soc. 2012, 134, 6520–6523. [Google Scholar] [CrossRef]
- Goswami, S.; Sengupta, D.; Paul, N.D.; Mondal, T.K.; Goswami, S. Redox non-innocence of coordinated 2-(arylazo) pyridines in iridium complexes: Characterization of redox series and an insight into voltage-induced current characteristics. Chem. Eur. J. 2014, 20, 6103–6111. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-J.; Lin, Z.-H.; Zhao, Q.; Ma, Y.; Shi, H.-F.; Yi, M.-D.; Ling, Q.-D.; Fan, Q.-L.; Zhu, C.-X.; Kang, E.-T.; et al. Flash-Memory Effect for Polyfluorenes with On-Chain Iridium(III) Complexes. Adv. Funct. Mater. 2011, 21, 979–985. [Google Scholar] [CrossRef]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, M.; Shi, P.; Gao, Y.; Ma, J.; Li, Y.; Huang, L.; Yang, Z.; Yang, L. Polydopamine-modified collagen sponge scaffold as a novel dermal regeneration template with sustained release of platelet-rich plasma to accelerate skin repair: A one-step strategy. Bioact. Mater. 2021, 6, 2613–2628. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, H.; Gilmore, K.; Hou, T.; Wang, S.; Li, Y. Aggregated Single-Walled Carbon Nanotubes Absorb and Deform Dopamine-Related Proteins Based on Molecular Dynamics Simulations. ACS Appl. Mater. Interfaces 2017, 9, 32452–32462. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, X.; Xu, Z.; Yeung, K.; Wu, S. Dopamine Modified Organic–Inorganic Hybrid Coating for Antimicrobial and Osteogenesis. ACS Appl. Mater. Interfaces 2016, 8, 33972–33981. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhu, A.; Crapnell, R.D.; Eersels, K.; van Grinsven, B.; Kunhiraman, A.K.; Singla, P.; McClements, J.; Banks, C.E.; Novakovic, K.; Peeters, M. Reviewing the use of chitosan and polydopamine for electrochemical sensing. Curr. Opin. Electrochem. 2021, 32, 100885. [Google Scholar] [CrossRef]
- Lee, H.A.; Park, E.; Lee, H. Polydopamine and Its Derivative Surface Chemistry in Material Science: A Focused Review for Studies at KAIST. Adv. Mater. 2020, 32, 1907505. [Google Scholar] [CrossRef]
- Bae, H.; Kim, D.; Seo, M.; Jin, I.K.; Jeon, S.; Lee, H.M.; Jung, S.; Jang, B.C.; Son, G.; Yu, K.; et al. Bioinspired Polydopamine-Based Resistive-Switching Memory on Cotton Fabric for Wearable Neuromorphic Device Applications. Adv. Mater. Technol. 2019, 4, 1900151. [Google Scholar] [CrossRef]
- Liu, S.-J.; Lin, W.-P.; Yi, M.-D.; Xu, W.-J.; Tang, C.; Zhao, Q.; Ye, S.-H.; Liu, X.-M.; Huang, W. Conjugated polymers with cationic iridium(iii) complexes in the side-chain for flash memory devices utilizing switchable through-space charge transfer. J. Mater. Chem. 2012, 22, 22964–22970. [Google Scholar] [CrossRef]
- Mietke, T.; Cruchter, T.; Winterling, E.; Tripp, M.; Harms, K.; Meggers, E. Suzuki Cross-Coupling for Post-Complexation Derivatization of Non-Racemic Bis-Cyclometalated Iridium(III) Complexes. Chem. Eur. J. 2017, 23, 12363–12371. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-C.; Elsayed, M.H.; Jayakumar, J.; Ting, L.-Y.; Chang, C.-L.; Elewa, A.M.; Wang, W.-S.; Chung, C.-C.; Lu, C.-Y.; Chou, H.-H. Design and synthesis of cyclometalated iridium-based polymer dots as photocatalysts for visible light-driven hydrogen evolution. Int. J. Hydrogen Energy 2020, 45, 32072–32081. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Kimyonok, A.; Weck, M. Functionalization of polymers with phosphorescent iridium complexes via click chemistry. Chem. Commun. 2006, 3933–3935. [Google Scholar] [CrossRef]
- Lu, J.; Fang, J.; Li, J.; Zhu, L. Engineering highly transparent UV-shielding films with disassembled polydopamine oligomers as light adsorber. Appl. Surf. Sci. 2021, 550. [Google Scholar] [CrossRef]
- Wang, S.; Song, J.; Li, Y.; Zhao, X.; Chen, L.; Li, G.; Wang, L.; Jia, Z.; Ge, X. Grafting antibacterial polymer brushes from titanium surface via polydopamine chemistry and activators regenerated by electron transfer ATRP. React. Funct. Polym. 2019, 140, 48–55. [Google Scholar] [CrossRef]
- Escalera-López, D.; Jensen, K.D.; Rees, N.V.; Escudero-Escribano, M. Electrochemically Decorated Iridium Electrodes with WS3−x Toward Improved Oxygen Evolution Electrocatalyst Stability in Acidic Electrolytes. Adv. Sustain. Syst. 2021, 5, 2000284. [Google Scholar] [CrossRef]
- Dong, L.; Liu, X.; Xiong, Z.; Sheng, D.; Lin, C.; Zhou, Y.; Yang, Y. Preparation of UV-Blocking Poly(vinylidene fluoride) Films through SI-AGET ATRP Using a Colorless Polydopamine Initiator Layer. Ind. Eng. Chem. Res. 2018, 57, 12662–12669. [Google Scholar] [CrossRef]
- Ranc, V.; Markova, Z.; Hajduch, M.; Prucek, R.; Kvitek, L.; Kaslik, J.; Safarova, K.; Zboril, R. Magnetically assisted surface-enhanced raman scattering selective determination of dopamine in an artificial cerebrospinal fluid and a mouse striatum using Fe3O4/Ag nanocomposite. Anal. Chem. 2014, 86, 2939–2946. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, B.; Li, D.; Fu, Y.; Liu, G.; Chen, Y. Enabling superior stretchable resistive switching memory via polymer-functionalized graphene oxide nanosheets. J. Mater. Chem. C 2019, 7, 14664–14671. [Google Scholar] [CrossRef]
- Ren, Y.; Lin, W.-C.; Ting, L.-Y.; Ding, G.; Yang, B.; Yang, J.-Q.; Chou, H.-H.; Han, S.-T.; Zhou, Y. Iridium-based polymer for memristive devices with integrated logic and arithmetic applications. J. Mater. Chem. C 2020, 8, 16845–16857. [Google Scholar] [CrossRef]
- Wang, L.; Sun, S.; Zhang, B.; Yang, L.; Yao, Y.; Zhuang, X.; Chen, Y. Viologen-based conjugated ionic polymer for nonvolatile rewritable memory device. Eur. Polym. J. 2017, 94, 222–229. [Google Scholar] [CrossRef]
- Yang, B.; Deng, Y.; Tao, P.; Zhao, M.; Zhao, W.; Tang, R.; Ma, C.; Tan, Q.; Liu, S.; Zhao, Q. Redox-active ferrocene-containing iridium(III) complex for non-volatile flash memory. Org. Electron. 2020, 85, 105815. [Google Scholar] [CrossRef]
- Nasir, S.N.S.; Mohamed, N.A.; Tukimon, M.A.; Noh, M.F.M.; Arzaee, N.A.; Teridi, M.A.M. Direct extrapolation techniques on the energy band diagram of BiVO4 thin films. Phys. B Condens. Matter 2021, 604. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, M.; Li, W.; Fan, F.; Chen, Y.; Zhang, B. In-Situ Surface Modification of ITO Substrate via Bio-Inspired Mussel Chemistry for Organic Memory Devices. Biomimetics 2022, 7, 237. https://doi.org/10.3390/biomimetics7040237
Gong M, Li W, Fan F, Chen Y, Zhang B. In-Situ Surface Modification of ITO Substrate via Bio-Inspired Mussel Chemistry for Organic Memory Devices. Biomimetics. 2022; 7(4):237. https://doi.org/10.3390/biomimetics7040237
Chicago/Turabian StyleGong, Minglei, Wei Li, Fei Fan, Yu Chen, and Bin Zhang. 2022. "In-Situ Surface Modification of ITO Substrate via Bio-Inspired Mussel Chemistry for Organic Memory Devices" Biomimetics 7, no. 4: 237. https://doi.org/10.3390/biomimetics7040237
APA StyleGong, M., Li, W., Fan, F., Chen, Y., & Zhang, B. (2022). In-Situ Surface Modification of ITO Substrate via Bio-Inspired Mussel Chemistry for Organic Memory Devices. Biomimetics, 7(4), 237. https://doi.org/10.3390/biomimetics7040237