Charge Redistribution of Co9S8/MoS2 Heterojunction Microsphere Enhances Electrocatalytic Hydrogen Evolution
Abstract
:1. Introduction
2. Material and Methods
2.1. Characterizations
2.2. Electrochemical Measurements
2.3. DFT Calculations
3. Results and Discussion
3.1. Structural and Morphological Characterization
3.2. Electrocatalytic Performance
3.3. DFT Calculations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anantharaj, S.; Noda, S.; Jothi, V.R.; Yi, S.; Driess, M.; Menezes, P.W. Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew. Chem. Int. Edit. 2021, 60, 18981–19006. [Google Scholar] [CrossRef] [PubMed]
- Abdelghafar, F.; Xu, X.M.; Jiang, S.P.; Shao, Z.P. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al Hinai, A.; Al Muhtaseb, A.H.; Rooney, D.W. Hydrogen production, storage, utilisation and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Xu, X.M.; Pan, Y.L.; Zhong, Y.J.; Ge, L.; Jiang, S.P.; Shao, Z.P. From scheelite BaMoO4 to perovskite BaMoO3: Enhanced electrocatalysis toward the hydrogen evolution in alkaline media. Compos. Part. B Eng. 2020, 198, 108214. [Google Scholar] [CrossRef]
- Xiao, X.; Shen, S.J.; Zhang, L.L.; Lin, Z.P.; Wang, Z.P.; Zhang, Q.H.; Zhong, W.W.; Zhan, B.S. Construction of Cobalt Molybdenum Diselenide Three-phase Heterojunctions for Electrocatalytic Hydrogen Evolution in Acid Medium. Chem. Asian J. 2022, 18, e202201182. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Shao, Z.P.; Jiang, S.P. High-Entropy Materials for Water Electrolysis. Energy Technol. 2022, 10, 2200573. [Google Scholar] [CrossRef]
- Shen, S.J.; Hu, Z.Y.; Zhang, H.H.; Song, K.; Wang, Z.P.; Lin, Z.P.; Zhang, Q.H.; Gu, L.; Zhong, W.W. Highly Active Si Sites Enabled by Negative Valent Ru for Electrocatalytic Hydrogen Evolution in LaRuSi. Angew. Chem. Int. Edit. 2022, 61, e202206460. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Zhang, J.T.; Wang, Z.P.; Lin, Z.P.; Shen, S.J.; Zhong, W.W. Fabricating Ru single atoms and clusters on CoP for boosted hydrogen evolution reaction. Chin. J. Struct. Chem. 2023, 3, 2539–2547. [Google Scholar] [CrossRef]
- Zhang, J.T.; Wang, M.Y.; Wan, T.T.; Shi, H.T.; Lv, A.J.; Xiao, W.; Jiao, S.Q. Novel (Pt-Ox)-(Co-Oy) Nonbonding Active Structures on Defective Carbon from Oxygen-Rich Coal Tar Pitch for Efficient HER and ORR. Adv. Mater. 2022, 34, 2206960. [Google Scholar] [CrossRef]
- Ma, S.Y.; Deng, J.; Xu, Y.P.; Tao, W.Y.; Wang, X.Q.; Lin, Z.P.; Zhang, Q.H.; Gu, L.; Zhong, W.W. Pollen-like self-supported FeIr alloy for improved hydrogen evolution reaction in acid electrolyte. J. Energy Chem. 2022, 66, 560–565. [Google Scholar] [CrossRef]
- Gu, Z.X.; Zhang, Y.C.; Wei, X.L.; Duan, Z.Y.; Ren, L.; Ji, J.C.; Zhang, X.Q.; Zhang, Y.X.; Gong, Q.Y.; Wu, H.; et al. Unveiling the Accelerated Water Electrolysis Kinetics of Heterostructural Iron-Cobalt-Nickel Sulfides by Probing into Crystalline/Amorphous Interfaces in Stepwise Catalytic Reactions. Adv. Sci. 2022, 9, 2201903. [Google Scholar] [CrossRef]
- Wang, P.; Luo, Y.Z.; Zhang, G.X.; Chen, Z.S.; Ranganathan, H.; Sun, S.H.; Shi, Z.C. Interface Engineering of NixSy@MnOxHy Nanorods to Efficiently Enhance Overall-Water-Splitting Activity and Stability. Nano-Micro Lett. 2022, 14, 120. [Google Scholar] [CrossRef]
- Yu, Q.M.; Zhang, Z.Y.; Qiu, S.Y.; Luo, Y.T.; Liu, Z.B.; Yang, F.N.; Liu, H.M.; Ge, S.Y.; Zou, X.L.; Ding, B.F.; et al. A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nat. Commun. 2021, 12, 6051. [Google Scholar] [CrossRef]
- Koudakan, P.A.; Wei, C.; Mosallanezhad, A.; Liu, B.; Fang, Y.Y.; Hao, X.B.; Qian, Y.T.; Wang, G.M. Constructing Reactive Micro-Environment in Basal Plane of MoS2 for pH-Universal Hydrogen Evolution Catalysis. Small 2022, 18, 2107974. [Google Scholar] [CrossRef]
- Hinnemann, B.; Moses, P.G.; Bonde, J.; Jørgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff, L.; Nørskov, J.K. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. [Google Scholar] [CrossRef]
- Jaramillo, T.F.; Jørgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Adv. Mater. 2019, 31, e1807134. [Google Scholar] [CrossRef]
- Feng, L.L.; Fan, M.H.; Wu, Y.Y.; Liu, Y.P.; Li, G.D.; Chen, H.; Chen, W.; Wang, D.J.; Zou, X.X. Metallic Co9S8 nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media. J. Mater. Chem. A 2016, 4, 6860–6867. [Google Scholar] [CrossRef]
- Dar, M.; Majid, K.; Wahid, M. Enhanced alkaline bifunctional electrocatalytic water splitting achieved through N and S dual-doped carbon shell reinforced Co9S8 microplates. New J. Chem. 2022, 46, 22427–22440. [Google Scholar] [CrossRef]
- Zhang, J.K.; Cui, B.L.; Jiang, S.; Liu, H.T.; Dou, M.L. Construction of three-dimensional cobalt sulfide/multi-heteroatom co-doped porous carbon as an efficient trifunctional electrocatalyst. Nanoscale 2022, 14, 9849–9859. [Google Scholar] [CrossRef]
- Xu, F.F.; Zhao, J.H.; Wang, J.L.; Guan, T.T.; Li, K.X. Strong coordination ability of sulfur with cobalt for facilitating scale-up synthesis of Co9S8 encapsulated S, N co-doped carbon as a trifunctional electrocatalyst for oxygen reduction reaction, oxygen and hydrogen evolution reaction. J. Colloid Interf. Sci. 2022, 608, 2623–2632. [Google Scholar] [CrossRef]
- Li, Y.Q.; Yin, Z.H.; Cui, M.; Liu, X.; Xiong, J.B.; Chen, S.R.; Ma, T.L. Interface engineering of transitional metal sulfide-MoS2 heterostructure composites as effective electrocatalysts for water-splitting. J. Mater. Chem. A 2021, 9, 2070–2092. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, J.F.; Yanzhang, R.P.; Du, M.L.; Wang, Q.F.; Gao, G.H.; Wu, J.D.; Wu, G.M.; Zhang, M.; Liu, B.; et al. When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core-Shell System Toward Synergetic Electrocatalytic Water Splitting. Adv. Mater. 2015, 27, 4752–4759. [Google Scholar] [CrossRef]
- Kim, M.; Anjum, M.A.R.; Choi, M.; Jeong, H.Y.; Choi, S.H.; Park, N.; Lee, J.S. Covalent 0D–2D Heterostructuring of Co9S8–MoS2 for Enhanced Hydrogen Evolution in All pH Electrolytes. Adv. Funct. Mater. 2020, 30, 2002536. [Google Scholar] [CrossRef]
- Pang, C.H.; Ma, X.H.; Wu, Y.W.; Li, S.H.; Xu, Z.; Wang, M.Y.; Zhu, X.J. Microflower-like Co9S8@MoS2 heterostructure as an efficient bifunctional catalyst for overall water splitting. RSC Adv. 2022, 12, 22931–22938. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Segall, M.D.; Philip, J.D.L.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys-Condens. Mat. 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Jeghan, S.M.N.; Kim, J.; Lee, G. Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Appl. Surf. Sci. 2021, 546, 149072. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Khandelwal, M.; Dayong, F.; Sui, L.J.; Chung, J.S.; Misra, R.D.K.; Yin, P.; Kim, E.J.; Kim, W.; Vanchiappan, A.; et al. Developments and Perspectives on Robust Nano- and Microstructured Binder-Free Electrodes for Bifunctional Water Electrolysis and Beyond. Adv. Energy Mater. 2022, 12, 2200409. [Google Scholar] [CrossRef]
- Shen, S.J.; Lin, Z.P.; Song, K.; Wang, Z.P.; Huang, L.G.; Yan, L.H.; Meng, F.Q.; Zhang, Q.H.; Gu, L.; Zhong, W.W. Reversed Active Sites Boost the Intrinsic Activity of Graphene-like Cobalt Selenide for Hydrogen Evolution. Angew. Chem. Int. Edit. 2021, 60, 12360–12365. [Google Scholar] [CrossRef]
- Li, Z.L.; Xu, W.L.; Yu, X.L.; Yang, S.X.; Zhou, Y.; Zhou, K.; Wu, Q.K.; Ning, S.L.; Luo, M.; Zhao, D.K.; et al. Synergistic effect between 1D Co3S4/MoS2 heterostructures to boost the performance for alkaline overall water splitting. Inorg. Chem. Front. 2022, 9, 2139–2149. [Google Scholar] [CrossRef]
- Zheng, H.B.; Li, Y.L.; Wang, Y.L.; Ma, F.; Gao, P.Z.; Guo, W.M.; Qin, H.; Liu, X.P.; Xiao, H.N. Fabrication of Co(PO3)2@NPC/MoS2 heterostructures for enhanced electrocatalytic hydrogen evolution. J. Alloys Compd. 2022, 894, 162411. [Google Scholar] [CrossRef]
- Shen, J.Y.; Zhang, J.L.; Zhang, G.N.; Li, W.H.; Zheng, M.; Guo, F.Y.; Chen, Q.Q. Interconnected MoS2/FeCo2S4 nanosheet array bifunctional electrocatalysts grown on carbon cloth for efficient overall water splitting. New J. Chem. 2022, 46, 16419–16425. [Google Scholar] [CrossRef]
- Cao, K.; Sun, S.W.; Song, A.Y.; Ba, J.X.; Lin, H.W.; Yu, X.H.; Xu, C.Q.; Jin, B.J.; Huang, J.; Fan, D.H. Increased 1T-MoS2 in MoS2@CoS2/G composite for high-efficiency hydrogen evolution reaction. J. Alloys Compd. 2022, 907, 164539. [Google Scholar] [CrossRef]
- Li, Y.Q.; Wang, C.; Cui, M.; Xiong, J.B.; Mi, L.W.; Chen, S.R. Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2021, 543, 148804. [Google Scholar] [CrossRef]
- Dileep, N.P.; Sarma, P.V.; Prasannachandran, R.; Surendran, V.; Shaijumon, M.M. Electrostatically Coupled Nanostructured Co(OH)2–MoS2 Heterostructures for Enhanced Alkaline Hydrogen Evolution. ACS Appl. Nano Mater. 2021, 4, 7206–7212. [Google Scholar] [CrossRef]
- Hao, J.C.; Hu, H.Y.; Dong, Y.; Hu, J.W.; Sang, X.X.; Duan, F.; Lu, S.L.; Zhu, H.; Du, M.L. Interface engineering in core–shell Co9S8@MoS2 nanocrystals induces enhanced hydrogen evolution in acidic and alkaline media. New J. Chem. 2021, 45, 11167–11173. [Google Scholar] [CrossRef]
- Kim, M.; Seok, H.; Clament Sagaya Selvam, N.; Cho, J.; Choi, G.H.; Nam, M.G.; Kang, S.; Kim, T.; Yoo, P.J. Kirkendall effect induced bifunctional hybrid electrocatalyst (Co9S8@MoS2/N-doped hollow carbon) for high performance overall water splitting. J. Power Sources 2021, 493, 229688. [Google Scholar] [CrossRef]
- Liu, X.; Yin, Z.H.; Cui, M.; Gao, L.G.; Liu, A.M.; Su, W.N.; Chen, S.R.; Ma, T.L.; Li, Y.Q. Double shelled hollow CoS2@MoS2@NiS2 polyhedron as advanced trifunctional electrocatalyst for zinc-air battery and self-powered overall water splitting. J. Colloid Interf. Sci. 2022, 610, 653–662. [Google Scholar] [CrossRef]
- Li, J.; Li, G.S.; Wang, J.H.; Xue, C.L.; Li, X.S.; Wang, S.; Han, B.Q.; Yang, M.; Li, L.P. A novel core–double shell heterostructure derived from a metal–organic framework for efficient HER, OER and ORR electrocatalysis. Inorg. Chem. Front. 2020, 7, 191–197. [Google Scholar] [CrossRef]
- Fan, J.; Ekspong, J.; Ashok, A.; Koroidov, S.; Gracia-Espino, E. Solid-state synthesis of few-layer cobalt-doped MoS2 with CoMoS phase on nitrogen-doped graphene driven by microwave irradiation for hydrogen electrocatalysis. RSC Adv. 2020, 10, 34323–34332. [Google Scholar] [CrossRef]
- Chen, T.T.; Wang, R.; Li, L.K.; Li, Z.J.; Zang, S.Q. MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution. J. Energy Chem. 2020, 44, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.J.; Wang, Z.P.; Lin, Z.P.; Song, K.; Zhang, Q.H.; Meng, F.Q.; Gu, L.; Zhong, W.W. Crystalline-Amorphous Interfaces Coupling of CoSe2/CoP with Optimized d-Band Center and Boosted Electrocatalytic Hydrogen Evolution. Adv. Mater. 2022, 34, 2110631. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Han, J.C.; Wang, X.J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W.W.; Liu, S.W.; Gao, T.L.; Zhang, Z.H.; et al. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Adv. Mater. 2021, 33, 1907818. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Li, X.L.; Zhang, T.; Xu, K.; Yang, Y.S.; Chen, G.Z.; Li, C.C.; Xie, Y. Nitrogen-Doped Cobalt Diselenide with Cubic Phase Maintained for Enhanced Alkaline Hydrogen Evolution. Angew. Chem. Int. Edit. 2021, 60, 21575–21582. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Song, Y.; Cai, J.Y.; Zheng, X.S.; Han, D.D.; Wu, Y.S.; Zang, Y.P.; Niu, S.W.; Liu, Y.; Zhu, J.F.; et al. Tailoring the d-Band Centers Enables Co4N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis. Angew. Chem. Int. Edit. 2018, 57, 5076–5080. [Google Scholar] [CrossRef] [PubMed]
Catalysts | Overpotential (mV) @10 mA cm−2 | Tafel slope (mV dec−1) | Reference |
---|---|---|---|
Co9S8/MoS2 | 118 | 92.6 | This work |
MoS2/FeCo2S4/CC | 161 | 98.4 | [35] |
MoS2@CoS2/G | 118 | 53 | [36] |
Co(PO3)2@NPC/MoS2 | 119 | 142 | [34] |
MoO2/MoS2/Co9S8 | 160 | 80 | [37] |
Co(OH)2/1T-MoS2 | 151 | 94 | [38] |
S-Co9S8/MoS2/CNFs | 122 | 66 | [39] |
Co9S8@MoS2/N-doped hollow carbon | 126 | 74.1 | [40] |
CoS2@MoS2@NiS2 | 156 | 81 | [41] |
Co9S8-MoS2/NF | 110 | 81.7 | [24] |
Co9S8/MoS2 | 173 | 71.5 | [42] |
Co-MoS2 | 197 | 61 | [43] |
Co9S8/MoS2@NSOC | 194 | 118 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, J.; Xu, A.; Lin, Z.; Wang, Z.; Zhong, W.; Shen, S.; Wu, G. Charge Redistribution of Co9S8/MoS2 Heterojunction Microsphere Enhances Electrocatalytic Hydrogen Evolution. Biomimetics 2023, 8, 104. https://doi.org/10.3390/biomimetics8010104
Zhang L, Zhang J, Xu A, Lin Z, Wang Z, Zhong W, Shen S, Wu G. Charge Redistribution of Co9S8/MoS2 Heterojunction Microsphere Enhances Electrocatalytic Hydrogen Evolution. Biomimetics. 2023; 8(1):104. https://doi.org/10.3390/biomimetics8010104
Chicago/Turabian StyleZhang, Lili, Jitang Zhang, Aijiao Xu, Zhiping Lin, Zongpeng Wang, Wenwu Zhong, Shijie Shen, and Guangfeng Wu. 2023. "Charge Redistribution of Co9S8/MoS2 Heterojunction Microsphere Enhances Electrocatalytic Hydrogen Evolution" Biomimetics 8, no. 1: 104. https://doi.org/10.3390/biomimetics8010104
APA StyleZhang, L., Zhang, J., Xu, A., Lin, Z., Wang, Z., Zhong, W., Shen, S., & Wu, G. (2023). Charge Redistribution of Co9S8/MoS2 Heterojunction Microsphere Enhances Electrocatalytic Hydrogen Evolution. Biomimetics, 8(1), 104. https://doi.org/10.3390/biomimetics8010104