Mechanical Behavior of Bamboo-Like Structures under Transversal Compressive Loading
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Design of Test Structures
2.3. Fabrication of Test Structures
2.4. Mechanical Testing
2.5. Finite Element Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, R.O. The Conflicts Between Strength and Toughness. Nat. Mater. 2011, 10, 817–822. [Google Scholar] [CrossRef]
- Barthelat, F. Architectured Materials in Engineering and Biology: Fabrication, Structure, Mechanics and Performance. Int. Mater. Rev. 2015, 60, 413–430. [Google Scholar] [CrossRef]
- Ha, N.S.; Lu, G. A Review of Recent Research on Bio-Inspired Structures and Materials for Energy Absorption Applications. Compos. Part B Eng. 2020, 181, 107496. [Google Scholar] [CrossRef]
- Wang, R.Z.; Suo, Z.; Evans, A.G.; Yao, N.; Aksay, I.A. Deformation Mechanisms in Nacre. J. Mater. Res. 2001, 16, 2485–2493. [Google Scholar] [CrossRef]
- Tran, P.; Ngo, T.D.; Ghazlan, A.; Hui, D. Bimaterial 3D Printing and Numerical Analysis of Bio-Inspired Composite Structures Under In-Plane and Transverse Loadings. Compos. Part B Eng. 2017, 108, 210–223. [Google Scholar] [CrossRef]
- Ko, K.; Jin, S.; Lee, S.E.; Hong, J.-W. Impact Resistance of Nacre-Like Composites Diversely Patterned by 3D Printing. Compos. Struct. 2020, 238, 111951. [Google Scholar] [CrossRef]
- Luz, G.M.; Mano, J.F. Biomimetic Design of Materials and Biomaterials Inspired by the Structure of Nacre. Philo. Trans. R. Soc. A 2009, 367, 1587–1605. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Q.; Tang, Z. Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre. Chem. Soc. Rev. 2012, 41, 1111–1129. [Google Scholar] [CrossRef]
- Raj, M.; Patil, S.P.; Markert, B. Mechanical Properties of Nacre-Like Composites: A Bottom-Up Approach. J. Compos. Sci. 2020, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Lin, Z.; He, J.; Wang, N.; Deng, X. Crushing Behavior and Multi-Objective Optimization on the Crashworthiness of Sandwich Structure with Star-Shaped Tube in the Center. Thin-Walled Struct. 2016, 108, 205–214. [Google Scholar] [CrossRef]
- Hao, P.; Li, L.; Du, J. Research on the Response Characteristics of Bio-Inspired Composite Sandwich Structure Under Low Velocity Impact. J. Phys. Conf. Ser. 2021, 2101, 012087. [Google Scholar] [CrossRef]
- Nguyen, X.T.; Hou, S.; Liu, T.; Han, X. A Potential Natural Energy Absorption Material—Coconut Mesocarp: Part A: Experimental Investigations on Mechanical Properties. Int. J. Mech. Sci. 2016, 115–116, 564–573. [Google Scholar] [CrossRef]
- Xue, Z.; Hutchinson, J.W. A Comparative Study of Impulse-Resistant Metal Sandwich Plates. Int. J. Impact Eng. 2004, 30, 1283–1305. [Google Scholar] [CrossRef] [Green Version]
- Dharmasena, K.P.; Wadley, H.N.G.; Williams, K.; Xue, Z.; Hutchinson, J.W. Response of Metallic Pyramidal Lattice Core Sandwich Panels to High Intensity Impulsive Loading in Air. Int. J. Impact Eng. 2011, 38, 275–289. [Google Scholar] [CrossRef] [Green Version]
- Wadley, H.N.G.; O’Masta, M.R.; Dharmasena, K.P.; Compton, B.G.; Gamble, E.A. Effect of Core Topology on Projectile Penetration in Hybrid Aluminum/Alumina Sandwich Structures. Int. J. Impact Eng. 2013, 62, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Spuskanyuk, A.V.; Flores, S.E.; Hayhurst, D.R.; Hutchinson, J.W.; McMeeking, R.M.; Evans, A.G. The Response of Metallic Sandwich Panels to Water Blast. ASME J. Appl. Mech. 2007, 74, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Ortega, C.F.; Motamedi, R.; Szewciw, L.; Vernerey, F.; Barthelat, F. Structure and Mechanical Performance of a “Modern” Fish Scale. Adv. Eng. Mater. 2012, 14, B185–B194. [Google Scholar] [CrossRef]
- Connors, M.; Yang, T.; Hosny, A.; Deng, Z.; Yazdandoost, F.; Massaadi, H.; Eernisse, D.; Mirzaeifar, R.; Dean, M.N.; Weaver, J.C.; et al. Bioinspired Design of Flexible Armor Based on Chiton Scales. Nat. Commun. 2019, 10, 5413. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.C.; Yang, W.; Lapeyriere, M.; Schaible, E.; Ritchie, R.O.; Meyers, M.A. Structure and Mechanical Adaptability of a Modern Elasmoid Fish Scale from the Common Carp. Matter 2020, 3, 842–863. [Google Scholar] [CrossRef]
- Kumar, A.; Collini, L.; Ursini, C.; Jeng, J.-Y. Energy Absorption and Stiffness of Thin and Thick-Walled Closed-Cell 3D-Printed Structures Fabricated from a Hyperelastic Soft Polymer. Materials 2022, 15, 2441. [Google Scholar] [CrossRef]
- Kumar, A.; Collini, L.; Daurel, A.; Jeng, J.-Y. Design and Additive Manufacturing of Closed Cells from Supportless Lattice Structure. Addit. Manufac. 2020, 33, 101168. [Google Scholar] [CrossRef]
- Häsä, R.; Pinho, S.T. Bio-Inspired Armour: CFRP with Scales for Perforation Resistance. Mater. Lett. 2020, 273, 127966. [Google Scholar] [CrossRef]
- Vernerey, F.J.; Barthelat, F. On the Mechanics of Fishscale Structures. Int. J. Solids Struct. 2010, 47, 2268–2275. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Deng, J.; He, K.; Tao, Y. Out-of-Plane Crushing Behavior of Hybrid Hierarchical Square Honeycombs. Thin-Walled Struct. 2022, 181, 110051. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, A.; Lin, S.-C.; Jeng, J.-Y. CFD and Strength Analysis of Novel Biomimetic Lattice Structure Designed for Additive Manufacturing and Post-Processing. Mater. Des. 2022, 224, 111375. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, X.; Li, P.; Huang, G.; Feng, S.; Shen, C.; Han, B.; Zhang, X.; Jin, F.; Xu, F.; et al. Bioinspired Engineering of Honeycomb Structure—Using Nature to Inspire Human Innovation. Prog. Mater. Sci. 2015, 74, 332–400. [Google Scholar] [CrossRef]
- Palombini, F.L.; de Araujo Mariath, J.E.; de Oliveira, B.F. Bionic Design of Thin-Walled Structure Based on the Geometry of the Vascular Bundles of Bamboo. Thin-Walled Struct. 2020, 155, 106936. [Google Scholar] [CrossRef]
- Xiang, J.; Du, J. Energy Absorption Characteristics of Bio-Inspired Honeycomb Structure Under Axial Impact Loading. Mater. Sci. Eng. A 2017, 696, 283–289. [Google Scholar] [CrossRef]
- Sharma, B.; Gatóo, A.; Bock, M.; Ramage, M. Engineered Bamboo for Structural Applications. Construct. Build. Mater. 2015, 81, 66–73. [Google Scholar] [CrossRef]
- Yu, Y.; Fei, B.; Zhang, B.; Yu, X. Cell-Wall Mechanical Properties of Bamboo Investigated by In-Situ Imaging Nanoindentation. Wood Fiber Sci. 2007, 39, 527–535. [Google Scholar]
- Ufodike, C.O.; Wang, H.; Ahmed, M.F.; Dolzyk, G.; Jung, S. Design and Modeling of Bamboo Biomorphic Structure for In-Plane Energy Absorption Improvement. Mater. Des. 2021, 205, 109736. [Google Scholar] [CrossRef]
- Zou, M.; Wei, C.G.; Li, J.Q.; Xu, S.C.; Zhang, X. The Energy Absorption of Bamboo Under Dynamic Axial Loading. Thin-Walled Struct. 2015, 95, 255–261. [Google Scholar]
- Fu, J.; Liu, Q.; Liufu, K.; Deng, Y.; Fang, J.; Li, Q. Design of Bionic-Bamboo Thin-Walled Structures for Energy Absorption. Thin-Walled Struct. 2019, 135, 400–413. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, T.X.; Xu, J. Uncover the Underlying Mechanisms of Topology and Structural Hierarchy in Energy Absorption Performances of Bamboo-Inspired Tubular Honeycomb. Extr. Mech. Lett. 2022, 52, 101640. [Google Scholar] [CrossRef]
- Dai, S.-W.; Gu, Y.-L.; Zhao, L.; Zhang, W.; Gao, C.-H.; Wu, Y.-X.; Shen, S.-C.; Zhang, C.; Kong, T.-T.; Li, Y.-T.; et al. Bamboo-Inspired Mechanically Flexible and Electrically Conductive Polydimethylsiloxane Foam Materials with Designed Hierarchical Pore Structures for Ultra-Sensitive and Reliable Piezoresistive Pressure Sensor. Compos. Part B Eng. 2021, 225, 109243. [Google Scholar] [CrossRef]
- Han, S.; Chen, F.; Ye, H.; Zheng, Z.; Chen, L.; Wang, G. Bamboo-Inspired Renewable, High-Strength, Vibration-Damping Composites for Structural Applications. ACS Sustain. Chem. Eng. 2023, 11, 1146–1156. [Google Scholar] [CrossRef]
- de Oliveira, L.Á.; Vieira, M.M.; dos Santos, J.C.; Freire, R.T.F.; Tonatto, M.L.P.; Panzera, T.H.; Zamani, P.; Scarpa, F. An Investigation on the Mechanical Behaviour of Sandwich Composite Structures with Circular Honeycomb Bamboo Core. Discov. Mech. Eng. 2022, 1, 7. [Google Scholar] [CrossRef]
- Dauletbek, A.; Li, H.; Xiong, Z.; Lorenzo, R. A Review of Mechanical Behavior of Structural Laminated Bamboo Lumber. Sustain. Struct. 2021, 1, 000004. [Google Scholar] [CrossRef]
- Ghavami, K. Bamboo as Reinforcement in Structural Concrete Elements. Cem. Concr. Compos. 2005, 27, 637–649. [Google Scholar] [CrossRef]
- Chattopadhyay, S.K.; Khandal, R.; Uppaluri, R.; Ghoshal, A.K. Bamboo Fiber Reinforced Polypropylene Composites and Their Mechanical, Thermal, and Morphological Properties. J. Appl. Polym. Sci. 2011, 119, 1619–1626. [Google Scholar] [CrossRef]
- Ababu, M.; Husen, E.; Awraris, B.; Bashawal, N. Review of the Applications and Properties of Bamboo Fiber Reinforced Composite Materials. Glob. Sci. J. 2021, 9, 1196–1204. [Google Scholar]
Structure | Unit Cell Size A (mm) | Void Size a (mm) | Elastic Modulus E (MPa) | Yield Strength σY (MPa) | Fracture Strength σf (MPa) | Strain Energy Density at Fracture uf (J/m3) |
---|---|---|---|---|---|---|
A2.5 | 2.5 | 0.5 | 203.88 | 5.65 | 8.16 | 0.299 |
A5 | 5 | 1.0 | 205.76 | 2.50 | 4.55 | 0.093 |
A7.5 | 7.5 | 1.5 | 187.78 | 3.90 | 6.44 | 0.068 |
A10 | 10 | 2.0 | 156.50 | 2.17 | 3.76 | 0.066 |
A15 | 15 | 3.0 | 224.40 | 4.01 | 6.91 | 0.190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, J.; Komvopoulos, K. Mechanical Behavior of Bamboo-Like Structures under Transversal Compressive Loading. Biomimetics 2023, 8, 103. https://doi.org/10.3390/biomimetics8010103
Wang S, Wang J, Komvopoulos K. Mechanical Behavior of Bamboo-Like Structures under Transversal Compressive Loading. Biomimetics. 2023; 8(1):103. https://doi.org/10.3390/biomimetics8010103
Chicago/Turabian StyleWang, Siyi, Jiayang Wang, and Kyriakos Komvopoulos. 2023. "Mechanical Behavior of Bamboo-Like Structures under Transversal Compressive Loading" Biomimetics 8, no. 1: 103. https://doi.org/10.3390/biomimetics8010103
APA StyleWang, S., Wang, J., & Komvopoulos, K. (2023). Mechanical Behavior of Bamboo-Like Structures under Transversal Compressive Loading. Biomimetics, 8(1), 103. https://doi.org/10.3390/biomimetics8010103