Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bone Characteristics
2.2. Implants Setting
2.3. Groups of Study
2.4. Loading
2.5. Meshed Models
2.6. Framework
3. Results
3.1. Cancellous Stress in the Region of Implants (Graph 1)
3.2. Cortical Stress in the Region of Implants (Graph 2)
3.3. Stress around the Implants (Graph 3)
3.4. Bar/Framework Stress (Graph 4)
4. Discussion
5. Conclusions
- (i)
- Peri-implant stresses were decreased in the graphene framework models when compared to titanium models;
- (ii)
- Significant decrease in the cortical stresses was seen in the graphene models compared to titanium under oblique load;
- (iii)
- The graphene framework’s load-bearing capacity was greater than the titanium framework.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adell, R.; Eriksson, B.; Lekholm, U.; I Brånemark, P.; Jemt, T. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int. J. Oral Maxillofac. Implant. 1990, 5, 347–359. [Google Scholar]
- Eliasson, A.; Palmqvist, S.; Svenson, B.; Sondell, K. Five-year results with fixed complete-arch mandibular prostheses supported by 4 implants. Int. J. Oral Maxillofac. Implant. 2000, 15, 505–510. [Google Scholar]
- Malhotra, A.; Padmanabhan, T.; Mohamed, K.; Natarajan, S.; Elavia, U. Load transfer in tilted implants with varying cantilever lengths in an all-on-four situation. Aust. Dent. J. 2012, 57, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Rivaldo, E.G.; Montagner, A.; Nary, H.; Frasca, L.C.D.F.; Brånemark, P.-I. Assessment of rehabilitation in edentulous patients treated with an immediately loaded complete fixed mandibular prosthesis supported by three implants. Int. J. Oral Maxillofac. Implant. 2012, 27, 695–702. [Google Scholar]
- Cannizzaro, G.; Felice, P.; Giorgi, A.; Lazzarini, M.; Ferri, V.; Leone, M.; Esposito, M. Immediate loading of 2 (all-on-2) flapless-placed mandibular implants supporting cross-arch fixed prostheses: Interim data from a 1-year follow-up prospective single cohort study. Eur. J. oral Implant. 2012, 5, 49–58. [Google Scholar]
- Tribst, J.P.M.; Piva, A.M.D.O.D.; Borges, A.L.S.; Bottino, M.A. Effect of implant number and height on the biomechanics of full arch prosthesis. Braz. J. Oral Sci. 2018, 17, e18222. [Google Scholar] [CrossRef]
- Gomes, É.A.; Barão, V.A.; Rocha, E.P.; De Almeida, O.; Assunção, W.G. Effect of metal-ceramic or all ceramic superstructure materials on stress distribution in a single implant-supported prosthesis: Threedimensional finite element analysis. Int. J. Oral Maxillofac. Implant. 2011, 26, 1202–1209. [Google Scholar]
- Zhang, G.; Yuan, H.; Chen, X.; Wang, W.; Chen, J.; Liang, J.; Zhang, P. A three-dimensional finite element study on the biomechanical simulation of various structured dental implants and their surrounding bone tissues. Int. J. Dent. 2016, 2016, 4867402. [Google Scholar] [CrossRef] [Green Version]
- Skalak, R. Biomechanical considerations in osseointegrated prostheses. J. Prosthet. Dent. 1983, 49, 843–848. [Google Scholar] [CrossRef]
- Ciftçi, Y.; Canay, S. Stress distribution on the metal framework of the implant-supported fixed prosthesis using different veneering materials. Int. J. Prosthodont. 2001, 14, 406–411. [Google Scholar]
- Hulterstrom, M.; Nilsson, U. Cobalt-chromium as a framework material in implant-supported fixed prostheses: A preliminary report. Int. J. Oral. Maxillofac. Implants. 1991, 6, 475–480. [Google Scholar]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; van der Heide, E. In Silico Contact Pressure of Metal-on-Metal Total Hip Implant with Different Materials Subjected to Gait Loading. Metals 2022, 12, 1241. [Google Scholar] [CrossRef]
- Heboyan, A.; Giudice, R.L.; Kalman, L.; Zafar, M.S.; Tribst, J.P.M. Stress Distribution Pattern in Zygomatic Implants Supporting Different Superstructure Materials. Materials 2022, 15, 4953. [Google Scholar] [CrossRef]
- Jindal, P.; Worcester, F.; Walia, K.; Gupta, A.; Breedon, P. Finite element analysis of titanium alloy-graphene based mandible plate. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 324–330. [Google Scholar] [CrossRef]
- Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar]
- Geng, J.-P.; Tan, K.B.C.; Liu, G.-R. Application of finite element analysis in implant dentistry: A review of the literature. J. Prosthet. Dent. 2001, 85, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Cervino, G.; Romeo, U.; Lauritano, F.; Bramanti, E.; Fiorillo, L.; D’Amico, C.; Milone, D.; Laino, L.; Campolongo, F.; Rapisarda, S.; et al. Fem and von mises analysis of OSSTEM dental implant structural components: Evaluation of different direction dynamic loads. Open Dent. J. 2018, 12, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Medina-Galvez, R.; Cantó-Navés, O.; Marimon, X.; Cerrolaza, M.; Ferrer, M.; Cabratosa-Termes, J. Bone Stress Evaluation with and without Cortical Bone Using Several Dental Restorative Materials Subjected to Impact Load: A Fully 3D Transient Finite-Element Study. Materials 2021, 14, 5801. [Google Scholar] [CrossRef]
- Brånemark, P.I.; Engstrand, P.; Ohrnell, L.O.; Gröndahl, K.; Nilsson, P.; Hagberg, K.; Darle, C.; Lekholm, U. Brånemark Novum: A new treatment concept for rehabilitation of the edentulous mandible. Preliminary results from a prospective clinical follow-up study. Clin. Implant. Dent. Relat. Res. 1999, 1, 2–16. [Google Scholar] [CrossRef]
- Brandão, T.B.; Vechiato-Filho, A.J.; Vedovato, E.; Silva, L.S.; Silva, A.R.D.S.; e Dias, R.B.; Batista, V.E.D.S. Is the Fixed Mandibular 3-Implant Retained Prosthesis Safe and Predicable for Full-Arch Mandibular Prostheses? A Systematic Review. J. Prosthodont. 2020, 30, 119–127. [Google Scholar] [CrossRef]
- De Bruyn, H.; Kisch, J.; Collaert, B.; Lindén, U.; Nilner, K.; Dvärsäter, L. Fixed mandibular restorations on three early-loaded regular platform Brånemark implants. Clin. Implant. Dent. Relat. Res. 2001, 3, 176–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meese, C.E. (Ed.) Contemporary Implant Dentistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Pessoa, R.S.; Vaz, L.G.; Marcantonio, E.; Sloten, J.V.; Duyck, J.; Jaecques, S. Biomechanical evaluation of platform switching in different implant protocols: Computed tomography-based three-dimensional finite element analysis. Int. J. Oral Maxillofac. Implant. 2010, 25, 911–919. [Google Scholar]
- Reina, G.; Gonzalez-Domınguez, J.M.; Criado, A.; Vazquez, E.; Bianco, A.; Prato, M. Promises, facts, and challenges for graphene in biomedical applications. Chem. Soc. Rev. 2017, 46, 4400–4416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, V.; Naik, N. A comparative study on the effect of stress in dental implant structure using finite element analysis. Int. J. Mech. Prod. Eng. Res. Dev. 2019, 9, 709–717. [Google Scholar]
- Gu, M.; Liu, Y.; Chen, T.; Du, F.; Zhao, X.; Xiong, C.; Zhou, Y. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? Tissue Eng. Part B Rev. 2014, 20, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Podila, R.; Moore, T.; Alexis, F.; Rao, A. Graphene Coatings for Biomedical Implants. J. Vis. Exp. 2013, 73, e50276. [Google Scholar] [CrossRef] [Green Version]
- Malo, P.; Rangert, B.; Nobre, M. All-on-four immediate-function concept with Branemark system implants for completely edentulous maxillae: A 1-year retrospective clinical study. Clin. Implant. Dent. Relat. Res. 2005, 7, 88–94. [Google Scholar] [CrossRef]
- Bhering, C.L.B.; Mesquita, M.F.; Kemmoku, D.T.; Noritomi, P.Y.; Consani, R.L.X.; Barão, V.A.R. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Mater. Sci. Eng. C 2016, 69, 715–725. [Google Scholar] [CrossRef]
- Haroun, F.; Ozan, O. Evaluation of Stresses on Implant, Bone, and Restorative Materials Caused by Different Opposing Arch Materials in Hybrid Prosthetic Restorations Using the All-on-4 Technique. Materials 2021, 14, 4308. [Google Scholar] [CrossRef]
- Sirandoni, D.; Leal, E.; Weber, B.; Noritomi, P.Y.; Fuentes, R.; Borie, E. Effect of Different Framework Materials in Implant-Supported Fixed Mandibular Prostheses: A Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2019, 34, e107–e114. [Google Scholar] [CrossRef]
- Lee, K.-S.; Shin, S.-W.; Lee, S.-P.; Kim, J.-E.; Kim, J.H.; Lee, J.-Y. Comparative Evaluation of a Four-Implant–Supported Polyetherketoneketone Framework Prosthesis: A Three-Dimensional Finite Element Analysis Based on Cone Beam Computed Tomography and Computer-Aided Design. Int. J. Prosthodont. 2017, 30, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Tribst, J.P.M.; de Morais, D.C.; de Matos, J.D.M.; Lopes, G.D.R.S.; Piva, A.M.D.O.D.; Borges, A.L.S.; Bottino, M.A.; Lanzotti, A.; Martorelli, M.; Ausiello, P. Influence of Framework Material and Posterior Implant Angulation in Full-Arch All-on-4 Implant-Supported Prosthesis Stress Concentration. Dent. J. 2022, 10, 12. [Google Scholar] [CrossRef]
- Jacques, L.B.; Moura, M.S.; Suedam, V.; Souza, E.A.C.; Rubo, J.H. Effect of cantilever length and framework alloy on the stress distribution of mandibular-cantilevered implant-supported prostheses. Clin. Oral Implant. Res. 2009, 20, 737–741. [Google Scholar] [CrossRef]
- Bellini, C.M.; Romeo, D.; Galbusera, F.; Taschieri, S.; Raimondi, M.T.; Zampelis, A.; Francetti, L. Comparison of tilted versus nontilted implant-supported prosthetic designs for the restoration of the edentulous mandible: A biomechanical study. Int. J. Oral Maxillofac. Implants. 2009, 24, 511–517. [Google Scholar]
- Li, X.; Cao, Z.; Qiu, X.; Tang, Z.; Gong, L.; Wang, D. Does matching relation exist between the length and the tilting angle of terminal implants in the all-on-four protocol? stress distributions by 3D finite element analysis. J. Adv. Prosthodont. 2015, 7, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, M.; Tealdo, T.; Pera, F.; Menini, M.; Mossolov, A.; Drago, C.; Pera, P. Three-dimensional finite element analysis of load transmission using different implant inclinations and cantilever lengths. Int. J. Prosthodont. 2009, 21, 539–542. [Google Scholar]
- Fazi, G.; Tellini, S.; Vangi, D.; Branchi, R. Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis. Int. J. Oral. Maxillofac. Implants. 2011, 26, 752–759. [Google Scholar]
- Rezende, C.E.E.; Chase-Diaz, M.; Costa, M.D.; Albarracin, M.L.; Paschoeto, G.; Sousa, E.A.C.; Rubo, J.H.; Borges, A.F.S. Stress distribution in single dental implant system: Three dimensional finite element analysis based on an in vitro experimental model. J. Craniofac. Surg. 2015, 26, 2196–2200. [Google Scholar] [CrossRef]
- Carneiro, B.A.; de Brito, R.B.; França, F.M.G. Finite element analysis of provisional structures of implant-supported complete prostheses. J. Oral. Implantol. 2014, 40, 161–168. [Google Scholar] [CrossRef]
- Iplikçioğlu, H.; Akça, K.; Cehreli, M.C.; Sahin, S. Comparison of non-linear finite element stress analysis with in vitro strain gauge measurements on a Morse taper implant. Int. J. Oral Maxillofac. Implant. 2003, 18, 258–265. [Google Scholar]
- Nagasawa, S.; Hayano, K.; Niino, T.; Yamakura, K.; Yoshida, T.; Mizoguchi, T.; Terashima, N.; Tamura, K.; Ito, M.; Yagasaki, H.; et al. Nonlinear stress analysis of titanium implants by finite element method. Dent. Mater. J. 2008, 27, 633–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevimay, M.; Turhan, F.; Kiliçarslan, M.; Eskitascioglu, G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J. Prosthet. Dent. 2005, 93, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.M.; A Caputo, A.; Wylie, R.S.; Son, S.C.; Jeon, Y.C. Bicortically stabilized implant load transfer. Int. J. Oral Maxillofac. Implant. 2003, 18, 59–65. [Google Scholar]
- Elsayyad, A.A.; Abbas, N.A.; AbdelNabi, N.M.; Osman, R.B. Biomechanics of 3-implant-supported and 4-implant-supported mandibular screw-retained prostheses: A 3D finite element analysis study. J. Prosthet. Dent. 2020, 124, 68.e1–68.e10. [Google Scholar] [CrossRef]
- Van Zyl, P.P.; Grundling, N.L.; Jooste, C.H.; Terblanche, E. Three-dimensional finite element model of a human mandible incorporating six osseointegrated implants for stress analysis of mandibular cantilever prostheses. Int. J. Oral Maxillofac. Implant. 1995, 10, 51. [Google Scholar]
- Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Wibowo, D.B.; Kurdi, O.; Tauviqirrahman, M.; Jamari, J. Minimizing Risk of Failure from Ceramic-on-Ceramic Total Hip Prosthesis by Selecting Ceramic Materials Based on Tresca Stress. Sustainability 2022, 14, 13413. [Google Scholar] [CrossRef]
- Demachkia, A.M.; Sichi, L.G.B.; Rodrigues, J.V.M.; Junior, L.N.; de Araújo, R.M.; Ramos, N.D.C.; Bottino, M.A.; Tribst, J.P.M. Implant-Supported Restoration with Straight and Angled Hybrid Abutments: Digital Image Correlation and 3D-Finite Element Analysis. Eur. J. Gen. Dent. 2022, 11, 23–31. [Google Scholar] [CrossRef]
- Ahmed, M.A.M.; Hamdy, A.M.; Fattah, G.A.; Effadl, A.K.A. Prosthetic Design and Restorative Material Effect on the Biomechanical Behavior of Dental Implants: Strain Gauge Analysis. Braz. Dent. Sci. 2022, 25, e3380. [Google Scholar] [CrossRef]
- Kümbüloğlu, Ö.; Koyuncu, B.; Yerlioğlu, G.; Al-Haj Husain, N.; Özcan, M. Stress Distribution on Various Implant-Retained Bar Overdentures. Materials 2022, 15, 3248. [Google Scholar] [CrossRef]
Thermal Conductivity (W/Mk) | Elastic Modulus (GPa) | Tensile Strength (GPa) | Poisson’s Ratio | Mass Density (kg/m3) | Shear Modulus (GPa) | |
---|---|---|---|---|---|---|
Titanium | 20 | 102 | 240 | 0.32 | 4420 | 45 |
Graphene | 3000 | 1000 | 130 | 0.19 | 2270 | 53 |
Cortical bone | - | 14 | - | 0.30 | - | - |
Trabecular bone | - | 1.47 | - | 0.30 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desai, S.R.; Koulgikar, K.D.; Alqhtani, N.R.; Alqahtani, A.R.; Alqahtani, A.S.; Alenazi, A.; Heboyan, A.; Fernandes, G.V.O.; Mustafa, M. Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models. Biomimetics 2023, 8, 15. https://doi.org/10.3390/biomimetics8010015
Desai SR, Koulgikar KD, Alqhtani NR, Alqahtani AR, Alqahtani AS, Alenazi A, Heboyan A, Fernandes GVO, Mustafa M. Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models. Biomimetics. 2023; 8(1):15. https://doi.org/10.3390/biomimetics8010015
Chicago/Turabian StyleDesai, Shrikar R., Kiran Deepak Koulgikar, Nasser Raqe Alqhtani, Ali Robaian Alqahtani, Abdullah Saad Alqahtani, Adel Alenazi, Artak Heboyan, Gustavo V. O. Fernandes, and Mohammed Mustafa. 2023. "Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models" Biomimetics 8, no. 1: 15. https://doi.org/10.3390/biomimetics8010015
APA StyleDesai, S. R., Koulgikar, K. D., Alqhtani, N. R., Alqahtani, A. R., Alqahtani, A. S., Alenazi, A., Heboyan, A., Fernandes, G. V. O., & Mustafa, M. (2023). Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models. Biomimetics, 8(1), 15. https://doi.org/10.3390/biomimetics8010015