Biomimicry and 3D-Printing of Mussel Adhesive Proteins for Regeneration of the Periodontium—A Review
Abstract
:1. Introduction
2. Biomimetic Biomaterials in Dentistry
3. Biomimetic Biomaterials in Periodontium Regeneration
4. Mussel Adhesive Proteins in Dentistry
5. Clinical Application of MAPs in the Periodontium
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hwang, J.; Jeong, Y.; Park, J.M.; Lee, K.H.; Hong, J.W.; Choi, J. Biomimetics: Forecasting the future of science, engineering, and medicine. Int. J. Nanomed. 2015, 10, 5701. [Google Scholar]
- Sadowska, J.M.; Wei, F.; Guo, J.; Guillem-Marti, J.; Ginebra, M.P.; Xiao, Y. Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation. Biomaterials 2018, 181, 318–332. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Ren, B.; Wang, Q.; Wu, J.; Yang, N.; Sui, X.; Li, L.; Li, M.; Zhang, X.; et al. Biomimetic mineralisation systems for in situ enamel restoration inspired by amelogenesis. J. Mater. Sci. Mater. Med. 2021, 32, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Tarle, Z.; Hickel, R.; Ilie, N. Polymerization kinetics of experimental bioactive composites containing bioactive glass. J. Dent. 2018, 76, 83–88. [Google Scholar] [CrossRef]
- Wang, F.; Li, C.; Zhang, S.; Liu, H. Tantalum coated on titanium dioxide nanotubes by plasma spraying enhances cytocompatibility for dental implants. Surf. Coat. Technol. 2020, 382, 125161. [Google Scholar] [CrossRef]
- Dini, C.; Nagay, B.E.; Cordeiro, J.M.; da Cruz, N.C.; Rangel, E.C.; Ricomini-Filho, A.P.; de Avila, E.D.; Barão, V.A.R. UV-photofunctionalization of a biomimetic coating for dental implants application. Mater. Sci. Eng. C 2020, 110, 110657. [Google Scholar] [CrossRef]
- De Tullio, I.; Berardini, M.; di Iorio, D.; Perfetti, F.; Perfetti, G. Comparative evaluation among laser-treated, machined, and sandblasted/acid-etched implant surfaces: An in vivo histologic analysis on sheep. Int. J. Implant. Dent. 2020, 6, 7. [Google Scholar] [CrossRef]
- Brown, B.N.; Badylak, S.F. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl. Res. J. Lab. Clin. Med. 2014, 163, 268. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yang, X.; Chen, Y.; Zhang, J.; Gai, K.; Chen, J.; Huo, F.; Guo, Q.; Guo, W.; Gou, M.; et al. Biomimetic Peridontium Patches for Functional Periodontal Regeneration. Adv. Healthc. Mater. 2023, 2202169. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, Z.; Ye, Q.; Li, G.; Xu, M.; Li, Y.; Liu, L.; Song, W.; Zhang, Y. Mild photothermal effect of titania nanotubes array as a promising solution for peri-implantitis. Mater. Des. 2022, 217, 110641. [Google Scholar] [CrossRef]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J. Biomaterials science: An introduction to materials in medicine. Part 1. In Material Sciences and Engineering Properties of Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Boston, MA, USA, 2004; ISBN 9780080470368. [Google Scholar]
- Matichescu, A.; Ardelean, L.C.; Rusu, L.C.; Craciun, D.; Bratu, E.A.; Babucea, M.; Leretter, M. Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration-A Review. Materials 2020, 13, 5303. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, S.J.; Reinke, G.; Gobbi, V.J.; Rocha, Y.; Sousa, T.P.; Coutinho, M.M. Biomaterial: Concepts and Basics Properties. Eur. Int. J. Sci. Technol. 2020, 9, 23–42. [Google Scholar]
- Cacopardo, L. Chapter 18—Biomaterials and biocompatibility. In Human Orthopaedic Biomechanics; Innocenti, B., Galbusera, F., Eds.; Academic Press: Boston, MA, USA, 2022; pp. 341–359. ISBN 9780128244814. [Google Scholar]
- Aggarwal, D.; Kumar, V.; Sharma, S. Drug-loaded biomaterials for orthopedic applications: A review. J. Control. Release 2022, 344, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Kavasi, R.M.; Coelho, C.C.; Platania, V.; Quadros, P.A.; Chatzinikolaidou, M. In Vitro Biocompatibility Assessment of Nano-Hydroxyapatite. Nanomaterials 2021, 11, 1152. [Google Scholar] [CrossRef]
- Gil, J.; Manero, J.M.; Ruperez, E.; Velasco-Ortega, E.; Jiménez-Guerra, A.; Ortiz-García, I.; Monsalve-Guil, L. Mineralization of Titanium Surfaces: Biomimetic Implants. Materials 2021, 14, 2879. [Google Scholar] [CrossRef]
- Luz, E.P.C.G.; Chaves, P.H.S.; Vieira, L.D.A.P.; Ribeiro, S.F.; Borges, M.D.F.; Andrade, F.K.; Muniz, C.R.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Rosa, M.D.F.; et al. In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites. Carbohydr. Polym. 2020, 237, 116174. [Google Scholar] [CrossRef]
- Fang, J.; Li, P.F.; Lu, X.; Fang, L.M.; Lu, X.Y.; Ren, F.Z. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater. 2019, 88, 503–513. [Google Scholar] [CrossRef]
- Skallevold, H.E.; Rokaya, D.; Khurshid, Z.; Zafar, M.S. Bioactive Glass Applications in Dentistry. Int. J. Mol. Sci. 2019, 20, 5960. [Google Scholar] [CrossRef]
- Wei, L.; Teng, F.; Deng, L.; Liu, G.; Luan, M.; Jiang, J.; Liu, Z.; Liu, Y. Periodontal regeneration using bone morphogenetic protein 2 incorporated biomimetic calcium phosphate in conjunction with barrier membrane: A pre-clinical study in dogs. J. Clin. Periodontol. 2019, 46, 1254–1263. [Google Scholar] [CrossRef]
- Chinipardaz, Z.; Zhong, J.M.; Yang, S. Regulation of LL-37 in Bone and Periodontium Regeneration. Life 2022, 12, 1533. [Google Scholar] [CrossRef]
- Liu, J.; Ruan, J.; Weir, M.D.; Ren, K.; Schneider, A.; Wang, P.; Oates, T.W.; Chang, X.; Xu, H.H.K. Periodontal Bone-Ligament-Cementum Regeneration via Scaffolds and Stem Cells. Cells 2019, 8, 537. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Luan, X.; Liu, X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact. Mater. 2020, 5, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, L.; Li, X.; Liu, S.; Du, J.; Xu, J.; Hu, J.; Liu, Y. Challenges and Tissue Engineering Strategies of Periodontal-Guided Tissue Regeneration. Tissue Eng. Part C Methods 2022, 28, 405–419. [Google Scholar] [CrossRef]
- Deng, Y.; Liang, Y.; Liu, X. Biomaterials for Periodontal Regeneration. Dent. Clin. N. Am. 2022, 66, 659–672. [Google Scholar] [CrossRef] [PubMed]
- De Pieri, A.; Rochev, Y.A.; Zeugolis, D.I. Scaffold-free cell-based tissue engineering therapies: Advances, shortfalls and forecast. NPJ Regen. Med. 2021, 6, 18. [Google Scholar] [CrossRef]
- Woo, H.N.; Cho, Y.J.; Tarafder, S.; Lee, C.H. The recent advances in scaffolds for integrated periodontal regeneration. Bioact. Mater. 2021, 6, 3328–3342. [Google Scholar] [CrossRef]
- Olaru, M.; Sachelarie, L.; Calin, G. Hard Dental Tissues Regeneration-Approaches and Challenges. Materials 2021, 14, 2558. [Google Scholar] [CrossRef]
- Daghrery, A.; Bottino, M.C. Advanced biomaterials for periodontal tissue regeneration. Genesis 2022, 60, e23501. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, C.; Rong, X.; Zou, S.; Liu, X. Immunomodulatory ECM-like Microspheres for Accelerated Bone Regeneration in Diabetes Mellitus. ACS Appl. Mater. Interfaces 2018, 10, 2377–2390. [Google Scholar] [CrossRef]
- Kim, K.; Bou-Ghannam, S.; Okano, T. Cell sheet tissue engineering for scaffold-free three-dimensional (3D) tissue reconstruction. Methods Cell Biol. 2020, 157, 143–167. [Google Scholar]
- Fullenkamp, D.E.; Barrett, D.G.; Miller, D.R.; Kurutz, J.W.; Messersmith, P.B. pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion. RSC Adv. 2014, 4, 25127–25134. [Google Scholar] [CrossRef] [PubMed]
- Waite, J.H. Adhesion a la moule. Integr. Comp. Biol. 2002, 42, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.S.; Yoo, H.J.; Jun, J.H.; Moon, W.K.; Cha, H.J. Expression of Functional Recombinant Mussel Adhesive Protein Mgfp-5 in Escherichia coli. Appl. Environ. Microbiol. 2004, 70, 3352. [Google Scholar] [CrossRef] [PubMed]
- Santonocito, R.; Venturella, F.; Piaz, F.D.; Morando, M.A.; Provenzano, A.; Rao, E.; Costa, M.A.; Bulone, D.; Biagio, P.L.S.; Giacomazza, D.; et al. Recombinant mussel protein Pvfp-5β: A potential tissue bioadhesive. J. Biol. Chem. 2019, 294, 12826. [Google Scholar] [CrossRef]
- Bolghari, N.; Shahsavarani, H.; Anvari, M.; Habibollahi, H. A novel recombinant chimeric bio-adhesive protein consisting of mussel foot protein 3, 5, gas vesicle protein A, and CsgA curli protein expressed in Pichia pastoris. AMB Express 2022, 12, 23. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Song, W.K.; Kang, J.H.; Cha, J.K.; Lee, J.S.; Paik, J.W.; Jung, U.W.; Kim, B.H.; Choi, S.H. Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects. J. Periodontal Implant Sci. 2018, 48, 305. [Google Scholar] [CrossRef]
- Chakka, J.L.; Acri, T.; Laird, N.Z.; Zhong, L.; Shin, K.; Elangovan, S.; Salem, A.K. Polydopamine functionalized VEGF gene-activated 3D printed scaffolds for bone regeneration. RSC Adv. 2021, 11, 13282–13291. [Google Scholar] [CrossRef]
- Ghorai, S.K.; Dutta, A.; Roy, T.; Guha Ray, P.; Ganguly, D.; Ashokkumar, M.; Dhara, S.; Chattopadhyay, S. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration. ACS Appl. Mater. Interfaces 2022, 14, 28455–28475. [Google Scholar] [CrossRef]
- Dinh, T.N.; Hou, S.; Park, S.; Shalek, B.A.; Jeong, K.J. Gelatin Hydrogel Combined with Polydopamine Coating to Enhance Tissue Integration of Medical Implants. ACS Biomater. Sci. Eng. 2018, 4, 3471. [Google Scholar] [CrossRef]
- Li, Y.; Yang, L.; Hou, Y.; Zhang, Z.; Chen, M.; Wang, M.; Liu, J.; Wang, J.; Zhao, Z.; Xie, C.; et al. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact. Mater. 2022, 18, 213–227. [Google Scholar] [CrossRef]
- Bahraminasab, M. Challenges on optimization of 3D-printed bone scaffolds. BioMedical Eng. Online 2020, 19, 69. [Google Scholar] [CrossRef]
- Sufaru, I.G.; Macovei, G.; Stoleriu, S.; Martu, M.A.; Luchian, I.; Kappenberg-Nitescu, D.C.; Solomon, S.M. 3D Printed and Bioprinted Membranes and Scaffolds for the Periodontal Tissue Regeneration: A Narrative Review. Membranes 2022, 12, 902. [Google Scholar] [CrossRef]
- Holzmond, O.; Li, X. In situ real time defect detection of 3D printed parts. Addit. Manuf. 2017, 17, 135–142. [Google Scholar] [CrossRef]
- Hawker, M.; Wang, F.; Sala, R.; Regondi, S.; Pugliese, R. Design Data and Finite Element Analysis of 3D Printed Poly(ε-Caprolactone)-Based Lattice Scaffolds: Influence of Type of Unit Cell, Porosity, and Nozzle Diameter on the Mechanical Behavior. Eng 2022, 3, 9–23. [Google Scholar]
- Zhao, F.; Vaughan, T.J.; McNamara, L.M. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures. Biomech. Model. Mechanobiol. 2016, 15, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Bai, N.; Zhang, Q.; Wang, Y.; Jiang, W.; Yang, J. Preparation of mussel-inspired silver/polydopamine antibacterial biofilms on Ti-6Al-4V for dental applications. RSC Adv. 2022, 12, 6641–6648. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Li, J.; Wang, Y.; Li, Z.; Wang, L.; Li, Y.; Chen, H.; Wang, C.; Liu, B.; Ma, P.; et al. Design of Cefotaxime Sodium-Loaded Polydopamine Coatings with Controlled Surface Roughness for Titanium Implants. ACS Biomater. Sci. Eng. 2022, 8, 4751–4763. [Google Scholar] [CrossRef]
- Mendhi, J.; Ramachandra, S.S.; Prasadam, I.; Ivanovski, S.; Yang, Y.; Xiao, Y. Endogenous nitric oxide-generating surfaces via polydopamine-copper coatings for preventing biofilm dispersal and promoting microbial killing. Mater. Sci. Eng. C 2021, 128, 112297. [Google Scholar] [CrossRef]
- Im, S.; Choe, G.; Seok, J.M.; Yeo, S.J.; Lee, J.H.; Kim, W.D.; Lee, J.Y.; Park, S.A. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Int. J. Biol. Macromol. 2022, 205, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Lin, X.; Chen, B.; Wei, X. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks. Biofabrication 2019, 11, 045019. [Google Scholar] [CrossRef] [PubMed]
- Claverie, M.; McReynolds, C.; Petitpas, A.; Thomas, M.; Fernandes, S.C.M. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers 2020, 12, 1002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, D.; Chen, J.; Zhang, X.; Li, X.; Zhao, W.; Xu, T. Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Mar. Drugs 2019, 17, 555. [Google Scholar] [CrossRef] [PubMed]
- Iliou, K.; Kikionis, S.; Ioannou, E.; Roussis, V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar. Drugs 2022, 20, 314. [Google Scholar] [CrossRef]
- Sun, H.; Gao, K.; Yi, Z.; Han, C.; Liu, Z.; Wang, Q.; Zhou, Q.; Zhang, Z. Cytotoxicity and Bonding Property of Bioinspired Nacre-like Ceramic-Polymer Composites. Front. Bioeng. Biotechnol. 2022, 10, 913899. [Google Scholar] [CrossRef]
- Leelatian, L.; Chunhabundit, P.; Charoonrut, P.; Asvanund, P. Induction of Osseointegration by Nacre in Pigs. Molecules 2022, 27, 2653. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X. Uncovering aragonite nanoparticle self-assembly in nacre-A natural armor. Cryst. Growth Des. 2012, 12, 4306–4310. [Google Scholar] [CrossRef]
- Li, X.; Chang, W.C.; Chao, Y.J.; Wang, R.; Chang, M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 2004, 4, 613–617. [Google Scholar] [CrossRef]
- Li, X. Nanoscale structural and mechanical characterization of natural nanocomposites: Seashells. JOM 2007, 59, 71–74. [Google Scholar] [CrossRef]
- Xu, Z.H.; Li, X. Deformation Strengthening of Biopolymer in Nacre. Adv. Funct. Mater. 2011, 21, 3883–3888. [Google Scholar] [CrossRef]
- Xu, Z.H.; Yang, Y.; Huang, Z.; Li, X. Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques. Mater. Sci. Eng. C 2011, 31, 1852–1856. [Google Scholar] [CrossRef]
- Han, M.; Dong, Z.; Li, J.; Luo, J.; Yin, D.; Sun, L.; Tao, S.; Zhen, L.; Yang, J.; Li, J. Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration. J. Mater. Chem. B 2021, 9, 8501–8511. [Google Scholar] [CrossRef]
- Kim, J.E.; Takanche, J.S.; Jang, S.; Yi, H.K. Mussel adhesive protein blended with gelatin loaded into nanotube titanium dental implants enhances osseointegration. Drug Deliv. Transl. Res. 2021, 11, 956–965. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, J.C.; Heo, J.S. Polydopamine-assisted BMP-2 immobilization on titanium surface enhances the osteogenic potential of periodontal ligament stem cells via integrin-mediated cell-matrix adhesion. J. Cell Commun. Signal. 2018, 12, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Komasa, S.; Yoshimine, S.; Sekino, T.; Okazaki, J. Effect of mussel adhesive protein coating on osteogenesis in vitro and osteointegration in vivo to alkali-treated titanium with nanonetwork structures. Int. J. Nanomed. 2019, 14, 3831–3843. [Google Scholar] [CrossRef]
- Kao, C.T.; Chen, Y.J.; Ng, H.Y.; Lee, A.K.X.; Huang, T.H.; Lin, T.F.; Hsu, T.T. Surface Modification of Calcium Silicate via Mussel-Inspired Polydopamine and Effective Adsorption of Extracellular Matrix to Promote Osteogenesis Differentiation for Bone Tissue Engineering. Materials 2018, 11, 1664. [Google Scholar] [CrossRef]
- Taghizadeh, A.; Taghizadeh, M.; Yazdi, M.K.; Zarrintaj, P.; Ramsey, J.D.; Seidi, F.; Stadler, F.J.; Lee, H.; Saeb, M.R.; Mozafari, M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng. Transl. Med. 2022, 7, e10385. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Liu, D.; Li, D.; Mo, X. An injectable double cross-linked hydrogel adhesive inspired by synergistic effects of mussel foot proteins for biomedical application. Colloids Surf. B Biointerfaces 2021, 204, 111782. [Google Scholar] [CrossRef] [PubMed]
Class of Material | Restorative Dentistry | Therapeutic Dentistry | Surgical and Restorative Dentistry |
---|---|---|---|
Metal and alloys | -Cobalt chromium -Nickel-chromium -Stainless steel -Ti-6Al-4V (Titanium alloy) -Gold -Platinum -Palladium | -Silver nanoparticles -Alloys containing silver -Alloys containing copper | -Stainless steel (316/316L) -Ti-6Al-4V (Titanium alloy) -Cobalt containing alloy (Obsolete) |
Polymers | -Poly(methyl methylacrylate) (PMMA) -Polyether ether ketone (PEEK) -Urethane Dimethacrylate (UDEM) -Triethylene glycol Dimethacrylate (TEGDMA) -2-hydroxyethyl methacrylate (HEMA) | Polytetrafluoroethylene (PTFE) | -Polyether ether ketone (PEEK) -Polytetrafluoroethylene (PTFE) -Poly(glycolic acid) (PGA) -Polylactic acid (PLA) -Pol(lactic-co-glycolic acid) (PLGA) -Polycaprolactone (PCL) -Polyesters (PE) -Poly(propylene fumarate) (PPE) |
Ceramics | -Lithium disilicate -Zirconia -Alumina -Leucite -Felspathic porcelain -Micra-based glass ceramics -Spinel-based glass ceramics | -Hydroxyapatite -Beta-tricalcium phosphate | -Hydroxyapatite -Beta-tricalcium phosphate -Alpha-tricalcium phosphate -Zirconia -Alumina -Bioglass -Calcium silicate |
Composites | -Carbon-fiber reinforced PEEK (CFR-PEEK) -Glass-fibre reinforced PEEK (GFR-PEEK) -Nano/Micro-filled compostite and copomers | Fluoride-releasing copomer | Carbon-fiber reinforced PEEK (CFR-PEEK) |
3D-Printing | Advantages | Limitations | Materials | Application in Dentistry |
---|---|---|---|---|
Stereolithography (SLA) | -High precision -Cost-effective printing -Smooth post-print finish -Fast printing time | -Weak mechanical properties over long-term -Photosensitivity of materials printed -Requires post-print processing (Wash, cure, drying) | -Ceramic-filled resins -Acrylonitrile butadiene styrene (ABS)—like resins -Polypropylene (PP) like resins | -Temporary prosthetics -Surgical guides -Orthodontic models |
Selective laser melting (SLM) | -Capable of printing full metal components -Wide range of material choice (metals) -Reduce wastage -High print accuracy | -High temperatures are required -Extensive printing supports -Requires extensive post-printing processing -Expensive and size restriction | -Aluminum alloys -Titanium -Steel -Cobalt chromium -Copper | -Dental crowns and bridges for porcelain fused to metal prostheses -Removable partial dental frameworks |
Digital light processing (DLP) | -Faster printing time and curing process compared to SLA -High surface quality and accuracy -Cost-effective printing -Wide range of material choice (photopolymers) | -Limited print size -Expensive resin material -Potential warping of larging prints | -Photopolymer resins -Thermoplastic resins -Ultraviolet curing resins -Castable resins | -Patient dental models -Dental implants -Dental bridges -Dental crowns -Bone scaffolds |
Bioprinting | -Fast printing time -Cost effective printing -High degree in cellular positioning -High print accuracy | -Poor mechanical properties (i.e., scaffolds) -Maintain cell viability during print -Require low viscosity bioinks -Ethical standards | -Chitosan -Hyaluronic acid -Alginate -Collagen -Fibrin/Fibrinogen | -Guided bone/tissue regeneration -Bone and tissue grafts -Cell laden scaffolds for hard and soft dental tissues |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwan, J.C.; Dondani, J.; Iyer, J.; Muaddi, H.A.; Nguyen, T.T.; Tran, S.D. Biomimicry and 3D-Printing of Mussel Adhesive Proteins for Regeneration of the Periodontium—A Review. Biomimetics 2023, 8, 78. https://doi.org/10.3390/biomimetics8010078
Kwan JC, Dondani J, Iyer J, Muaddi HA, Nguyen TT, Tran SD. Biomimicry and 3D-Printing of Mussel Adhesive Proteins for Regeneration of the Periodontium—A Review. Biomimetics. 2023; 8(1):78. https://doi.org/10.3390/biomimetics8010078
Chicago/Turabian StyleKwan, Jan C., Jay Dondani, Janaki Iyer, Hasan A. Muaddi, Thomas T. Nguyen, and Simon D. Tran. 2023. "Biomimicry and 3D-Printing of Mussel Adhesive Proteins for Regeneration of the Periodontium—A Review" Biomimetics 8, no. 1: 78. https://doi.org/10.3390/biomimetics8010078
APA StyleKwan, J. C., Dondani, J., Iyer, J., Muaddi, H. A., Nguyen, T. T., & Tran, S. D. (2023). Biomimicry and 3D-Printing of Mussel Adhesive Proteins for Regeneration of the Periodontium—A Review. Biomimetics, 8(1), 78. https://doi.org/10.3390/biomimetics8010078