Data Diversity in Convolutional Neural Network Based Ensemble Model for Diabetic Retinopathy
Abstract
:1. Introduction
2. Related Works
3. Background
3.1. Ensemble Model
3.2. Convolutional Neural Network (CNN)
4. Proposed Methodology
4.1. Data Description
4.2. Data Distribution
4.3. Baseline Model
Data Diversity
4.4. Ensembling Using Majority Voting
4.5. Model Evaluation
5. Results
6. Conclusions and Future Direction
- The suggested methodology is only validated on a single case study and can be extended to other DR case studies to make it even more useful.
- If the proposed model is employed for a future task where the data may contain noise due to variations in image quality caused by capture sensors and lighting conditions, there are various approaches to reduce the noise and improve the algorithm’s performance. These approaches include the use of median, mean, conservative smoothing, un-sharp filters, frequency filters, and Gaussian smoothing.
- Diversity plays a key role in EM, and other baseline models can be used by employing diverse strategies. It is possible to consistently generate more baseline models and blend them into a single model to further outperform a model’s performance metrics with our suggested model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Song, L.; Liu, S.; Zhang, Y. A Review of Deep-Learning-Based Medical Image Segmentation Methods. Sustainability 2021, 13, 1224. [Google Scholar] [CrossRef]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical Image Analysis Using Convolutional Neural Networks: A Review. J. Med. Syst. 2018, 42, 226. [Google Scholar] [CrossRef]
- Altaf, F.; Islam, S.M.S.; Akhtar, N.; Janjua, N.K. Going Deep in Medical Image Analysis: Concepts, Methods, Challenges, and Future Directions. IEEE Access 2019, 7, 99540–99572. [Google Scholar] [CrossRef]
- Alyoubi, W.L.; Shalash, W.M.; Abulkhair, M.F. Diabetic Retinopathy Detection through Deep Learning Techniques: A Review. Inform. Med. Unlocked 2020, 20, 100377. [Google Scholar] [CrossRef]
- Chaturvedi, S.S.; Gupta, K.; Ninawe, V.; Prasad, P.S. Automated Diabetic Retinopathy Grading Using Deep Convolutional Neural Network. arXiv 2020, arXiv:2004.06334. [Google Scholar]
- Mehboob, A.; Akram, M.U.; Alghamdi, N.S.; Abdul Salam, A. A Deep Learning Based Approach for Grading of Diabetic Retinopathy Using Large Fundus Image Dataset. Diagnostics 2022, 12, 3084. [Google Scholar] [CrossRef]
- Qummar, S.; Khan, F.G.; Shah, S.; Khan, A.; Shamshirband, S.; Rehman, Z.U.; Khan, I.A.; Jadoon, W. A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection. IEEE Access 2019, 7, 150530–150539. [Google Scholar] [CrossRef]
- Novitasari, D.C.R.; Fatmawati, F.; Hendradi, R.; Rohayani, H.; Nariswari, R.; Arnita, A.; Hadi, M.I.; Saputra, R.A.; Primadewi, A. Image Fundus Classification System for Diabetic Retinopathy Stage Detection Using Hybrid CNN-DELM. Big Data Cogn. Comput. 2022, 6, 146. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent Advances in Convolutional Neural Networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Song, Y.; Yan, R.; Li, X.; Zhao, D.; Zhang, M. Two Are Better than One: An Ensemble of Retrieval-and Generation-Based Dialog Systems. arXiv 2016, arXiv:1610.07149. [Google Scholar]
- Liu, W.; Zhang, M.; Luo, Z.; Cai, Y. An Ensemble Deep Learning Method for Vehicle Type Classification on Visual Traffic Surveillance Sensors. IEEE Access 2017, 5, 24417–24425. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Suganthan, P.N. Ensemble Classification and Regression-Recent Developments, Applications and Future Directions [Review Article]. IEEE Comput. Intell. Mag. 2016, 11, 41–53. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Huang, Y.; Ding, X.; Greenspan, H.; Paisley, J. An Adversarial Learning Approach to Medical Image Synthesis for Lesion Detection. IEEE J. Biomed. Health Inform. 2020, 24, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Diabetic Retinopathy Detection, Kaggle. Available online: https://www.kaggle.com/c/diabetic-retinopathy-detection (accessed on 20 August 2022).
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up Robust Features. In Proceedings of the European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 404–417. [Google Scholar]
- Xu, K.; Feng, D.; Mi, H. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Molecules 2017, 22, 2054. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.T.; Ghaderi, M.; Kafiyeh, R. Classification of Diabetic and Normal Fundus Images Using New Deep Learning Method. Leonardo Electron. J. Pract. Technol. 2018, 17, 233–248. [Google Scholar]
- Jiang, H.; Yang, K.; Gao, M.; Zhang, D.; Ma, H.; Qian, W. An Interpretable Ensemble Deep Learning Model for Diabetic Retinopathy Disease Classification. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2045–2048. [Google Scholar]
- Zago, G.T.; Andreão, R.V.; Dorizzi, B.; Salles, E.O.T. Diabetic Retinopathy Detection Using Red Lesion Localization and Convolutional Neural Networks. Comput. Biol. Med. 2020, 116, 103537. [Google Scholar] [CrossRef] [PubMed]
- Harangi, B.; Toth, J.; Baran, A.; Hajdu, A. Automatic Screening of Fundus Images Using a Combination of Convolutional Neural Network and Handcrafted Features. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2699–2702. [Google Scholar]
- Li, T.; Gao, Y.; Wang, K.; Guo, S.; Liu, H.; Kang, H. Diagnostic Assessment of Deep Learning Algorithms for Diabetic Retinopathy Screening. Inf. Sci. 2019, 501, 511–522. [Google Scholar] [CrossRef]
- Li, X.; Hu, X.; Yu, L.; Zhu, L.; Fu, C.-W.; Heng, P.-A. CANet: Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading. IEEE Trans. Med. Imaging 2019, 39, 1483–1493. [Google Scholar] [CrossRef]
- Decencière, E.; Zhang, X.; Cazuguel, G.; Lay, B.; Cochener, B.; Trone, C.; Gain, P.; Ordonez, R.; Massin, P.; Erginay, A.; et al. Feedback on a Publicly Distributed Image Database: The Messidor Database. Image Anal. Stereol. 2014, 33, 231–234. [Google Scholar] [CrossRef]
- Pratt, H.; Coenen, F.; Broadbent, D.M.; Harding, S.P.; Zheng, Y. Convolutional Neural Networks For Diabetic Retinopathy. Elsevier Procedia Comput. Sci. 2016, 90, 200–205. [Google Scholar] [CrossRef]
- Gangwar, A.K.; Ravi, V. Diabetic Retinopathy Detection Using Transfer Learning and Deep Learning. In Proceedings of the Evolution in Computational Intelligence–Frontiers in Intelligent Computing: Theory and Applications (FICTA 2020), Karnataka, Surathkal, India, 4–5 January 2020; pp. 679–689. [Google Scholar]
- Kumar, M.; Singhal, S.; Shekhar, S.; Sharma, B.; Srivastava, G. Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning. Sustainability 2022, 14, 13998. [Google Scholar] [CrossRef]
- Lal, A.; Datta, B. Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: A Regional-Scale Comparison Study. Water Air Soil. Pollut. 2020, 231, 320. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Ding, S. Research and Development of Neural Network Ensembles: A Survey. Artif. Intell. Rev. 2018, 49, 455–479. [Google Scholar] [CrossRef]
- Khan, N.U.; Shah, M.A.; Maple, C.; Ahmed, E.; Asghar, N. Traffic Flow Prediction: An Intelligent Scheme for Forecasting Traffic Flow Using Air Pollution Data in Smart Cities with Bagging Ensemble. Sustainability 2022, 14, 4164. [Google Scholar] [CrossRef]
- Park, S.; Son, S.; Bae, J.; Lee, D.; Kim, J.-J.; Kim, J. Robust Spatiotemporal Estimation of PM Concentrations Using Boosting-Based Ensemble Models. Sustainability 2021, 13, 13782. [Google Scholar] [CrossRef]
- LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 3 May 2022).
- Jinfeng, G.; Qummar, S.; Junming, Z.; Ruxian, Y.; Khan, F.G. Ensemble Framework of Deep CNNs for Diabetic Retinopathy Detection. Comput. Intell. Neurosci. 2020, 2020, 8864698. [Google Scholar] [CrossRef] [PubMed]
Total Images of trdata | ||||||
---|---|---|---|---|---|---|
Class Number | 0 | 1 | 2 | 3 | 4 | Total |
Number of Images | 1221 | 251 | 676 | 131 | 200 | 2479 |
Total Images of tsdata | ||||||
---|---|---|---|---|---|---|
Class Number | 0 | 1 | 2 | 3 | 4 | Total |
Number of Images | 548 | 119 | 323 | 62 | 95 | 1183 |
Total Images of trdata | ||||||
---|---|---|---|---|---|---|
Class Number | 0 | 1 | 2 | 3 | 4 | Total |
Number of Images | 1221 | 251 | 676 | 131 | 200 | 2479 |
Total Images of trdata | ||||||
---|---|---|---|---|---|---|
Class Number | 0 | 1 | 2 | 3 | 4 | Total |
Number of Images | 1221 | 1221 | 1221 | 131 | 200 | 3994 |
Total Images of trdata | ||||||
---|---|---|---|---|---|---|
Class Number | 0 | 1 | 2 | 3 | 4 | Total |
Number of Images | 1221 | 1221 | 1221 | 1221 | 1221 | 6105 |
S.no | Model | Layers | Batch Size | Learning Rate | Optimizer |
---|---|---|---|---|---|
01 | CNN-1 | 5 | 128 | 1 | Adam |
02 | CNN-2 | 5 | 128 | 1 | Adam |
03 | CNN-3 | 5 | 128 | 1 | Adam |
Model | Accuracy | Precision | Sensitivity | Specificity |
---|---|---|---|---|
CNN-1 | 89.87% | 90% | 74.11% | 98.03% |
CNN-2 | 93.74% | 93% | 95.89% | 98.36% |
CNN-3 | 90.81% | 91% | 94% | 98.15% |
CNN-based EM | 91.06% | 91% | 95.01% | 98.38% |
Model | Number of Images | Accuracy | Precision | Sensitivity | Specificity |
---|---|---|---|---|---|
CNN-ResNet34 [18] Binary Classification (BC) | Kaggle data (35126) | 85.0% | - | 86.0% | - |
CNN-EM (BC) [19] | Kaggle data (35126) | 88.21% | - | 85.57% | 90.85% |
CNN(AlexNet) Multiple Class Classification (MCC) [21] | Kaggle (22700) and IDRiD (516) | 90.07% | - | - | - |
Two deep-CNN-EM are used (MCC) [33] | Kaggle data (35126) | 80.36% | - | 47.7% | 85.94% |
Ensembling Five PT model (MCC) [7] | Kaggle data (35126) | 80.8% | 63.8% | 51.5% | 86.7% |
Hybrid of TL and CNN model (MCC) [26] | APTOS-2019 Kaggle data (3662) | 82.18% | - | - | - |
Proposed Model (CNN-based EM) | APTOS-2019 Kaggle data (3662) | 91.06% | 91% | 95.01% | 98.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inamullah; Hassan, S.; Alrajeh, N.A.; Mohammed, E.A.; Khan, S. Data Diversity in Convolutional Neural Network Based Ensemble Model for Diabetic Retinopathy. Biomimetics 2023, 8, 187. https://doi.org/10.3390/biomimetics8020187
Inamullah, Hassan S, Alrajeh NA, Mohammed EA, Khan S. Data Diversity in Convolutional Neural Network Based Ensemble Model for Diabetic Retinopathy. Biomimetics. 2023; 8(2):187. https://doi.org/10.3390/biomimetics8020187
Chicago/Turabian StyleInamullah, Saima Hassan, Nabil A. Alrajeh, Emad A. Mohammed, and Shafiullah Khan. 2023. "Data Diversity in Convolutional Neural Network Based Ensemble Model for Diabetic Retinopathy" Biomimetics 8, no. 2: 187. https://doi.org/10.3390/biomimetics8020187
APA StyleInamullah, Hassan, S., Alrajeh, N. A., Mohammed, E. A., & Khan, S. (2023). Data Diversity in Convolutional Neural Network Based Ensemble Model for Diabetic Retinopathy. Biomimetics, 8(2), 187. https://doi.org/10.3390/biomimetics8020187