Investigation of Fluidic Universal Gripper for Delicate Object Manipulation
Abstract
:1. Introduction
2. Result
2.1. Working Mechanism
2.1.1. Jamming of Dense Granular Suspensions and Frictional Contact Network
2.1.2. Universal Gripper Based on the Jamming of a Dense Granular Suspension
2.2. Experimental Characterization
3. Material and Method
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, A.J.; Nagel, S.R. Jamming is not just cool any more. Nature 1998, 396, 21–22. [Google Scholar] [CrossRef]
- Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M.R.; Lipson, H.; Jaeger, H.M. Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. USA 2010, 107, 18809–18814. [Google Scholar] [CrossRef]
- Cheng, N.G.; Lobovsky, M.B.; Keating, S.J.; Setapen, A.M.; Gero, K.I.; Hosoi, A.E.; Iagnemma, K.D. Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–18 May 2012; IEEE: New York, NY, USA, 2012; pp. 4328–4333. [Google Scholar]
- Wei, Y.; Chen, Y.; Ren, T.; Chen, Q.; Yan, C.; Yang, Y.; Li, Y. A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robot. 2016, 3, 134–143. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Yang, Y.; Wei, Y. Passive particle jamming and its stiffening of soft robotic grippers. IEEE Trans. Robot. 2017, 33, 446–455. [Google Scholar] [CrossRef]
- Amend, J.; Cheng, N.; Fakhouri, S.; Culley, B. Soft robotics commercialization: Jamming grippers from research to product. Soft Robot. 2016, 3, 213–222. [Google Scholar] [CrossRef]
- Amend, J.R.; Brown, E.; Rodenberg, N.; Jaeger, H.M.; Lipson, H. A positive pressure universal gripper based on the jamming of granular material. IEEE Trans. Robot. 2012, 28, 341–350. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Zhou, H.; Zhao, C.; Barimah, B.; Li, B.; Xiang, C.; Li, L.; Gou, X.; Luo, M. Inflatable particle-jammed robotic gripper based on integration of positive pressure and partial filling. Soft Robot. 2022, 9, 309–323. [Google Scholar] [CrossRef]
- Licht, S.; Collins, E.; Badlissi, G.; Rizzo, D. A partially filled jamming gripper for underwater recovery of objects resting on soft surfaces. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: New York, NY, USA, 2018; pp. 6461–6468. [Google Scholar]
- Tian, T.; Nakano, M. Design and testing of a rotational brake with shear thickening fluids. Smart Mater. Struct. 2017, 26, 035038. [Google Scholar] [CrossRef]
- Lin, K.; Liu, H.; Wei, M.; Zhou, A.; Bu, F. Dynamic performance of shear-thickening fluid damper under long-term cyclic loads. Smart Mater. Struct. 2019, 28, 025007. [Google Scholar] [CrossRef]
- Gürgen, S.; Kuşhan, M.C. The Ballistic performance of Aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 2017, 64, 296–306. [Google Scholar] [CrossRef]
- Sun, P.; Li, J.; Zhang, L.; Wang, Z.; Zhou, T.; Ke, R. Investigation on the performance of fluid jet polishing using shear thickening slurry. In Proceedings of the Optical Manufacturing and Testing XII, San Diego, CA, USA, 20–22 August 2018; Rascher, R., Williamson, R., Kim, D.W., Eds.; SPIE: Washington, DC, USA, 2018; p. 21. [Google Scholar]
- Gürgen, S.; Sert, A. Polishing operation of a steel bar in a shear thickening fluid medium. Compos. Part B Eng. 2019, 175, 107127. [Google Scholar] [CrossRef]
- Wei, M.; Lin, K.; Sun, L. Shear thickening fluids and their applications. Mater. Des. 2022, 216, 110570. [Google Scholar] [CrossRef]
- Guazzelli, É.; Pouliquen, O. Rheology of dense granular suspensions. J. Fluid Mech. 2018, 852, P1. [Google Scholar] [CrossRef]
- Gallier, S.; Lemaire, E.; Peters, F.; Lobry, L. Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech. 2014, 757, 514–549. [Google Scholar] [CrossRef]
- Waitukaitis, S.R.; Jaeger, H.M. Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 2012, 487, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Peters, I.R.; Majumdar, S.; Jaeger, H.M. Direct observation of dynamic shear jamming in dense suspensions. Nature 2016, 532, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Wyart, M.; Cates, M.E. Discontinuous shear thickening without inertia in dense non-brownian suspensions. Phys. Rev. Lett. 2014, 112, 098302. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.F. Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena. Annu. Rev. Fluid Mech. 2020, 52, 121–144. [Google Scholar] [CrossRef]
- Garat, C.; Kiesgen de Richter, S.; Lidon, P.; Colin, A.; Ovarlez, G. Using good vibrations: Melting and controlled shear jamming of dense granular suspensions. J. Rheol. 2022, 66, 237–256. [Google Scholar] [CrossRef]
- Park, J.L.; Yoon, B.I.; Paik, J.G.; Kang, T.J. Ballistic performance of p-Aramid fabrics impregnated with shear thickening fluid; part I—Effect of laminating sequence. Text. Res. J. 2012, 82, 527–541. [Google Scholar] [CrossRef]
- Park, J.L.; Yoon, B.I.; Paik, J.G.; Kang, T.J. Ballistic performance of p-Aramid fabrics impregnated with shear thickening fluid; part II—Effect of fabric count and shot location. Text. Res. J. 2012, 82, 542–557. [Google Scholar] [CrossRef]
- van Hecke, M. Running on Cornflour. Nature 2012, 487, 174–175. [Google Scholar] [CrossRef]
- Comtet, J.; Chatté, G.; Niguès, A.; Bocquet, L.; Siria, A.; Colin, A. Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun. 2017, 8, 15633. [Google Scholar] [CrossRef]
- Krieger, I.M.; Dougherty, T.J. A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- James, N.M.; Xue, H.; Goyal, M.; Jaeger, H.M. Controlling shear jamming in dense suspensions via the particle aspect ratio. Soft Matter 2019, 15, 3649–3654. [Google Scholar] [CrossRef]
- Boyer, F.; Guazzelli, É.; Pouliquen, O. Unifying suspension and granular rheology. Phys. Rev. Lett. 2011, 107, 188301. [Google Scholar] [CrossRef]
- Crawford, N.C.; Popp, L.B.; Johns, K.E.; Caire, L.M.; Peterson, B.N.; Liberatore, M.W. Shear thickening of corn starch suspensions: Does concentration matter? J. Colloid Interface Sci. 2013, 396, 83–89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Liu, H.; Lin, S.; Li, Y.; Chen, Y. Investigation of Fluidic Universal Gripper for Delicate Object Manipulation. Biomimetics 2023, 8, 209. https://doi.org/10.3390/biomimetics8020209
Wu C, Liu H, Lin S, Li Y, Chen Y. Investigation of Fluidic Universal Gripper for Delicate Object Manipulation. Biomimetics. 2023; 8(2):209. https://doi.org/10.3390/biomimetics8020209
Chicago/Turabian StyleWu, Changchun, Hao Liu, Senyuan Lin, Yunquan Li, and Yonghua Chen. 2023. "Investigation of Fluidic Universal Gripper for Delicate Object Manipulation" Biomimetics 8, no. 2: 209. https://doi.org/10.3390/biomimetics8020209
APA StyleWu, C., Liu, H., Lin, S., Li, Y., & Chen, Y. (2023). Investigation of Fluidic Universal Gripper for Delicate Object Manipulation. Biomimetics, 8(2), 209. https://doi.org/10.3390/biomimetics8020209