Hydrogels Based on Polyacrylamide and Calcium Alginate: Thermodynamic Compatibility of Interpenetrating Networks, Mechanical, and Electrical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of PAAm/CaAlg Hydrogels
2.2. Methods
3. Results and Discussion
3.1. Swelling of Double-Network Hydrogels
3.2. Thermodynamic Compatibility of PAAm and CaAlg in Binary Blend
3.3. Mechanical Properties of Hydrogels
3.4. Electrical Potential of PAAm/CaAlg Hydrogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Deligkaris, K.; Tadele, T.S.; Olthuis, W.; Van den Berg, A. Hydrogel-based devices for biomedical applications. Sens. Actuators B 2010, 147, 765–774. [Google Scholar] [CrossRef]
- Abulateefeh, S.R.; Spain, S.G.; Aylott, J.W.; Chan, W.C.; Garnett, M.C.; Alexander, C. Thermoresponsive Polymer Colloids for Drug Delivery and Cancer Therapy. Macromol. Biosci. 2011, 11, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649. [Google Scholar] [CrossRef]
- Nishinari, K. Rheology of physical gels and gelling processes (Invited review). Prog. Polym. Phys. Jpn. 2000, 43, 163–192. [Google Scholar]
- Morris, E.R.; Nishinari, K.; Rinaudo, M. Gelation of gellan—A review. Food Hydrocoll. 2012, 28, 373–411. [Google Scholar] [CrossRef]
- Nijenhuis, K. Thermoreversible Networks: Viscoelastic Properties and Structure of Gels; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1997. [Google Scholar]
- Myung, D.; Waters, D.; Wiseman, M.; Duhamel, P.E.; Noolandi, J.; Ta, C.N.; Frank, C.W. Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol. 2008, 19, 647–657. [Google Scholar] [CrossRef]
- Sperling, L.H. Interpenetrating polymer networks, In Encyclopedia of Polymer Science and Technology, 3rd ed.; Herman, F.M., Ed.; John Wiley & Sons: New York, NY, USA, 2005; Volume 10, pp. 272–311. [Google Scholar]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef] [PubMed]
- Dragan, E.S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243, 572–590. [Google Scholar] [CrossRef]
- Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double network hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158. [Google Scholar] [CrossRef]
- Dragan, E.S.; Lazar, M.M.; Dinu, M.V.; Doroftei, F. Macroporous composite IPN hydrogels based on poly(acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chem. Eng. J. 2012, 204–206, 198–209. [Google Scholar] [CrossRef]
- Bai, R.; Chen, B.; Yang, J.; Suo, Z. Tearing a hydrogel of complex rheology. J. Mech. Phys. Solids 2019, 125, 749–761. [Google Scholar] [CrossRef]
- Prasad, K.; Kadokawa, J. Alginate-based blends and nano/microbeads. In Alginates: Biology and Applications; Rehm, B.H.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 175–210. [Google Scholar]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Draget, K.I.; Taylor, C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll. 2011, 25, 251–256. [Google Scholar] [CrossRef]
- Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym. 2012, 88, 1–12. [Google Scholar] [CrossRef]
- Giri, T.K.; Thakur, D.; Ajazuddin, A.A.; Badwaik, H.; Tripathi, D. KAlginate based Hydrogel as a Potential Biopolymeric Carrier for Drug Delivery and Cell Delivery Systems: Present Status and Applications. Curr. Drug Deliv. 2012, 9, 539–555. [Google Scholar] [CrossRef]
- Sun, J.; Tan, H. Alginate-based biomaterials for regenerative medicine applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef]
- Bidarra, S.J.; Barrias, C.C.; Granja, P.L. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater. 2014, 10, 1646–1662. [Google Scholar] [CrossRef] [PubMed]
- Abka-khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Review. Structures, Properties and Applica-tions of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Y.; Zhao, X.H.; Illeperuma, W.R.K.; Chaudhuri, O.; Oh, K.H.; Mooney, D.J.; Vlassak, J.J.; Suo, Z.G. Highly stretchable and tough hydrogels. Nature 2012, 498, 133–136. [Google Scholar] [CrossRef]
- Yang, C.H.; Wang, M.X.; Haider, H.; Yang, J.H.; Sun, J.-Y.; Chen, Y.M.; Zhou, J.; Suo, Z. Strengthening Alginate/Polyacrylamide Hydrogels Using Various Multivalent Cations. ACS Appl. Mater. Interfaces 2013, 5, 10418–10422. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Lin, S.; Ma, C.; Takaffoli, M.; Fang, N.X.; Zhao, X. Hydraulic hydro-gel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 2017, 8, 14230. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Zhang, X.; Rahman, S.E.; Su, S.; Ning, J.W.F.; Hu, Z.; Martínez-Zaguilán, R.; Sennoune, S.R.; Cong, W.; et al. 3D printed agar/ calcium alginate hydrogels with high shape fidelity and tailorable mechanical properties. Polymer 2021, 214, 123238. [Google Scholar] [CrossRef]
- Rowley, J.A.; Madlambayan, G.; Mooney, D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20, 45–53. [Google Scholar] [CrossRef]
- Darnell, M.C.; Sun, J.Y.; Mehta, M.; Johnson, C.; Arany, P.R.; Suo, Z.; Mooney, D.J. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 2013, 34, 8042–8048. [Google Scholar] [CrossRef]
- Samanta, H.S.; Ray, S.K. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr. Polym. 2014, 67, 666–678. [Google Scholar] [CrossRef]
- Yi, J.; Nguyen, K.-C.T.; Wang, W.; Yang, W.; Pan, M.; Lou, E.; Major, P.W.; Le, L.H.; Zeng, H. Polyacrylamide/Alginate double-network tough hydrogels for intraoral ultrasound imaging. J. Colloid. Interface Sci. 2020, 578, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Fei, L.; Tang, C.; Yin, C. Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network superporous hydrogel containing sodium alginate. Polym. Int. 2007, 56, 1563–1571. [Google Scholar] [CrossRef]
- Zhu, M.-L.; Li, Y.-L.; Zhang, Z.-M.; Jiang, Y. Preparation and properties of stretchable and tough alginate/polyacrylamide hollow capsules. RSC Adv. 2015, 5, 33262–33268. [Google Scholar] [CrossRef]
- Maity, C.; Das, N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top. Curr. Chem. 2022, 380, 3. [Google Scholar] [CrossRef]
- Blyakhman, F.A.; Safronov, A.P.; Zubarev, A.Y.; Shklyar, T.F.; Makeyev, O.G.; Makarova, E.B.; Melekhin, V.V.; Larrañaga, A.; Kurlyandskaya, G.V. Polyacrylamide ferrogels with embedded maghemite nanoparticles for biomedical engineering. Results Phys. 2017, 7, 3624–3633. [Google Scholar] [CrossRef]
- Safronov, A.P.; Kamalov, I.A.; Shklyar, T.F.; Dinislamova, O.A.; Blyakhman, F.A. Activity of counterions in hydrogels based on poly(acrylic acid) and poly(methacrylic acid): Potentiometric measurements. Polym. Sci. Ser. A 2012, 54, 909–919. [Google Scholar] [CrossRef]
- Quesada-Perez, M.; Maroto-Centeno, J.A.; Forcada, J.; Hidalgo-Alvarez, R. Gel swelling theories: The classical formalism and recent approaches. Soft Matter 2011, 7, 10536–10547. [Google Scholar] [CrossRef]
- Blyakhman, F.; Makarova, E.; Fadeyev, F.; Lugovets, D.; Safronov, A.; Shabadrov, P.; Shklyar, T.; Melnikov, G.; Orue, I.; Kurlyandskaya, G. The contribution of magnetic nanoparticles to ferrogel biophysical properties. Nanomaterials 2019, 9, 232. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.; Colby, R.H. Polymer Physics, 1st ed.; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Tominaga, T.; Tirumala, V.R.; Lee, S.; Lin, E.K.; Gong, J.P.; Wu, W. Thermodynamic Interactions in Double-Network Hydrogels. J. Phys. Chem. B 2008, 112, 3903–3909. [Google Scholar] [CrossRef]
- Safronov, A.P.; Suvorova, A.I.; Tyukova, I.S.; Smirnova, Y.A. Opposite Trends in Thermodynamic Compatibility between Copolyamide and Chitosan in Their Binary Blend. J. Polym. Sci. B Polym. Phys. 2007, 45, 2603–2613. [Google Scholar] [CrossRef]
- Safronov, A.P.; Terziyan, T.V.; Manas Kyzy, A.; Adamova, L.V. Thermodynamic Compatibility of Polyacrylamide with Agarose: The Effect of Polysaccharide Chain Stiffness. Polym. Sci. Ser. A 2022, 64, 53–62. [Google Scholar] [CrossRef]
- Fetters, L.J.; Lohse, D.J.; Colby, R.H. Chain Dimensions and Entanglement Spacings. In Physical Properties of Polymers Handbook; Mark, J.E., Ed.; Springer: New York, NY, USA, 2007; pp. 447–454. [Google Scholar] [CrossRef]
- Donati, I.; Paoletti, S. Material properties of alginates. In Alginates: Biology and Applications; Rehm, B.H.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–54. [Google Scholar]
- Martin, N.; Youssef, G. Dynamic properties of hydrogels and fiber-reinforced hydrogels. J. Mech. Behav. Biomed. Mater. 2018, 85, 194–200. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Morgan, D.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 6th ed.; Garland Science: New York, 2015; p. 1465. [Google Scholar]
- Guo, H.; Kurokawa, T.; Takahata, M.; Hong, W.; Katsuyama, Y.; Luo, F.; Ahmed, J.; Nakajima, T.; Nonoyama, T.; Gong, J.P. Quantitative Observation of Electric Potential Distribution of Brittle Polyelectrolyte Hydrogels Using Microelectrode Technique. Macromolecules 2016, 49, 3100–3108. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chen, P.Y.; Lin, A.Y.M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Dobreikina, A.; Shklyar, T.; Safronov, A.; Blyakhman, F. Biomimetic gels with chemical and physical interpenetrating networks. Polym. Int. 2018, 67, 1330–1334. [Google Scholar] [CrossRef]
- Cao, Q.; Shu, Z.; Zhang, T.; Ji, W.; Chen, J.; Wei, Y. Highly Elastic, Sensitive, Stretchable, and Skin-Inspired Conductive Sodium Alginate/Polyacrylamide/Gallium Composite Hydrogel with Toughness as a Flexible Strain Sensor. Biomacromolecules 2022, 23, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Safronov, A.; Shakhnovich, M.; Kalganov, A.; Shklyar, T.F.; Blyakhman, F.A.; Pollack, G.H. Periodic bending of polyelectrolyte gels in dc electric field. Polymer 2011, 52, 2430–2436. [Google Scholar] [CrossRef]
- Blyakhman, F.A.; Safronov, A.P.; Zubarev, A.Y.; Shklyar, T.F.; Dinislamova, O.A.; Lopez-Lopez, M.T. Mechanoelectrical transduction in the hydrogel-based biomimetic sensors. Sens. Actuators A Phys. 2016, 248, 54–61. [Google Scholar] [CrossRef]
- Shabadrov, P.A.; Safronov, A.P.; Kurilova, N.M.; Blyakhman, F.A. Design of Spherical Gel-Based Magnetic Composites: Synthesis and Characterization. J. Compos. Sci. 2023, 7, 177. [Google Scholar] [CrossRef]
Gel | Swelling Ratio | PAAm Actual Concentration (%) | CaAlg Actual Concentration (%) | Volume Swelling Ratio Related to PAAm | NC |
---|---|---|---|---|---|
PAAm0.8/CaAlg0 | 48.0 | 2.0 | 0.00 | 61.0 | 1580 |
PAAm0.8/CaAlg1 | 28.1 | 2.9 | 0.51 | 40.6 | 730 |
PAAm0.8/CaAlg3 | 14.5 | 4.2 | 2.21 | 28.2 | 353 |
PAAm0.8/CaAlg5 | 12.7 | 3.9 | 3.39 | 30.2 | 406 |
PAAm1.6/CaAlg0 | 15.3 | 6.1 | 0.00 | 19.4 | 163 |
PAAm1.6/CaAlg1 | 14.3 | 6.0 | 0.52 | 19.1 | 158 |
PAAm1.6/CaAlg3 | 9.5 | 7.6 | 1.97 | 15.4 | 102 |
PAAm1.6/CaAlg5 | 8.1 | 7.7 | 3.32 | 14.9 | 96 |
PAAm3.2/CaAlg0 | 8.1 | 11.0 | 0.00 | 10.3 | 43 |
PAAm3.2/CaAlg1 | 7.4 | 11.4 | 0.49 | 9.8 | 39 |
PAAm3.2/CaAlg3 | 6.9 | 11.2 | 1.46 | 9.9 | 40 |
PAAm3.2/CaAlg5 | 6.0 | 11.7 | 2.54 | 9.3 | 35 |
Gel | Enthalpy of Swelling, 25 °C (J/g) | Enthalpy of Mixing, ∆Hm (kJ/mol) | Chemical Potential of Polymer, ∆μ2 (J/g) | Gibbs Energy of Mixing, ∆Gm (kJ/mol) | Entropy of Mixing, T∆Sm (kJ/mol) |
---|---|---|---|---|---|
CaAlg | −199.3 ± 3.2 | −59.3 ± 1.2 | |||
PAAm0.8/CaAlg0 | −113.6 ± 3.2 | −25.4 ± 0.8 | |||
PAAm1.6/CaAlg0 | −112.8 ± 3.1 | −22.8 ± 0.8 | |||
PAAm3.2/CaAlg0 | −112.6 ± 1.8 | −22.9 ± 0.6 | |||
PAAm0.8/CaAlg1 | −119.1 ± 2.9 | −0.71 ± 0.09 | −33.1 ± 0.9 | 0.12 ± 0.03 | −0.83 |
PAAm1.6/CaAlg1 | −112.5 ± 1.5 | −0.62 ± 0.09 | −28.1 ± 1.2 | 0.09 ± 0.03 | −0.71 |
PAAm3.2/CaAlg1 | −110.8 ± 1.2 | −0.81 ± 0.09 | −30.4 ± 0.8 | 0.39 ± 0.03 | −1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safronov, A.P.; Kurilova, N.M.; Adamova, L.V.; Shklyar, T.F.; Blyakhman, F.A.; Zubarev, A.Y. Hydrogels Based on Polyacrylamide and Calcium Alginate: Thermodynamic Compatibility of Interpenetrating Networks, Mechanical, and Electrical Properties. Biomimetics 2023, 8, 279. https://doi.org/10.3390/biomimetics8030279
Safronov AP, Kurilova NM, Adamova LV, Shklyar TF, Blyakhman FA, Zubarev AY. Hydrogels Based on Polyacrylamide and Calcium Alginate: Thermodynamic Compatibility of Interpenetrating Networks, Mechanical, and Electrical Properties. Biomimetics. 2023; 8(3):279. https://doi.org/10.3390/biomimetics8030279
Chicago/Turabian StyleSafronov, Alexander P., Nadezhda M. Kurilova, Lidiya V. Adamova, Tatyana F. Shklyar, Felix A. Blyakhman, and Andrey Yu. Zubarev. 2023. "Hydrogels Based on Polyacrylamide and Calcium Alginate: Thermodynamic Compatibility of Interpenetrating Networks, Mechanical, and Electrical Properties" Biomimetics 8, no. 3: 279. https://doi.org/10.3390/biomimetics8030279
APA StyleSafronov, A. P., Kurilova, N. M., Adamova, L. V., Shklyar, T. F., Blyakhman, F. A., & Zubarev, A. Y. (2023). Hydrogels Based on Polyacrylamide and Calcium Alginate: Thermodynamic Compatibility of Interpenetrating Networks, Mechanical, and Electrical Properties. Biomimetics, 8(3), 279. https://doi.org/10.3390/biomimetics8030279