Multi-Criterion Sampling Matting Algorithm via Gaussian Process
Abstract
:1. Introduction
- By combining different features in a multi-criteria sampling strategy (MCSS), the problem of missing high-quality pixel pairs is alleviated;
- This paper changes the traditional matting method, which only relies on one evaluation function, and combines multiple evaluation functions to comprehensively evaluate pixel pairs to select high-quality pixel pairs, avoiding the limitation of a single evaluation function;
- In order to ensure that the matting problem can be solved even with limited computing resources, a new perspective was adopted. This paper proposes a new GP-MCMatting algorithm, in which we use the Gaussian process fitting model (GPFM) instead of the objective function to search for the optimal pixel pair. By using this algorithm, effective and accurate matching can be achieved with only 1% of computing resources.
2. Related Work
3. Problem Description
4. Multi-Criterion Matting Algorithm via Gaussian Process
4.1. Multi-Criterion Sampling Strategy
4.1.1. Multi-Range Pixel Pair Sampling
4.1.2. High-Quality Sample Selection
Algorithm 1: Multi-criterion sampling strategy |
Input: image and trimap. |
1.//For information on image pixel. |
2. Known pixel information by trimap. |
3. for to do |
4. //multi-range pixel-pairs sampling. |
5. By Equations (5)–(7). |
6. Sort the sets in ascending order. |
7. while do |
8. By Equations (8) and (9). |
9. end while |
10. while do |
11. By Equations (10) and (11). |
12. end while |
13. |
14.end for |
15.//High-quality sample selection. |
16. By Equation (12). |
17.if stop criterion is not met then |
18. . |
19. end if |
Output: high-quality pixel pairs set . |
4.2. Multi-Criterion Matting Algorithm via Gaussian Process
4.2.1. Gaussian Process Fitting Model
4.2.2. Multi-Criterion Matting Algorithm via Gaussian Process
Algorithm 2: Multi-criteria matting algorithm via Gaussian process. |
Input: image and trimap. |
1. //Initialize parameters ,. |
2. |
3. a random number greater than 0.
4. a random number between [0, 1]. |
5.for to do |
6. //Gaussian process fitting model construction. |
7. According to the Algorithm 1. |
8. . |
9. . |
10. //Optimal pixel pair estimation. |
11. . |
12. while do |
13. . 14.. 15.. 16.. |
17. if . then |
18. 19. [0, 1]. 20.end if |
21. end while |
22.end for 23. |
Output. |
5. Experiments and Results
5.1. Experimental Setup
- This experiment was mainly performed to verify that the MCSS can effectively avoid the loss of high-quality pixel pairs, thus improving the matting performance.
- In this experiment, a comparative analysis was conducted between GP-MCMatting and the state-of-the-art evolutionary optimization-based algorithms, such as the pyramid matting framework (PMF) [25], adaptive convergence speed controller based on particle swarm optimization (PSOACSC) [33], and the multi-objective evolutionary algorithm based on multi-criteria decomposition (MOEAMCD) [24], based on 1%, 2%, 5%, 10%, 20%, and 100% computing resources. The matting performance of the proposed algorithm under limited computing resources was verified.
- This experiment was conducted to compare the GP-MCMatting performance with the aforementioned algorithms based on the availability of only 1% computing resources to verify its superiority.
5.2. Effectiveness of Multi-Criterion Sampling Strategy
5.3. Algorithm Evaluation and Comparison under the Conditions Characterized by Limited Computing Resources
5.4. Comparison to the State-of-the-Art Methods
5.5. Limitations of the GP-MCMatting Algorithm
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, W.; Yu, D.; Xie, Z.; Li, Y.; Yuan, Z.; Lu, H. Trimap-guided feature mining and fusion network for natural image matting. Comput. Vis. Image Underst. 2023, 230, 1077–3142. [Google Scholar] [CrossRef]
- Yan, C.-G.; Meng, L.-X.; Li, L.; Zhang, J.-H.; Wang, Z.; Yin, J.; Zhang, J.-Z.; Sun, Y.-Q.; Zheng, B.-L. Age-Invariant Face Recognition by Multi-Feature Fusion and Decomposition with Self-Attention. ACM Trans. Multimed. Comput. Commun. Appl. 2021, 29, 1–18. [Google Scholar]
- Hu, L.-P.; Kong, Y.-T.; Li, J.-D.; Li, X.-Q. Effective Local-Global Transformer for Natural Image Matting. J. IEEE Trans. Circuits Syst. Video Technol. 2023, 99, 1. [Google Scholar] [CrossRef]
- Park, G.-T.; Son, S.-J.; Yoo, J.-Y.; Kim, S.-H.; Kwak, N. MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11696–11706. [Google Scholar]
- Lin, S.-C.; Yang, L.; Saleemi, I.; Sengupta, S. Robust High-resolution Video Matting with Temporal Guidance. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 3132–3141. [Google Scholar]
- Yan, C.-G.; Li, Z.-S.; Zhang, Y.-B.; Liu, Y.-T.; Ji, X.-Y.; Zhang, Y.-D. Depth Image Denoising Using Nuclear Norm and Learning Graph Model. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 122, 1–17. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Q.; Gu, C.; Tang, K.; Tai, Y.W. Deep Video Matting via Spatio-Temporal Alignment and Aggregation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021, Nashville, TN, USA, 20–25 June 2021; pp. 6971–6980. [Google Scholar]
- Yanan, S.; Tang, C.-K.; Tai, Y.-W. Semantic Image Matting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021, Nashville, TN, USA, 20–25 June 2021; pp. 11120–11129. [Google Scholar]
- Huang, H.; Feng, F.-J.; Huang, S.; Chen, L.; Hao, Z.-F. Micro-scale Searching Algorithm for Coupling Matrix Optimization of Automated Microwave Filter Tuning. IEEE Trans. Cybern. 2023, 53, 2829–2840. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, G.; Fan, H. Robust trimap generation based on manifold ranking. Inf. Sci. 2020, 519, 200–214. [Google Scholar] [CrossRef]
- Thomas, P.; Tom, D. Compositing Digital Images. Proc. ACM Siggraph Comput. Graph. 1984, 18, 253–259. [Google Scholar]
- Rhemann, C.; Rother, C.; Wang, J.; Gelautz, M.; Kohli, P.; Rott, P. A Perceptually Motivated Online Benchmark for Image Matting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1826–1833. [Google Scholar]
- Ding, H.; Zhang, H.; Liu, C.; Jiang, X. Deep Interactive Image Matting with Feature Propagation. IEEE Trans. Image Process. 2022, 31, 2421–2432. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, H.; Cai, Z.; Hao, Z.; Tan, K.C. Deep infrared pedestrian classification based on automatic image matting. Appl. Soft Comput. 2019, 77, 484–496. [Google Scholar] [CrossRef]
- Chen, X.; Zou, D.; Zhao, Q.; Tan, P. Manifold Preserving Edit Propagation. ACM Trans. Graph. 2012, 31, 1–7. [Google Scholar] [CrossRef]
- Aksoy, Y.; Aydin, T.-O.; Pollefeys, M. Designing Effective Inter-pixel Information Flow for Natural Image Matting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 29–37. [Google Scholar]
- Li, X.; Li, J.; Lu, H. A Survey on Natural Image Matting with Closed-Form Solutions. IEEE Access 2019, 7, 136658–136675. [Google Scholar] [CrossRef]
- Cai, Z.-Q.; Liang, L.; Huang, H.; Hu, H.; Liang, Y.-H. Improving Sampling-based Image Matting with Cooperative Co-evolution Differential Evolution Algorithm. Appl. Soft Comput. 2017, 21, 4417–4430. [Google Scholar] [CrossRef]
- Tang, J.-W.; Aksoy, Y.; Oztireli, C.; Gross, M.; Aydin, T.-O. Learning-based Sampling for Natural Image Matting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA, 15–20 June 2019; pp. 3055–3063. [Google Scholar]
- Liang, Y.; Gou, H.; Feng, F.; Liu, G.; Huang, H. Natural image matting based on surrogate model. Appl. Soft Comput. 2023, 143, 110407. [Google Scholar] [CrossRef]
- He, K.-M.; Rhemann, C.; Rother, C.; Tang, X.-O.; Sun, J. A Global Sampling Method for Alpha Matting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2049–2056. [Google Scholar]
- Rother, C.; Kolmogorov, V.; Blake, A. GrabCut: Interactive Foreground Extraction using Iterated Graph Cuts. ACM Trans. Graph. 2004, 23, 309–314. [Google Scholar] [CrossRef]
- Levin, A.; Rav-Acha, A.; Lischinski, D. Spectral Matting. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Huang, H.; Cai, Z.; Hao, Z. Multiobjective Evolutionary Optimization Based on Fuzzy Multicriteria Evaluation and Decomposition for Image Matting. IEEE Trans. Fuzzy Syst. 2019, 27, 1100–1111. [Google Scholar] [CrossRef]
- Liang, Y.-H.; Feng, F.-J.; CAI, Z.-Q. Pyramid Matting: A Resource-Adaptive Multi-Scale Pixel-pair Optimization Framework for Image Matting. IEEE Access 2020, 8, 93487–93498. [Google Scholar]
- Feng, X.; Liang, X.; Zhang, Z. A Cluster Sampling Method for Image Matting via Sparse Coding. In Proceeding of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing: New York, NY, USA, 2016; pp. 204–219. [Google Scholar] [CrossRef]
- Huang, H.; Liang, Y.-H.; Yang, X.; Hao, Z.-F. Pixel-level Discrete Multi-objective Sampling for Image Matting. IEEE Trans. Image Process. 2019, 28, 3739–3751. [Google Scholar] [CrossRef]
- Cao, G.; Li, J.; Chen, X.; He, Z. Patch-based self-adaptive matting for high-resolution image and video. Vis. Comput. 2019, 35, 133–147. [Google Scholar] [CrossRef]
- Shahrian, E.; Rajan, D.; Price, B.; Cohen, S. Improving Image Matting using Comprehensive Sampling Sets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2013, Portland, OR, USA, 25–27 June 2013; pp. 636–643. [Google Scholar]
- Wang, J.; Cohen, M.-F. Optimized Color Sampling for Robust Matting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2007, Honolulu, HI, USA, 21–26 July 2017; pp. 1–8. [Google Scholar]
- Eduardo, S.; Lopes, G.; Manuel, M.-O. Shared Sampling for Real-Time Alpha Matting. Comput. Graph. Forum 2010, 10, 575–584. [Google Scholar]
- Feng, F.-J.; Huang, H.; Liu, D.; Liang, Y.-H. Local Complexity Difference Matting based on Weight Map and Alpha Mattes. Multimed. Tools Appl. 2022, 81, 43357–43372. [Google Scholar] [CrossRef]
- Liang, Y.-H.; Huang, H.; Cai, Z.-Q. PSO-ACSC: A Large-scale Evolutionary Algorithm for Image Matting. Front. Comput. Sci. 2020, 14, 29–40. [Google Scholar] [CrossRef]
- Feng, F.-J.; Huang, H.; Wu, Q.-X.; Ling, X.; Liang, Y.-H.; Cai, Z.-Q. An Alpha Matting Algorithm based on Collaborative Swarm Optimization for High-resolution Images. J. Chin. Sci. Inf. Sci. 2020, 50, 424–437. [Google Scholar]
- Rasmussen, C.E. Evaluation of Gaussian Processes and Other Methods for Non-Linear Regression; University Toronto: Toronto, ON, Canada, 1999. [Google Scholar]
- Rasmussen, C.E.; Williams, K.-I. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning); MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Khan, M.-E.; Immer, A.; Abedi, E.; Korzepa, M. Approximate Inference Turns Deep Networks into Gaussian processes. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc.: La Jolla, CA, USA, 2019; pp. 3088–3098. [Google Scholar]
- Zheng, Y.-J.; Yang, Y.-S.; Che, T.-T.; Hou, S.-J.; Huang, W.-H.; Gao, Y.; Tan, P. Image Matting with Deep Gaussian Process. IEEE Trans. Neural Netw. Learn. Syst. 2022, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Byrd, R.H.; Gilbert, J.C.; Nocedal, J. A trust region method based on interior point techniques for nonlinear programming. Math. Program. 2000, 89, 149–185. [Google Scholar] [CrossRef] [Green Version]
Color Difference Evaluation Function | Multi-Objective Evaluation Function | Fuzzy Evaluation Function | Multi-Criteria Sampling Strategy | |
---|---|---|---|---|
MSE | 0.0299 | 0.0297 | 0.0293 | 0.0292 |
SAD | 7.2699 | 7.1731 | 7.1628 | 7.0999 |
Computing Resources | SAD | |||||
---|---|---|---|---|---|---|
1% | 2% | 5% | 10% | 20% | 100% | |
PSOACSC [33] | 604.425 | 604.267 | 604.418 | 604.137 | 603.950 | 602.987 |
MOEAMCD [24] | 243.965 | 243.346 | 242.741 | 242.179 | 243.028 | 242.741 |
PMF [25] | 349.160 | 321.151 | 294.067 | 272.818 | 253.481 | 228.433 |
Ours | 191.697 | 187.752 | 202.500 | 214.409 | 216.114 | 210.910 |
Computing resources | MSE | |||||
1% | 2% | 5% | 10% | 20% | 100% | |
PSOACSC [33] | 5.061 | 5.063 | 5.063 | 5.062 | 5.056 | 5.039 |
MOEAMCD [24] | 1.127 | 1.121 | 1.113 | 1.116 | 1.118 | 1.113 |
PMF [25] | 2.231 | 1.910 | 1.689 | 1.430 | 1.257 | 1.028 |
Ours | 0.789 | 0.826 | 1.029 | 1.151 | 1.163 | 1.171 |
Algorithms | GT01 | GT02 | GT03 | GT04 | GT05 | GT06 | GT07 | GT08 | GT09 |
---|---|---|---|---|---|---|---|---|---|
Ours | 3.33 × 10−3 | 6.40 × 10−3 | 9.68 × 10−3 | 1.23 × 10−2 | 1.49 × 10−2 | 1.49 × 10−2 | 7.89 × 10−3 | 3.93 × 10−2 | 1.29 × 10−2 |
PSOACSC [33] | 6.65 × 10−2 | 2.13 × 10−1 | 5.35 × 10−2 | 1.01 × 10−1 | 1.62 × 10−1 | 2.24 × 10−1 | 9.11 × 10−2 | 1.26 × 10−1 | 1.57 × 10−1 |
MOEAMCD [24] | 7.49 × 10−3 | 1.53 × 10−2 | 1.19 × 10−2 | 2.15 × 10−2 | 2.53 × 10−2 | 2.71 × 10−2 | 1.08 × 10−2 | 4.40 × 10−2 | 1.11 × 10−2 |
PMF [25] | 1.74 × 10−2 | 1.23 × 10−1 | 1.45 × 10−2 | 3.28 × 10−2 | 4.78 × 10−2 | 4.45 × 10−2 | 2.84 × 10−2 | 5.71 × 10−2 | 2.16 × 10−2 |
Algorithms | GT10 | GT11 | GT12 | GT13 | GT14 | GT15 | GT16 | GT17 | GT18 |
Ours | 2.32 × 10−2 | 3.21 × 10−2 | 1.00 × 10−2 | 1.23 × 10−2 | 7.81 × 10−3 | 5.04 × 10−2 | 7.64 × 10−2 | 1.22 × 10−2 | 7.50 × 10−3 |
PSOACSC [33] | 2.22 × 10−1 | 3.02 × 10−1 | 4.61 × 10−2 | 2.08 × 10−1 | 1.55 × 10−1 | 1.79 × 10−1 | 3.62 × 10−1 | 1.41 × 10−1 | 2.04 × 10−1 |
MOEAMCD [24] | 2.77 × 10−2 | 3.93 × 10−2 | 1.47 × 10−2 | 2.29 × 10−2 | 2.61 × 10−2 | 4.02 × 10−2 | 1.87 × 10−1 | 1.59 × 10−2 | 1.66 × 10−2 |
PMF [25] | 6.36 × 10−2 | 7.65 × 10−2 | 1.84 × 10−2 | 6.66 × 10−2 | 5.37 × 10−2 | 9.36 × 10−2 | 3.43 × 10−1 | 3.01 × 10−2 | 6.15 × 10−2 |
Algorithms | GT19 | GT20 | GT21 | GT22 | GT23 | GT24 | GT25 | GT26 | GT27 |
Ours | 8.82 × 10−3 | 7.56 × 10−3 | 1.57 × 10−2 | 7.15 × 10−3 | 7.35 × 10−3 | 9.84 × 10−2 | 1.51 × 10−1 | 5.95 × 10−2 | 8.06 × 10−2 |
PSOACSC [33] | 2.27 × 10−1 | 7.33 × 10−2 | 1.90 × 10−1 | 1.19 × 10−1 | 1.58 × 10−1 | 3.54 × 10−1 | 2.99 × 10−1 | 2.56 × 10−1 | 3.71 × 10−1 |
MOEAMCD [24] | 5.13 × 10−2 | 1.21 × 10−2 | 4.73 × 10−2 | 1.38 × 10−2 | 1.81 × 10−2 | 6.88 × 10−2 | 1.67 × 10−1 | 6.94 × 10−2 | 1.15 × 10−1 |
PMF [25] | 9.99 × 10−2 | 1.34 × 10−2 | 9.56 × 10−2 | 2.61 × 10−2 | 2.32 × 10−2 | 1.05 × 10−1 | 2.88 × 10−1 | 1.64 × 10−1 | 2.22 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Gou, H.; Tan, M.; Feng, F.; Liang, Y.; Xiang, Y.; Wang, L.; Huang, H. Multi-Criterion Sampling Matting Algorithm via Gaussian Process. Biomimetics 2023, 8, 301. https://doi.org/10.3390/biomimetics8030301
Yang Y, Gou H, Tan M, Feng F, Liang Y, Xiang Y, Wang L, Huang H. Multi-Criterion Sampling Matting Algorithm via Gaussian Process. Biomimetics. 2023; 8(3):301. https://doi.org/10.3390/biomimetics8030301
Chicago/Turabian StyleYang, Yuan, Hongshan Gou, Mian Tan, Fujian Feng, Yihui Liang, Yi Xiang, Lin Wang, and Han Huang. 2023. "Multi-Criterion Sampling Matting Algorithm via Gaussian Process" Biomimetics 8, no. 3: 301. https://doi.org/10.3390/biomimetics8030301
APA StyleYang, Y., Gou, H., Tan, M., Feng, F., Liang, Y., Xiang, Y., Wang, L., & Huang, H. (2023). Multi-Criterion Sampling Matting Algorithm via Gaussian Process. Biomimetics, 8(3), 301. https://doi.org/10.3390/biomimetics8030301