Binary Sand Cat Swarm Optimization Algorithm for Wrapper Feature Selection on Biological Data
Abstract
:1. Introduction
- An innovative binary version of the sand cat swarm optimization algorithm was presented.
- Binarization of the sand cat swarm optimization algorithm was achieved using the V-shaped transfer function.
- An extensive evaluation of the bSCSO’s performance was conducted against a set of 10 well-known biological benchmarks.
- A comparison was made between the bSCSO algorithm and the well-known binary metaheuristic algorithms.
2. Sand Cat Swarm Optimization (SCSO) Algorithm
3. Binary Sand Cat Swarm Optimization (bSCSO) Algorithm
Algorithm 1. Binary Sand cat swarm optimization algorithm pseudocode. |
Initialize the population Calculate the fitness function based on the objective function Initialize the r, rG, R End End t=t++ End |
4. Simulation and Result Analysis
4.1. Simulation Setting
4.2. Dataset
4.3. Results and Discussion
5. Conclusions
- bSCSO is also applicable to real-world problems and datasets common in the real world.
- The SCSO is particularly suited to applying S-shaped and U-shaped transfer functions.
- The proposed bSCSO can be applied to face recognition and natural language processing problems.
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Azizi, M.; Talatahari, S.; Gandomi, A.H. Fire Hawk Optimizer: A novel metaheuristic algorithm. Artif. Intell. Rev. 2023, 56, 287–363. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovský, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Azizi, M.; Aickelin, U.; Khorshidi, H.A.; Baghalzadeh Shishehgarkhaneh, M. Energy valley optimizer: A novel metaheuristic algorithm for global and engineering optimization. Sci. Rep. 2023, 13, 226. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Yang, X.S. A Literature Survey of Benchmark Functions for Global Optimization Problems. 2013. Available online: http://arxiv.org/abs/1308.4008 (accessed on 19 August 2013).
- Talbi, E.G. Metaheuristics: From Design to Implementation; Wiley: New York, NY, USA, 2009; Volume 74, pp. 5–39. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Bristol, UK, 2010. [Google Scholar]
- Castillo, O.; Martinez-Marroquin, R.; Melin, P.; Valdez, F.; Soria, J. Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robotInformation. Science 2012, 192, 19–38. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Eng. Comput. 2022, 1–25. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef] [Green Version]
- Hatamlou, A Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 2019, 163, 283–304. [Google Scholar] [CrossRef]
- Erol, O.K.; Eksin, I. A new optimization method: Big bang–big crunch. Adv. Eng. Softw. 2006, 37, 106–111. [Google Scholar] [CrossRef]
- Van Laarhoven, P.J.; Aarts, E.H. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Dordrecht, The Netherlands, 1987; pp. 7–15. [Google Scholar]
- Fogel, D.B. Artificial İntelligence through Simulated Evolution; Wiley-IEEE Press: Hoboken, NJ, USA, 1998; pp. 227–296. [Google Scholar]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [Google Scholar] [CrossRef]
- Feo, T.A.; Resende, M.G. Greedy randomized adaptive search procedures. J. Glob. Optim. 1995, 6, 109–133. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, H.R.; Martin, O.C.; Stützle, T. Iterated local search. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2003; pp. 320–353. [Google Scholar]
- Yu, X.; Luo, W. Reinforcement learning-based multi-strategy cuckoo search algorithm for 3D UAV path planning. Expert Syst. Appl. 2023, 223, 119910. [Google Scholar] [CrossRef]
- Aghaei, V.T.; Ağababaoğlu, A.; Yıldırım, S.; Onat, A. A real-world application of Markov chain Monte Carlo method for Bayesian trajectory control of a robotic manipulator. ISA Trans. 2022, 125, 580–590. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Jurado, F.; Ebeed, M.; Elnaggar, M.F. Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer. Alex. Eng. J. 2023, 72, 573–591. [Google Scholar] [CrossRef]
- Peng, M.; Jing, W.; Yang, J.; Hu, G. Multistrategy-Boosted Carnivorous Plant Algorithm: Performance Analysis and Application in Engineering Designs. Biomimetics 2023, 8, 162. [Google Scholar] [CrossRef]
- Hameed, A.A.; Ajlouni, N.; Özyavaş, A.; Orman, Z.; Güneş, A. An Efficient Medical Diagnosis Algorithm Based on a Hybrid Neural Network with a Variable Adaptive Momentum and PSO Algorithm. In Proceedings of the International Congress on Human-Computer Interaction, Optimization and Robotic Applications Proceedings, Urgup, Nevşehir, Turkey, 5–7 July 2019; pp. 152–157. [Google Scholar]
- Kumar, V.; Minz, S. Feature selection: A literature review. SmartCR 2014, 4, 211–229. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016, 172, 371–381. [Google Scholar] [CrossRef]
- Nguyen, T.-K.; Ly, V.D.; Hwang, S.O. Effective feature selection based on MANOVA. Int. J. Internet Technol. Secur. Trans. 2020, 10, 383–395. [Google Scholar] [CrossRef]
- Seyyedabbasi, A. A reinforcement learning-based metaheuristic algorithm for solving global optimization problems. Adv. Eng. Softw. 2023, 178, 103411. [Google Scholar] [CrossRef]
- Eluri, R.K.; Devarakonda, N. Binary Golden Eagle Optimizer with Time-Varying Flight Length for feature selection. Knowl.-Based Syst. 2022, 247, 108771. [Google Scholar] [CrossRef]
- Khalid, A.M.; Hamza, H.M.; Mirjalili, S.; Hosny, K.M. BCOVIDOA: A Novel Binary Coronavirus Disease Optimization Algorithm for Feature Selection. Knowl.-Based Syst. 2022, 248, 108789. [Google Scholar] [CrossRef] [PubMed]
- Rajammal, R.R.; Mirjalili, S.; Ekambaram, G.; Palanisamy, N. Binary Grey Wolf Optimizer with Mutation and Adaptive K-nearest Neighbour for Feature Selection in Parkinson’s Disease Diagnosis. Knowl.-Based Syst. 2022, 246, 108701. [Google Scholar] [CrossRef]
- Beheshti, Z. BMPA-TVSinV: A Binary Marine Predators Algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selection. Knowl.-Based Syst. 2022, 252, 109446. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary ant lion approaches for feature selection. Neurocomputing 2016, 213, 54–65. [Google Scholar] [CrossRef]
- Obagbuwa, I.C.; Abidoye, A.P. Binary cockroach swarm optimization for combinatorial optimization problem. Algorithms 2016, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Mirjalili, S.M.; Yang, X.S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [Google Scholar] [CrossRef]
- Eid, H.F. Binary whale optimisation: An effective swarm algorithm for feature selection. Int. J. Metaheuristics 2018, 7, 67–79. [Google Scholar] [CrossRef]
- Reddy, K.S.; Panwar, L.; Panigrahi, B.K.; Kumar, R. Binary whale optimization algorithm: A new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets. Eng. Optim. 2019, 51, 369–389. [Google Scholar] [CrossRef]
- Hussien, A.G.; Houssein, E.H.; Hassanien, A.E. A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In Proceedings of the 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 5–7 December 2017; pp. 166–172. [Google Scholar]
- Too, J.; Mirjalili, S. A hyper learning binary dragonfly algorithm for feature selection: A COVID-19 case study. Knowl.-Based Syst. 2021, 212, 106553. [Google Scholar] [CrossRef]
- Mazaheri, V.; Khodadadi, H. Heart arrhythmia diagnosis based on the combination of morphological, frequency and nonlinear features of ECG signals and metaheuristic feature selection algorithm. Expert Syst. Appl. 2020, 161, 113697. [Google Scholar] [CrossRef]
- Too, J.; Abdullah, A.R. A new and fast rival genetic algorithm for feature selection. J. Supercomput. 2021, 77, 2844–2874. [Google Scholar] [CrossRef]
- Taghian, S.; Nadimi-Shahraki, M.H. A binary metaheuristic algorithm for wrapper feature selection. Int. J. Comput. Sci. Eng. 2019, 8, 168–172. [Google Scholar]
- Zhang, B.; Yang, X.; Hu, B.; Liu, Z.; Li, Z. OEbBOA: A novel improved binary butterfly optimization approaches with various strategies for feature selection. IEEE Access 2020, 8, 67799–67812. [Google Scholar] [CrossRef]
- Gokalp, O.; Tasci, E.; Ugur, A. A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification. Expert Syst. Appl. 2020, 146, 113176. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Mirjalili, S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 2017, 260, 302–312. [Google Scholar] [CrossRef]
- Dhiman, G.; Oliva, D.; Kaur, A.; Singh, K.K.; Vimal, S.; Sharma, A.; Cengiz, K. BEPO: A novel binary emperor penguin optimizer for automatic feature selection. Knowl.-Based Syst. 2021, 211, 106560. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Eleyan, D.; Jaber, I.; Hammouri, A.; Mirjalili, S. Binary dragonfly algorithm for feature selection. In Proceedings of the 2017 International Conference on New Trends in Computing Sciences (ICTCS), Amman, Jordan, 11–13 October 2017; pp. 12–17. [Google Scholar]
- Banka, H.; Dara, S. A Hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation. Pattern Recognit. Lett. 2015, 52, 94–100. [Google Scholar] [CrossRef]
- Moradi, P.; Gholampour, M. A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy. Appl. Soft Comput. 2016, 43, 117–130. [Google Scholar] [CrossRef]
- Laabadi, S.; Naimi, M.; El Amri, H.; Achchab, B. A binary crow search algorithm for solving two-dimensional bin packing problem with fixed orientation. Procedia Comput. Sci. 2020, 167, 809–818. [Google Scholar] [CrossRef]
- Hassan, A.K.; Mohammed, S.N. A novel facial emotion recognition scheme based on graph mining. Def. Technol. 2020, 16, 1062–1072. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Hassanien, A.E.; Elhoseny, M.; Gunasekaran, M. A new binary salp swarm algorithm: Development and application for optimization tasks. Neural Comput. Appl. 2019, 31, 1641–1663. [Google Scholar] [CrossRef]
- Sadeghi, F.; Larijani, A.; Rostami, O.; Martín, D.; Hajirahimi, P. A Novel Multi-Objective Binary Chimp Optimization Algorithm for Optimal Feature Selection: Application of Deep-Learning-Based Approaches for SAR Image Classification. Sensors 2023, 23, 1180. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, Z. BMNABC: Binary multi-neighborhood artificial bee colony for high-dimensional discrete optimization problems. Cybern. Syst. 2018, 49, 452–474. [Google Scholar] [CrossRef]
- Too, J.; Abdullah, A.R.; Mohd Saad, N. A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection. Informatics 2019, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Dua, D.; Graff, C. {UCI} Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml (accessed on 1 April 2023).
- Zhu, Z.; Ong, Y.S.; Zurada, J.M. Identification of full and partial class relevant genes. IEEE/ACM Trans. Comput. Biol. Bioinform. 2008, 7, 263–277. [Google Scholar]
Name | Transfer Function |
---|---|
V-Shaped 1 | |
V-Shaped 2 | |
V-Shaped 3 | |
V-Shaped 4 |
Algorithm | Parameter | Value |
---|---|---|
bSCSO | Sensitivity range (rG) Phases control range (R) | [2, 0] [−2rG, 2rG] |
BMNABC | rmin rmax vmax | 0 1 6 |
BBA | Loudness Pulse rate Frequency minimum Frequency maximum | 0.25 0.1 0 2 |
bGA | Crossover rate Mutation rate | 0.8 0.3 |
bPSO | c1 c2 Wmax Wmin Vmax | 2 2 0.9 0.4 6 |
DATASET | FEATURES | DATA OBJECTS | CLASS |
---|---|---|---|
HEART | 13 | 297 | 5 |
HEART-STATLOG | 13 | 270 | 2 |
PARKİNSON | 22 | 195 | 2 |
WİSCONSİN DİAGNOSTİC BREAST CANCER (WDBC) | 31 | 569 | 2 |
BREAST CANCER | 32 | 198 | 2 |
DERMATOLOGY | 33 | 366 | 6 |
LUNG CANCER | 56 | 32 | 3 |
PERSONGAİT | 321 | 48 | 16 |
COLON TUMOR | 2000 | 62 | 2 |
LEUKEMİA-3C | 7129 | 72 | 3 |
Algorithm | bSCSO | BMNABC | BBA | BGA | bPSO | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Knn | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std |
Heart | 3 | 71.66 | 0 | 62.66 | 0.91 | 61 | 1.49 | 71.66 | 0 | 63.33 | 0 |
5 | 68.33 | 0 | 63.33 | 0 | 61.33 | 1.82 | 64.66 | 0.74 | 63.33 | 0 | |
7 | 68.33 | 0 | 66.66 | 0 | 66.66 | 0 | 68.33 | 0 | 66.66 | 0 | |
Heart-Statlog | 3 | 92.5926 | 0 | 91.4815 | 1.0143 | 91.85 | 1.0143 | 92.59 | 0 | 92.59 | 0 |
5 | 93.7037 | 1.0143 | 82.9630 | 0.8282 | 92.96 | 0.8282 | 94.44 | 0 | 94.4444 | 0 | |
7 | 93.7037 | 1.0143 | 92.9630 | 0.8282 | 92.96 | 0.8282 | 94.44 | 0 | 94.4444 | 0 | |
Parkinson | 3 | 97.43 | 0 | 92.30 | 0 | 92.30 | 0 | 97.43 | 0 | 97.43 | 0 |
5 | 94.87 | 0 | 94.35 | 1.14 | 94.87 | 0 | 94.87 | 0 | 94.87 | 0 | |
7 | 94.87 | 0 | 94.87 | 0 | 94.87 | 0 | 94.87 | 0 | 94.87 | 0 | |
Wisconsin Diagnostic Breast Cancer (Wdbc) | 3 | 98.42 | 0.39 | 97.54 | 1.56 | 97.54 | 1.56 | 99.12 | 0 | 98.94 | 0.392 |
5 | 98.24 | 0 | 97.36 | 0.620 | 98.24 | 0 | 98.24 | 0 | 98.07 | 0.39 | |
7 | 98.24 | 0 | 96.66 | 1.14 | 95.43 | 1.56 | 98.24 | 0 | 98.24 | 0 | |
Breast Cancer | 3 | 88 | 0 | 82.50 | 2.5 | 80.50 | 2.7386 | 85 | 0 | 84.5 | 1.1180 |
5 | 92 | 2.7386 | 88.5 | 1.3693 | 89.50 | 2.73 | 93.5 | 2.2361 | 94.5 | 1.1180 | |
7 | 84.5 | 2.73 | 83 | 1.11 | 83.50 | 1.36 | 80.11 | 1.77 | 85 | 0 | |
Dermatology | 3 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 |
5 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | |
7 | 100 | 0 | 100 | 0 | 99.4595 | 0.7402 | 100 | 0 | 100 | 0 | |
Lung cancer | 3 | 100 | 0 | 97.1429 | 6.3888 | 91.4286 | 7.8246 | 97.1429 | 6.3888 | 100 | 0 |
5 | 100 | 0 | 100 | 0 | 94.2857 | 7.8246 | 100 | 0 | 94.2857 | 7.8246 | |
7 | 94.2857 | 7.8246 | 97.1429 | 6.3888 | 94.2857 | 7.8246 | 88.5714 | 6.3888 | 91.4286 | 7.8246 | |
Person Gait | 3 | 100 | 0 | 100 | 0 | 90.83 | 8.53 | 86.66 | 7.45 | 93.33 | 9.12 |
5 | 100 | 0 | 100 | 0 | 96.66 | 7.45 | 100 | 0 | 100 | 0 | |
7 | 100 | 0 | 100 | 0 | 81.90 | 16.63 | 92.66 | 10.11 | 79.33 | 12.50 | |
Colon tumor | 3 | 84.61 | 0 | 81.6 | 0 | 84.61 | 0 | 84.61 | 0 | 84.61 | 0 |
5 | 86.57 | 0.78 | 84.61 | 3.44 | 83.07 | 3.44 | 84.61 | 0 | 84.61 | 0 | |
7 | 84.61 | 0 | 81.6 | 0 | 81.53 | 4 | 84.61 | 0 | 84.61 | 0 | |
Leukemia-3c | 3 | 97.65 | 1.17 | 94.12 | 0 | 93.4 | 0.47 | 97.65 | 0 | 97.65 | 0 |
5 | 97.65 | 0.56 | 94.12 | 0 | 91.4 | 1.49 | 97.65 | 0 | 97.65 | 0 | |
7 | 98.12 | 0.78 | 94.12 | 0 | 93.4 | 0.49 | 97.65 | 0 | 97.65 | 0 |
Algorithm | bSCSO | BMNABC | BBA | BGA | bPSO | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dataset | Knn | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std |
Heart | 3 | 3 | 0 | 4 | 1.2247 | 5 | 0.7071 | 3.4 | 0.8944 | 6.8 | 1.0954 |
5 | 3 | 0 | 2 | 0 | 3.8 | 1.09 | 4.4 | 1.3416 | 2 | 0 | |
7 | 4 | 0 | 5 | 0 | 5 | 0 | 4 | 0 | 5 | 0 | |
Heart-Statlog | 3 | 4 | 0 | 3.4 | 0.5477 | 4.2 | 1.0954 | 4 | 0 | 4 | 0 |
5 | 4.8 | 1.6432 | 3.6 | 1.3416 | 3.6 | 1.3416 | 6 | 0 | 6 | 0 | |
7 | 4.8 | 1.6432 | 3.6 | 1.3416 | 3.6 | 1.3416 | 6 | 0 | 6 | 0 | |
Parkinson | 3 | 6 | 0 | 3 | 0 | 3 | 0 | 6.40 | 0.547 | 6.60 | 1.34 |
5 | 2 | 0 | 2.40 | 0.54 | 3 | 0 | 3 | 0 | 2.80 | 0.44 | |
7 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | |
Wisconsin Diagnostic Breast Cancer (Wdbc) | 3 | 7.20 | 1.64 | 6.20 | 1.92 | 6 | 1.87 | 13.8 | 1.095 | 10.8 | 1.64 |
5 | 7.20 | 0.44 | 5.20 | 1.09 | 7.40 | 0.54 | 11.40 | 0.89 | 9 | 1.87 | |
7 | 7 | 0 | 4.8 | 1.78 | 3 | 2.23 | 10 | 0 | 9.8 | 2.04 | |
Breast Cancer | 3 | 3 | 0 | 2.6 | 0.5477 | 3.6 | 0.5477 | 9.4 | 1.5166 | 10 | 2.7749 |
5 | 3.6 | 2.7386 | 1.4 | 0.6588 | 2.6 | 0.8944 | 11.2 | 4.0866 | 9.4 | 1.5166 | |
7 | 1.40 | 0.547 | 2.6 | 0.8944 | 3 | 0 | 10.4 | 1.1402 | 9 | 1 | |
Dermatology | 3 | 9.8 | 3.1145 | 8.8 | 1.3038 | 9.8 | 1.3038 | 30.8 | 1.7889 | 12.6 | 0.5477 |
5 | 9.2 | 2.7749 | 7 | 1.4142 | 8.8 | 3.3466 | 26.4 | 7.0569 | 10.4 | 0.8944 | |
7 | 12 | 1.4142 | 10.6 | 0.8944 | 10.4 | 0.8944 | 32.4 | 0.5477 | 13.6 | 2.0736 | |
Lung cancer | 3 | 6 | 0 | 5.2 | 1.0954 | 6.4 | 2.0736 | 20.8 | 4.6043 | 21 | 2.1213 |
5 | 7.6 | 2.8810 | 5.4 | 0.8944 | 5.2 | 1.3038 | 23.4 | 2.9665 | 19.8 | 4.8683 | |
7 | 7.4 | 3.5777 | 5 | 1.5811 | 6 | 1.5811 | 18 | 3.1623 | 18.2 | 3.2711 | |
Person Gait | 3 | 91.8 | 6.54 | 1.80 | 1.09 | 88.8 | 12.35 | 145.40 | 4.56 | 147.4 | 4.44 |
5 | 87.8 | 3.63 | 2 | 0 | 69.80 | 7.19 | 144.8 | 5.93 | 134.20 | 6.22 | |
7 | 88.1 | 4.3 | 1.2 | 0.44 | 77.20 | 4.438 | 150.60 | 10.18 | 141.2 | 7.56 | |
Colon tumor | 3 | 721.6 | 18.52 | 3.4 | 1.14 | 738.8 | 12.59 | 898.8 | 6.7 | 883 | 10.02 |
5 | 725.8 | 13.011 | 2.8 | 1.7 | 751.8 | 16.154 | 920.8 | 10.616 | 893.6 | 13.72 | |
7 | 732.4 | 19.12 | 3.2 | 1.308 | 755 | 19.55 | 950 | 14.3 | 906.4 | 27.64 | |
Leukemia-3c | 3 | 1964.2 | 66.93 | 2101 | 14.3 | 3033.8 | 11.96 | 3324.8 | 15.57 | 3283.2 | 24.58 |
5 | 1971 | 48.2 | 2141 | 41.15 | 3030.2 | 19.52 | 3326 | 14.61 | 3297.6 | 16.89 | |
7 | 1969.4 | 47.1 | 2200 | 13.26 | 3039.1 | 14.93 | 3333 | 14.17 | 3304 | 13.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyyedabbasi, A. Binary Sand Cat Swarm Optimization Algorithm for Wrapper Feature Selection on Biological Data. Biomimetics 2023, 8, 310. https://doi.org/10.3390/biomimetics8030310
Seyyedabbasi A. Binary Sand Cat Swarm Optimization Algorithm for Wrapper Feature Selection on Biological Data. Biomimetics. 2023; 8(3):310. https://doi.org/10.3390/biomimetics8030310
Chicago/Turabian StyleSeyyedabbasi, Amir. 2023. "Binary Sand Cat Swarm Optimization Algorithm for Wrapper Feature Selection on Biological Data" Biomimetics 8, no. 3: 310. https://doi.org/10.3390/biomimetics8030310
APA StyleSeyyedabbasi, A. (2023). Binary Sand Cat Swarm Optimization Algorithm for Wrapper Feature Selection on Biological Data. Biomimetics, 8(3), 310. https://doi.org/10.3390/biomimetics8030310