Central Pattern Generator (CPG)-Based Locomotion Control and Hydrodynamic Experiments of Synergistical Interaction between Pectoral Fins and Caudal Fin for Boxfish-like Robot
Abstract
:1. Introduction
2. Prototype Design
3. Control System
3.1. Hardware Structure
3.2. CPG Controller
4. Hydrodynamic Experimental Results and Analysis
4.1. Hydrodynamic Experimental Testing Environment
4.2. Hydrodynamic Measuring Method
4.3. Effects of the Caudal Fin Parameters on Propulsion Performance
4.3.1. Effects of the Amplitude Parameter of the Caudal Fin on Propulsion Performance
4.3.2. Effects of the Phase Lags of Two Caudal Fins on Propulsion Performance
4.3.3. Effects of the Frequency Parameter of the Caudal Fin on Propulsion Performance
4.4. Effects of the Pectoral Fin Parameters on Propulsion Performance
4.4.1. Effects of the Amplitudes of Pectoral Fin Twisting and Flapping on Propulsion Performance
4.4.2. Effects of the Offset Angles between Twisting and Flapping of the Pectoral Fins on Propulsion Performance
4.4.3. Effects of the Phase Lag between Pectoral Fin Twisting and Flapping on Propulsion Performance
4.4.4. Effects of the Frequency of Pectoral Fin on Propulsion Performance
4.4.5. Effect of the Time Asymmetric Flapping of Pectoral on Propulsion Performance
4.5. Effects of Synergistical Interaction between the Pectoral Fins and the Caudal Fin
4.5.1. Effects of the Phase Lags and on Propulsion Performance
4.5.2. Effects of the Frequency on Propulsion Performance
4.5.3. Actual Swimming Speed of Robotic Fish at Different Frequencies
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Hu, H. Biological inspiration: From carangiform fish to multi-joint robotic fish. J. Bionic Eng. 2010, 7, 35–48. [Google Scholar] [CrossRef]
- Kopman, V.; Porfiri, M. Design, Modeling, and Characterization of a Miniature Robotic Fish for Research and Education in Biomimetics and Bioinspiration. IEEE/ASME Trans. Mechatron. 2013, 18, 471–483. [Google Scholar] [CrossRef]
- Jian, X.; Zou, T. A Review of Locomotion, Control, and Implementation of Robot Fish. J. Intell. Robot. Syst. 2022, 106, 37. [Google Scholar] [CrossRef]
- Li, G.; Liu, G.; Leng, D.; Fang, X.; Li, G.; Wang, W. Underwater Undulating Propulsion Biomimetic Robots: A Review. Biomimetics 2023, 8, 318. [Google Scholar] [CrossRef]
- Triantafyllou, M.S.; Triantafyllou, G.S. An Efficient Swimming Machine. Sci. Am. 1995, 272, 64–70. [Google Scholar] [CrossRef]
- Cui, Z.; Yang, Z.; Shen, L.; Jiang, H.Z. Complex modal analysis of the movements of swimming fish propelled by body and/or caudal fin. Wave Motion 2018, 78, 83–97. [Google Scholar] [CrossRef]
- Khan, A.H.; Ruiz Hussmann, K.; Powalla, D.; Hoerner, S.; Kruusmaa, M.; Tuhtan, J.A. An open 3D CFD model for the investigation of flow environments experienced by freshwater fish. Ecol. Inform. 2022, 69, 101652. [Google Scholar] [CrossRef]
- Yu, J.; Tan, M.; Chen, J.; Zhang, J. A Survey on CPG-Inspired Control Models and System Implementation. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 441–456. [Google Scholar] [CrossRef]
- Ahn, S.-H.; Lee, K.-T.; Kim, H.-J.; Wu, R.; Kim, J.-S.; Song, S.-H. Smart soft composite: An integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials. Int. J. Precis. Eng. Manuf. 2012, 13, 631–634. [Google Scholar] [CrossRef]
- Duraisamy, P.; Kumar Sidharthan, R.; Nagarajan Santhanakrishnan, M. Design, Modeling, and Control of Biomimetic Fish Robot: A Review. J. Bionic Eng. 2019, 16, 967–993. [Google Scholar] [CrossRef]
- Chen, Z.; Shatara, S.; Tan, X. Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin. IEEE/ASME Trans. Mechatron. 2010, 15, 448–459. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Wu, Z.; Ma, L.; Guo, M.; Li, Z.; Li, Y. A comprehensive review on fish-inspired robots. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221103707. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Yu, J. A Survey of Underwater Multi-Robot Systems. IEEE/CAA J. Autom. Sin. 2022, 9, 1–18. [Google Scholar] [CrossRef]
- Fish, F.E. Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspir. Biomim. 2020, 15, 025001. [Google Scholar] [CrossRef] [PubMed]
- Breder, C.M. The locomotion of fishes. Zoologica 1926, 4, 159–297. [Google Scholar] [CrossRef]
- Lindsey, C.C. Form, function and locomotory habits in fish. Fish Physiol. 1978, VII, 1–88. [Google Scholar]
- Webb, P.W. The biology of fish swimming. In The Mechanics and Physiology of Animal Swimming; Rayner, J.M.V., Maddock, L., Bone, Q., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 45–62. [Google Scholar]
- Raj, A.; Thakur, A. Fish-inspired robots: Design, sensing, actuation, and autonomy—A review of research. Bioinspir. Biomim. 2016, 11, 031001. [Google Scholar] [CrossRef]
- Costa, D.; Palmieri, G.; Palpacelli, M.-C.; Panebianco, L.; Scaradozzi, D. Design of a Bio-Inspired Autonomous Underwater Robot. J. Intell. Robot. Syst. 2018, 91, 181–192. [Google Scholar] [CrossRef]
- Mignano, A.P.; Kadapa, S.; Tangorra, J.L.; Lauder, G.V. Passing the Wake: Using Multiple Fins to Shape Forces for Swimming. Biomimetics 2019, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.G.; Lauder, G.V. Fin–fin interactions during locomotion in a simplified biomimetic fish model. .Bioinspir. Biomim. 2021, 16, 046023. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, R.; Wang, Y.; Cheng, L.; Wang, S.; Tan, M. Design and Locomotion Control of a Dactylopteridae-Inspired Biomimetic Underwater Vehicle With Hybrid Propulsion. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2054–2066. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Jiang, Y.; Lafmejani, A.S.; Nichols, K.; Aukes, D. Maneuverable gait selection for a novel fish-inspired robot using a CMA-ES-assisted workflow. Bioinspir. Biomim. 2021, 16, 056017. [Google Scholar] [CrossRef] [PubMed]
- Drago, A.; Carryon, G.; Tangorra, J. Reinforcement learning as a method for tuning CPG controllers for underwater multi-fin propulsion. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Wang, W.; Dai, X.; Li, L.; Gheneti, B.H.; Ding, Y.; Yu, J.; Xie, G. Three-dimensional modeling of a fin-actuated robotic fish with multimodal swimming. IEEE/ASME Trans. Mechatron. 2018, 23, 1641–1652. [Google Scholar] [CrossRef]
- Pollard, B.; Tallapragada, P. Passive appendages improve the maneuverability of fishlike robots. IEEE/ASME Trans. Mechatron. 2019, 24, 1586–1596. [Google Scholar] [CrossRef]
- Marchese, A.D.; Onal, C.D.; Rus, D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 2014, 1, 75–87. [Google Scholar] [CrossRef]
- Qiu, H.; Chen, L.; Ma, X.; Bi, S.; Wang, B.; Li, T. Analysis of Heading Stability due to Interactions between Pectoral and Caudal Fins in Robotic Boxfish Locomotion. J. Bionic Eng. 2023, 20, 390–405. [Google Scholar] [CrossRef]
- Wang, W.; Xie, G. CPG-based Locomotion Controller Design for a Boxfish-like Robot. Int. J. Adv. Robot. Syst. 2016, 13, 87. [Google Scholar] [CrossRef]
- Farina, S.C.; Summers, A.P. Boxed up and ready to go. Nature 2015, 517, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Van Wassenbergh, S.; van Manen, K.; Marcroft, T.A.; Alfaro, M.E.; Stamhuis, E.J. Boxfish swimming paradox resolved: Forces by the flow of water around the body promote manoeuvrability. J. R. Soc. Interface 2015, 12, 20141146. [Google Scholar] [CrossRef]
- Boute, P.G.; Van Wassenbergh, S.; Stamhuis, E.J. Modulating yaw with an unstable rigid body and a course-stabilizing or steering caudal fin in the yellow boxfish (Ostracion cubicus). R. Soc. Open Sci. 2020, 7, 200129. [Google Scholar] [CrossRef]
- Blake, R. The mechanics of labriform locomotion: I. Labriform locomotion in the angelfish (Pterophyllum eimekei): An analysis of the power stroke. J. Exp. Biol. 1979, 82, 255–271. [Google Scholar] [CrossRef]
- Sitorus, P.E.; Nazaruddin, Y.Y.; Leksono, E.; Budiyono, A. Design and Implementation of Paired Pectoral Fins Locomotion of Labriform Fish Applied to a Fish Robot. J. Bionic Eng. 2009, 6, 37–45. [Google Scholar] [CrossRef]
- Blake, R. Influence of pectoral fin shape on thrust and drag in labriform locomotion. J. Zool. 1981, 194, 53–66. [Google Scholar] [CrossRef]
- Wainwright, P.C.; Bellwood, D.R.; Westneat, M.W. Ecomorphology of Locomotion in Labrid Fishes. Environ. Biol. Fishes 2002, 65, 47–62. [Google Scholar] [CrossRef]
- Walker, J.A.; Westneat, M.W. Performance limits of labriform propulsion and correlates with fin shape and motion. J. Exp. Biol. 2002, 205, 177–187. [Google Scholar] [CrossRef]
- Naser, F.A.; Rashid, M.T. The influence of concave pectoral fin morphology in the performance of labriform swimming robot. Iraqi J. Electr. Electron. Eng. 2020, 16, 54–61. [Google Scholar] [CrossRef]
- Delcomyn, F. Neural Basis of Rhythmic Behavior in Animals. Science 1980, 210, 492–498. [Google Scholar] [CrossRef]
- Ijspeert, A.J.; Crespi, A.; Ryczko, D.; Cabelguen, J.-M. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science 2007, 315, 1416–1420. [Google Scholar] [CrossRef]
- Ijspeert, A.J. Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 2008, 21, 642–653. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Q.; Wang, D. CPG-Inspired Workspace Trajectory Generation and Adaptive Locomotion Control for Quadruped Robots. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2011, 41, 867–880. [Google Scholar]
- Liu, C.; Xia, L.; Zhang, C.; Chen, Q. Multi-Layered CPG for Adaptive Walking of Quadruped Robots. J. Bionic Eng. 2018, 15, 341–355. [Google Scholar] [CrossRef]
- Zhong, B.; Zhang, S.; Xu, M.; Zhou, Y.; Fang, T.; Li, W. On a CPG-Based Hexapod Robot: AmphiHex-II With Variable Stiffness Legs. IEEE/ASME Trans. Mechatron. 2018, 23, 542–551. [Google Scholar] [CrossRef]
- Ding, R.; Yu, J.; Yang, Q.; Tan, M.; Zhang, J. CPG-based behavior design and implementation for a biomimetic amphibious robot. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011. [Google Scholar]
- Wang, Z.; Gao, Q.; Zhao, H. CPG-Inspired Locomotion Control for a Snake Robot Basing on Nonlinear Oscillators. J. Intell. Robot. Syst. 2017, 85, 209–227. [Google Scholar] [CrossRef]
- Cao, Y.; Bi, S.; Cai, Y.; Wang, Y. Applying central pattern generators to control the robofish with oscillating pectoral fins. Ind. Robot Int. J. 2015, 42, 392–405. [Google Scholar] [CrossRef]
- Bal, C.; Koca, G.O.; Korkmaz, D.; Akpolat, Z.H.; Ay, M. CPG-based autonomous swimming control for multi-tasks of a biomimetic robotic fish. Ocean Eng. 2019, 189, 106334. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, J.; Yuan, J.; Tan, M. Towards a Gliding Robotic Dolphin: Design, Modeling, and Experiments. IEEE/ASME Trans. Mechatron. 2019, 24, 260–270. [Google Scholar] [CrossRef]
- Yu, J.; Wang, K.; Tan, M.; Zhang, J. Design and Control of an Embedded Vision Guided Robotic Fish with Multiple Control Surfaces. Sci. World J. 2014, 2014, 631296. [Google Scholar] [CrossRef]
- Qiu, H.; Bi, S.; Wang, B.; Cai, Y. Design and Hydrodynamic Analysis of a Robotic Boxfish Using Lift-based and Drag-based Swimming Modes for Propulsion. In Proceedings of the 2021 6th International Conference on Robotics and Automation Engineering (ICRAE), Guangzhou, China, 19–22 November 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Kato, N.; Wicaksono, B.W.; Suzuki, Y. Development of biology-inspired autonomous underwater vehicle “BASS III” with high maneuverability. In Proceedings of the 2000 International Symposium on Underwater Technology (Cat. No.00EX418), Tokyo, Japan, 26 May 2000; IEEE: Piscataway, NJ, USA, 2000. [Google Scholar]
- Hove, J.R.; O’Bryan, L.M.; Gordon, M.S.; Webb, P.W.; Weihs, D. Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: Kinematics. J. Exp. Biol. 2001, 204, 1459–1471. [Google Scholar] [CrossRef]
Items | Parameters | Items | Parameters |
---|---|---|---|
The twisting angle of pectoral fins | 180° | pectoral fin aspect ratio | 0.71 |
The flapping angle of pectoral fins | 120° | Length of pectoral fin spread | 320 mm |
1st oscillation angle of caudal fin | 120° | Length of caudal fin spread | 535 mm |
2nd oscillation angle of caudal fin | 150° | Degrees of freedom | 6 |
Parameters/Units | Abbreviations | Parameters/Units | Abbreviations |
---|---|---|---|
Desired amplitude/ | Coupling constant | ||
Frequency transition coefficient | Swing period/s | ||
Instantaneous desired phase lag/ | Offset angle/ | ||
Desired phase lag/ | Output angle/ | ||
Time asymmetric coefficient | Amplitude / | ||
Desired offset angle | Frequency/ | ||
Desired phase lag gain | Offset gain | ||
Instantaneous phase/ | Amplitude gain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Cai, Y.; Bi, S. Central Pattern Generator (CPG)-Based Locomotion Control and Hydrodynamic Experiments of Synergistical Interaction between Pectoral Fins and Caudal Fin for Boxfish-like Robot. Biomimetics 2023, 8, 380. https://doi.org/10.3390/biomimetics8040380
Chen L, Cai Y, Bi S. Central Pattern Generator (CPG)-Based Locomotion Control and Hydrodynamic Experiments of Synergistical Interaction between Pectoral Fins and Caudal Fin for Boxfish-like Robot. Biomimetics. 2023; 8(4):380. https://doi.org/10.3390/biomimetics8040380
Chicago/Turabian StyleChen, Lin, Yueri Cai, and Shusheng Bi. 2023. "Central Pattern Generator (CPG)-Based Locomotion Control and Hydrodynamic Experiments of Synergistical Interaction between Pectoral Fins and Caudal Fin for Boxfish-like Robot" Biomimetics 8, no. 4: 380. https://doi.org/10.3390/biomimetics8040380
APA StyleChen, L., Cai, Y., & Bi, S. (2023). Central Pattern Generator (CPG)-Based Locomotion Control and Hydrodynamic Experiments of Synergistical Interaction between Pectoral Fins and Caudal Fin for Boxfish-like Robot. Biomimetics, 8(4), 380. https://doi.org/10.3390/biomimetics8040380