A Fluid-Driven Loop-Type Modular Soft Robot with Integrated Locomotion and Manipulation Capability
Abstract
:1. Introduction
2. Design of the Soft Actuator Unit and the MSMP
3. Locomotion and Deformation Analysis of the MSMP
3.1. Locomotion Analysis of the MSMP
- The actuation states are always opposite for two air chambers in one unit.
- Different half-chambers of two adjacent units have the same actuation state.
3.2. Deformation Analysis of the Soft Actuator
- The volume of the silicone material is constant during deformation;
- The inflation process is in accordance with the ideal gas equation of state.
4. Experimental Results
4.1. Experimental Platform Setup
4.2. Control Strategy of Locomotion and Manipulation
4.3. Locomotion and Manipulation Experiments
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gamus, B.; Salem, L.; Gat, A.D.; Or, Y. Understanding inchworm crawling for soft-robotics. IEEE Rob. Autom. Lett. 2020, 5, 1397–1404. [Google Scholar] [CrossRef]
- Sheng, X.; Xu, H.; Zhang, N.; Ding, N.; Zhu, X.; Gu, G. Multi-material 3D printing of caterpillar-inspired soft crawling robots with the pneumatically bellow-type body and anisotropic friction feet. Sens. Actuators A 2020, 316, 112398. [Google Scholar] [CrossRef]
- Wang, J.; Min, J.; Fei, Y.; Pang, W. Study on nonlinear crawling locomotion of modular differential drive soft robot. Nonlinear Dyn. 2019, 97, 1107–1123. [Google Scholar] [CrossRef]
- Tang, Y.; Chi, Y.; Sun, J.; Huang, T.H.; Maghsoudi, O.H.; Spence, A.; Zhao, J.; Su, H.; Yin, J. Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots. Sci. Adv. 2020, 6, eaaz6912. [Google Scholar] [CrossRef]
- Li, S.; Rus, D. JelloCube: A continuously jumping robot with soft body. IEEE/ASME Trans. Mechatron. 2019, 24, 447–458. [Google Scholar] [CrossRef]
- Chen, R.; Yuan, Z.; Guo, J.; Bai, L.; Zhu, X.; Liu, F.; Pu, H.; Xin, L.; Peng, Y.; Luo, J.; et al. Legless soft robots capable of rapid, continuous, and steered jumping. Nat. Commun. 2021, 12, 7028. [Google Scholar] [CrossRef] [PubMed]
- Jeon, G.H.; Park, Y.J. Soft Jumping Robot Using Soft Morphing and the Yield Point of Magnetic Force. Appl. Sci. 2021, 11, 5891. [Google Scholar] [CrossRef]
- Onal, C.D.; Chen, X.; Whitesides, G.M.; Rus, D. Soft mobile robots with on-board chemical pressure generation. In Proceedings of the Robotics Research: The 15th International Symposium ISRR, Flagstaff, AZ, USA, 28 August–1 September 2011. [Google Scholar]
- Lin, H.T.; Leisk, G.G.; Trimmer, B. GoQBot: A caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 2011, 6, 026007. [Google Scholar] [CrossRef]
- Ta, T.D.; Umedachi, T.; Kawahara, Y. Design of frictional 2D-anisotropy surface for wriggle locomotion of printable soft-bodied robots. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018. [Google Scholar]
- Zhu, L.; Yang, P.; Li, F.; Wang, K.; Shui, L.; Chen, X. On the snake-like lateral undulatory locomotion in terrestrial, aquatic and sand environments. J. Mech. Phys. Solids 2021, 157, 104629. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, G.; He, Y.; Zhou, K.; Zhu, L. Octopus-inspired sucker to absorb soft tissues: Stiffness gradient and acetabular protuberance improve the adsorption effect. Bioinspir. Biomim. 2022, 17, 036005. [Google Scholar] [CrossRef]
- Xie, Z.; Domel, A.G.; An, N.; Green, C.; Gong, Z.; Wang, T.; Knubben, E.M.; Weaver, J.C.; Bertoldi, K.; Wen, L. Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Rob. 2020, 7, 639–648. [Google Scholar] [CrossRef]
- Teeple, C.B.; Koutros, T.N.; Graule, M.A.; Wood, R.J. Multi-segment soft robotic fingers enable robust precision grasping. Int. J. Rob. Res. 2020, 39, 1647–1667. [Google Scholar] [CrossRef]
- Lunni, D.; Cianchetti, M.; Filippeschi, C.; Sinibaldi, E.; Mazzolai, B. Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces 2020, 7, 1901310. [Google Scholar] [CrossRef]
- Yang, M.; Cooper, L.P.; Liu, N.; Wang, X.; Fok, M.P. Twining plant inspired pneumatic soft robotic spiral gripper with a fiber optic twisting sensor. Opt. Express 2020, 28, 35158–35167. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Fan, D.; Zhu, R.; Lei, Q.; Liao, Y.; Yang, X.; Pan, Y.; Wang, Z.; Wu, Y.; Liu, S.; et al. Origami-inspired soft twisting actuator. Soft Rob. 2023, 10, 395–409. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, X.; Xu, B.; Zhao, J. A new spiral-type inflatable pure torsional soft actuator. Soft Rob. 2018, 5, 527–540. [Google Scholar] [CrossRef]
- Wang, H.; Yang, B.; Liu, Y.; Chen, W.; Liang, X.; Pfeifer, R. Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans. Mechatron. 2016, 22, 41–50. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Chen, W.; Liang, X.; Liu, Y. Three-dimensional dynamics for cable-driven soft manipulator. IEEE/ASME Trans. Mechatron. 2016, 22, 18–28. [Google Scholar] [CrossRef]
- Thuruthel, T.G.; Falotico, E.; Renda, F.; Laschi, C. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators. IEEE Trans. Rob. 2018, 35, 124–134. [Google Scholar] [CrossRef]
- Xu, S.; Nunez, C.M.; Souri, M.; Wood, R.J. A compact DEA-based soft peristaltic pump for power and control of fluidic robots. Sci. Rob. 2023, 8, eadd4649. [Google Scholar] [CrossRef]
- Xavier, M.S.; Harrison, S.M.; Howard, D.; Yong, Y.K.; Fleming, A.J. Modeling of soft fluidic actuators using fluid–structure interaction simulations with underwater applications. Int. J. Mech. Sci. 2023, 255, 108437. [Google Scholar] [CrossRef]
- Xie, D.; Su, Y.; Li, X.; Chen, J.; Shi, X.; Liang, D.; Yip, J.; Liu, J.; Li, Z.; Tong, R.K.-y. Fluid-Driven High-Performance Bionic Artificial Muscle with Adjustable Muscle Architecture. Adv. Intell. Syst. 2023, 5, 2200370. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, P.; Lin, Y.; Jiao, Z.; Zou, J. Modular soft robotics: Modular units, connection mechanisms, and applications. Adv. Intell. Syst. 2020, 2, 1900166. [Google Scholar] [CrossRef]
- Onal, C.D.; Rus, D. A modular approach to soft robots. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–28 June 2012. [Google Scholar]
- Wan, Z.; Sun, Y.; Qin, Y.; Skorina, E.H.; Gasoto, R.; Luo, M.; Fu, J.; Onal, C.D. Design, analysis, and real-time simulation of a 3D soft robotic snake. Soft Rob. 2023, 10, 258–268. [Google Scholar] [CrossRef]
- Luo, M.; Agheli, M.; Onal, C.D. Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake. Soft Rob. 2014, 1, 136–146. [Google Scholar] [CrossRef]
- Fei, Y.; Shen, X. Nonlinear analysis on moving process of soft robots. Nonlinear Dyn. 2013, 73, 671–677. [Google Scholar] [CrossRef]
- Fei, Y.; Gao, H. Nonlinear dynamic modeling on multi-spherical modular soft robots. Nonlinear Dyn. 2014, 78, 831–838. [Google Scholar] [CrossRef]
- Fei, Y.; Wang, X. Study on nonlinear obstacle avoidance on modular soft robots. Nonlinear Dyn. 2015, 82, 891–898. [Google Scholar] [CrossRef]
- Zou, J.; Lin, Y.; Ji, C.; Yang, H. A reconfigurable omnidirectional soft robot based on caterpillar locomotion. Soft Rob. 2018, 5, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, J.; Mori, T.; Watanabe, Y.; Kawakami, M.; Shiblee, M.N.I.; Furukawa, H. MORI-A: Soft vacuum-actuated module with 3D-printable deformation structure. IEEE Rob. Autom. Lett. 2022, 7, 2495–2502. [Google Scholar] [CrossRef]
- Yin, A.; Lin, H.C.; Thelen, J.; Mahner, B.; Ranzani, T. Combining locomotion and grasping functionalities in soft robots. Adv. Intell. Syst. 2019, 1, 1900089. [Google Scholar] [CrossRef]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Proceedings of the Numerical analysis: Proceedings of the biennial Conference, Dundee, Scotland, 28 June–1 July 1977. [Google Scholar]
Valve 1 | Valve 2 | Valve 3 | Valve 4 | Upper Chamber | Lower Chamber |
---|---|---|---|---|---|
on | off | off | on | inflating | delating |
off | on | on | off | delating | inflating |
off | off | off | off | holding | holding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, X.; Lai, M.; Qi, J.; Yang, Z.; Zhao, N.; Zhao, J.; Cai, H.; Zhu, Y. A Fluid-Driven Loop-Type Modular Soft Robot with Integrated Locomotion and Manipulation Capability. Biomimetics 2023, 8, 390. https://doi.org/10.3390/biomimetics8050390
Sui X, Lai M, Qi J, Yang Z, Zhao N, Zhao J, Cai H, Zhu Y. A Fluid-Driven Loop-Type Modular Soft Robot with Integrated Locomotion and Manipulation Capability. Biomimetics. 2023; 8(5):390. https://doi.org/10.3390/biomimetics8050390
Chicago/Turabian StyleSui, Xin, Mingzhu Lai, Jian Qi, Zhiyuan Yang, Ning Zhao, Jie Zhao, Hegao Cai, and Yanhe Zhu. 2023. "A Fluid-Driven Loop-Type Modular Soft Robot with Integrated Locomotion and Manipulation Capability" Biomimetics 8, no. 5: 390. https://doi.org/10.3390/biomimetics8050390
APA StyleSui, X., Lai, M., Qi, J., Yang, Z., Zhao, N., Zhao, J., Cai, H., & Zhu, Y. (2023). A Fluid-Driven Loop-Type Modular Soft Robot with Integrated Locomotion and Manipulation Capability. Biomimetics, 8(5), 390. https://doi.org/10.3390/biomimetics8050390