Triphenylamine-Based Helical Polymer for Flexible Memristors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements and Instrument
2.3. Synthesis of 4-isocyano-N, N-diphenylanline (ICP)
2.4. Synthesis of Poly(N, N-diphenylanline isocyanide) (PPIC)
2.5. Preparation of Al/PPIC/ITO Device
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, F.; Lu, Q.; Feng, S.; Zhang, T. Flexible artificial sensory systems based on neuromorphic devices. ACS Nano 2021, 15, 3875–3899. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, W.; Huang, Y.; Jin, C.; Zhou, B.; Sun, J.; Yang, J. Recent advances in flexible organic synaptic transistors. Adv. Electron. Mater. 2021, 7, 2100336. [Google Scholar] [CrossRef]
- Ni, Y.; Han, H.; Liu, J.; Choi, Y.; Liu, L.; Xu, Z.; Yang, L.; Jiang, C.; Gao, W.; Xu, W. A fibrous neuromorphic device for multi-level nerve pathways implementing knee jerk reflex and cognitive activities. Nano Energy 2022, 104, 107898. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, S.; Mathayan, V.; Nyberg, T.; Primetzhofer, D.; Shi, X.; Zhang, Z. High Performance Full-Inorganic Flexible Memristor with Combined Resistance-Switching. ACS Appl. Mater. Interfaces 2022, 14, 21173–21180. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Zhao, H.; Sun, Z.; Liu, Z.; He, L.; Li, Y. Research Progress of Biomimetic Memristor Flexible Synapse. Coatings 2021, 12, 21. [Google Scholar] [CrossRef]
- Jang, B.C.; Kim, S.; Yang, Y.; Park, J.; Cha, H.; Oh, J.; Choi, Y. Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System. Nano Lett. 2019, 19, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Baeg, K.J.; Khim, D.; Kim, J.; Yang, B.D.; Kang, M.; Jung, S.W.; You, I.K.; Kim, D.Y.; Noh, Y.Y. High-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible NAND flash memory. Adv. Funct. Mater. 2012, 22, 2915–2926. [Google Scholar] [CrossRef]
- Chen, G.; Fang, Y.; Zhao, X.; Tat, T.; Chen, J. Textiles for learning tactile interactions. Nat. Electron. 2021, 4, 175–176. [Google Scholar] [CrossRef]
- Bae, H.; Kim, D.; Seo, M.; Jin, I.K.; Jeon, S.B.; Lee, H.M.; Jung, S.H.; Jang, B.C.; Son, G.; Yu, K. Bioinspired Polydopamine-Based Resistive-Switching Memory on Cotton Fabric for Wearable Neuromorphic Device Applications. Adv. Mater. Technol. 2019, 4, 1900151. [Google Scholar] [CrossRef]
- Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nature Electronics. 2021, 4, 54–63. [Google Scholar] [CrossRef]
- Zhou, F.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664–671. [Google Scholar] [CrossRef]
- Khan, M.; Rehman, H.M.M.U.; Tehreem, R.; Saqib, M.; Rehman, M.M.; Kim, W.-Y. All-Printed Flexible Memristor with Metal–Non-Metal-Doped TiO2 Nanoparticle Thin Films. Nanomaterials 2022, 12, 2289. [Google Scholar] [CrossRef]
- Lu, Q.; Sun, F.; Liu, L.; Li, L.; Wang, Y.; Hao, M.; Wang, Z.; Wang, S.; Zhang, T. Biological receptor-inspired flexible artificial synapse based on ionic dynamics. Microsyst. Nanoeng. 2020, 6, 84. [Google Scholar] [CrossRef]
- Xu, T.; Du, H.; Liu, H.; Liu, W.; Zhang, X.; Si, C.; Liu, P.; Zhang, K. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices. Adv. Mater. 2021, 33, 2101368. [Google Scholar] [CrossRef]
- Khot, A.C.; Dongale, T.D.; Park, J.H.; Kesavan, A.V.; Kim, T.G. Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications. ACS Appl. Mater. Interfaces 2021, 13, 5216–5227. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, Z.; Xie, Y.; Xu, H.; Zhu, J.; Zhang, X.; Liu, W.; Yang, G.; Ma, J.; Liu, Y. Photocatalytic reduction of graphene oxide-TiO2 nanocomposites for improving resistive-switching memory behaviors. Small 2018, 14, 1801325. [Google Scholar] [CrossRef]
- Park, S.; Liao, Z.; Ibarlucea, B.; Qi, H.; Lin, H.-H.; Becker, D.; Melidonie, J.; Zhang, T.; Sahabudeen, H.; Baraban, L.; et al. Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem. Int. Ed. 2020, 59, 8218–8224. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Lee, W.; Kim, S.W.; Kim, J.J.; Kim, B.S. Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv. Funct. Mater. 2016, 26, 6206–6214. [Google Scholar] [CrossRef]
- Younis, A.; Chu, D.; Lin, X.; Yi, J.; Dang, F.; Li, S. High-performance nanocomposite based memristor with controlled quantum dots as charge traps. ACS Appl. Mater. Interfaces 2013, 5, 2249–2254. [Google Scholar] [CrossRef]
- Zheng, G.; Cui, Y.; Karabulut, E.; Wagberg, L.; Zhu, H.; Hu, L. Nanostructured paper for flexible energy and electronic devices. MRS Bull. 2013, 38, 320–325. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Cui, K.; Ge, S.; Cheng, X.; Yan, M.; Liu, H. Flexible Electronics Based on Micro/Nanostructured Paper. Adv. Mater. 2018, 30, 1801588. [Google Scholar] [CrossRef]
- Hirst, A.R.; Escuder, B.; Miravet, J.F.; Smith, D.K. High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials: From Regenerative Medicine to Electronic Devices. Angew. Chem. Int. Ed. 2008, 47, 8002–8018. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, S.; Li, L.; Wang, L.; Cui, S.; Wang, S.; Shen, G. All-Flexible Artificial Reflex Arc Based on Threshold-Switching Memristor. Adv. Funct. Mater. 2022, 32, 21. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, L.; Rao, Y.; He, Y.; Chen, L.; Zhu, H.; Zhang, W. Three-Dimensional Nanoscale Flexible Memristor Networks with Ultralow Power for Information Transmission and Processing Application. Nano Lett. 2020, 20, 4111–4120. [Google Scholar] [CrossRef] [PubMed]
- Roncali, J.; Leriche, P.; Blanchard, P. Molecular materials for organic photovoltaics: Small is beautiful. Adv. Mater. 2014, 26, 3821–3838. [Google Scholar] [CrossRef]
- Liu, C.; Chen, W. Donor–acceptor polymers for advanced memory device applications. Polym. Chem. 2011, 2, 2169–2174. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Y.; Liu, G.; Xu, L.-Q.; Chen, J.; Zhu, C.-X.; Neoh, K.; Kang, E.-T. Push–Pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 378–387. [Google Scholar] [CrossRef]
- Roncali, J. Molecular bulk heterojunctions: An emerging approach to organic solar cells. Acc. Chem. Res. 2009, 42, 1719–1730. [Google Scholar] [CrossRef]
- Xiao, X.; Zhou, F.; Jiang, J.; Chen, H.; Wang, L.; Chen, D.; Lu, J. Highly efficient polymerization via sulfur(vi)-fluoride exchange (SuFEx): Novel polysulfates bearing a pyrazoline–naphthylamide conjugated moiety and their electrical memory performance. Polym. Chem. 2018, 9, 1040–1044. [Google Scholar] [CrossRef]
- Sun, J.; He, Z.; Liu, S.; Fan, F.; Chen, W.; Zhang, B.; Liu, G. Intramolecular rotation induced High-Temperature Self-Optimization for polymer memristor devices. Eur. Polym. J. 2021, 161, 110814. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Q.; Fan, F.; Zhang, Z.; Han, T.; He, Z.; Liu, G. A dual-mode organic memristor for coordinated visual perceptive computing. Fundam. Res. 2022, 6, 22. [Google Scholar] [CrossRef]
- Yan, Q.; Fan, F.; Sun, C.; El-Khouly, M.E.; Liu, H.; Zheng, Y.; Zhang, B.; Liu, G.; Chen, Y. MoS2 nanosheets chemically modified with metal phthalocyanine via mussel-inspired chemistry for multifunctional memristive devices. J. Mater. Chem. C 2021, 9, 6930–6936. [Google Scholar] [CrossRef]
- Brunsveld, L.; Folmer, B.; Meijer, E.; Sijbesma, R. Supramolecular polymers. Chem. Rev. 2001, 101, 4071–4097. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, K.; Chen, G.; Leow, W.R.; Chen, X. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 2017, 117, 12893–12941. [Google Scholar] [CrossRef]
- Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218. [Google Scholar] [CrossRef]
- Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713. [Google Scholar] [CrossRef] [PubMed]
- Baeg, K.-J.; Noh, Y.-Y.; Sirringhaus, H.; Kim, D.-Y. Controllable shifts in threshold voltage of top-gate polymer field-effect transistors for applications in organic nano floating gate memory. Adv. Funct. Mater. 2010, 20, 224–230. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef]
- Stein, R.B.; Gossen, E.R.; Jones, K.E. Neuronal variability: Noise or part of the signal. Nat. Rev. Neurosci. 2005, 6, 389–397. [Google Scholar] [CrossRef]
- Pulido, C.; Marty, A. Quantal fluctuations in central mammalian synapses: Functional role of vesicular docking sites. Physiol. Rev. 2017, 97, 1403–1430. [Google Scholar] [CrossRef]
- Yoshihara, M.; Littleton, J.T. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 2002, 36, 897–908. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, L.; Huang, W.; Li, Y.; Huang, S.; Zhu, Y.; Yang, D.; Pi, X. Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 2021, 3, 2000099. [Google Scholar] [CrossRef]
- Dolphin, A.C.; Lee, A. Presynaptic calcium channels: Specialized control of synaptic neurotransmitter release. Nat. Rev. Neurosci. 2020, 21, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Meng, P.; Chen, J.; Liu, H.; Bian, R.; Zhu, C.; Liu, F.; Liu, Z. 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2005443. [Google Scholar] [CrossRef]
- He, Y.; Nie, S.; Liu, R.; Jiang, S.; Shi, Y.; Wan, Q. Spatiotemporal Information Processing Emulated by Multiterminal Neuro-Transistor. Adv. Mater. 2019, 31, e1900903. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Liao, M.; Tian, Y.; Liu, Q.; Gao, C.; Yang, X.; Shan, C. 3D Solar-Blind Ga2O3 Photodetector Array Realized Via Origami Method. Adv. Funct. Mater. 2019, 29, 1906040. [Google Scholar] [CrossRef]
- Dolphin, A.C.; Lee, A. Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat. Rev. Neurosci. 2009, 12, 1567–1576. [Google Scholar]
- Shu, Y.; Hasenstaub, A.; Duque, A.; Yu, Y.; McCormick, D.A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 2006, 441, 761–765. [Google Scholar] [CrossRef]
- Rossum, M.; Bi, G.; Turrigiano, G. Stable Hebbian learning from spike timing-dependent plasticity. J. Neurosci. 2000, 20, 8812–8821. [Google Scholar] [CrossRef]
- Ling, D.; Liaw, J.; Teo, H.; Zhu, C.; Chan, H.; Kang, T.; Neoh, G. Polymer memories: Bistable electrical switching and device performance. Polymer 2007, 48, 5182–5201. [Google Scholar] [CrossRef]
- Wang, X.; Tang, W.; Loh, P. Para-Substituted Triphenylamine as a Catholyte for Zinc-Organic Aqueous Redox Flow Batteries. ACS Appl. Energy Mater. 2021, 4, 3612–3621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Gong, M.; Wang, X.; Fan, F.; Zhang, B. Triphenylamine-Based Helical Polymer for Flexible Memristors. Biomimetics 2023, 8, 391. https://doi.org/10.3390/biomimetics8050391
Li J, Gong M, Wang X, Fan F, Zhang B. Triphenylamine-Based Helical Polymer for Flexible Memristors. Biomimetics. 2023; 8(5):391. https://doi.org/10.3390/biomimetics8050391
Chicago/Turabian StyleLi, Jinyong, Minglei Gong, Xiaoyang Wang, Fei Fan, and Bin Zhang. 2023. "Triphenylamine-Based Helical Polymer for Flexible Memristors" Biomimetics 8, no. 5: 391. https://doi.org/10.3390/biomimetics8050391
APA StyleLi, J., Gong, M., Wang, X., Fan, F., & Zhang, B. (2023). Triphenylamine-Based Helical Polymer for Flexible Memristors. Biomimetics, 8(5), 391. https://doi.org/10.3390/biomimetics8050391