Neurofeedback Technology Reduces Cortisol Levels in Bruxismitle Patients: Assessment of Cerebral Activity and Anxiolytic Effects of Origanum majorana Essential Oil
Abstract
:1. Introduction
Aim
2. Materials and Methods
2.1. Origanum Majorana Essential Oil Composition
2.2. Study Groups
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Hamilton Stress Scale II in Patients
2.4. Cortisol
2.5. Materials and Methods
2.5.1. How Does NeurOptimal Work
2.5.2. What Is the Mean Divergence
Divergence a Measure of Stability
NeurOptimal® Technology
Z-amp™ Amplifies Signals
Signal Separation into Frequencies and Intensities
Non-Linear Statistical Analysis of Data
Variables of Time, Frequency and Intensity
Dynamic Dance
Initial Learning Session
Pre-Baseline Graphical Results and PRE/POST NeurOptimal Training
The Training Period
Patient Given Feedback
Post-Baseline Graphical Results
2.6. Statistical Analysis
3. Results
3.1. Effects of NeurOptimal Pre-Training on Brain Activities (Divergence) in 21 in Bruxismitle Patients with/Without Origanum Majorana Stimulation
3.2. Effects of NeurOptimal Post-Training on Brain Activities in Bruxismitle Patients Origanum Majorana(Without) Stimulation
3.3. Analysis of Negative Divergences for Brain Activity Decreased in Bruxismitle Participants After 21 NeurOptimal Training Session with Origanum Majorana Essential Oil Inhalation
3.4. Hamilton Scale II Scores Are Reduced at Post-Training Session in Bruxismitle Patients as Compared to Their Pre-Learning Session
3.5. Effects of NeurOptimal Training on Salivary Cortisol Levels (ng/mL)
Cortisol Levels (Salivary, ng/mL)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lupien, S.J.; McEwen, B.S. The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Res. Rev. 1997, 24, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, C.; Wolf, O.T.; May, M.; Wippich, W.; Hellhammer, D.H. Stress-and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 1996, 58, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.; Houx, P.; Nicolson, N.; Jolles, J. Cortisol reactivity and cognitive performance in a continuous mental task paradigm. Biol. Psychol. 1990, 31, 107–116. [Google Scholar] [CrossRef]
- Davidson, R.J.; McEwen, B.S. Social influences on neuroplasticity: Stress and interventions to promote well-being. Nat. Neurosci. 2012, 15, 689–695. [Google Scholar] [CrossRef]
- Merino, J.J.; Cordero, M.I.; Sandi, C. Regulation of hippocampal cell adhesion molecules NCAM and L1 by contextual fear conditioning is dependent upon time and stressor intensity. Eur. J. Neurosci. 2000, 12, 3283–3290. [Google Scholar] [CrossRef]
- Sandi, C.; Merino, J.J.; Cordero, M.I.; Touyarot, K.; Venero, C. Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience 2001, 102, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, R. Animal models of anxiety. Stress 2003, 6, 73–75. [Google Scholar] [CrossRef]
- Millot, J.L.; Brand, G.; Moran, N. Effects of ambient odors on reaction time in humans. Neurosci. Lett. 2002, 322, 79–82. [Google Scholar] [CrossRef]
- Moss, M.; Cook, J.; Wesnes, K.; Duckett, P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int. J. Neurosci. 2003, 113, 15–38. [Google Scholar] [CrossRef]
- Mitropoulou, G.; Fitsiou, E.; Stavropoulou, E.; Papavassilopoulou, E.; Vamvakias, M.; Pappa, A.; Oreopoulou, A.; Kourkoutas, Y. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil. Microb. Ecol. Health Dis. 2015, 6, 26543. [Google Scholar]
- Koush, Y.; Meskaldji, D.E.; Pichon, S.; Rey, G.; Rieger, S.W.; Linden, D.E.; Van De Ville, D.; Vuilleumier, P.; Scharnowski, F. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback. Cereb. Cortex 2017, 27, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Cohen Kadosh, K.; Linden, D.E.; Lau, J.Y. Plasticity during childhood and adolescence: Innovative approaches to investigating neurocognitive development. Dev. Sci. 2013, 16, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Tallon-Baudry, C.; Bertrand, O.; Delpuech, C.; Pernier, J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J. Neurosci. 1996, 16, 4240–4249. [Google Scholar] [CrossRef]
- Lundqvist, L.O.; Carlsson, F.; Hilmersson, P.; Juslin, P.N. Emotional responses to music: Experience, expression, and physiology. Psychol. Music. 2009, 37, 61–90. [Google Scholar] [CrossRef]
- Benz, S.; Sellaro, R.; Hommel, B.; Colzato, L.S. Music Makes the World Go Round: The Impact of Musical Training on Non-musical Cognitive Functions-A Review. Front. Psychol. 2016, 6, 2023. [Google Scholar] [CrossRef]
- Choppin, S.; Trost, W.; Dondaine, T.; Millet, B.; Drapier, D.; Vérin, M.; Robert, G.; Grandjean, D. Alteration of complex negative emotions induced by music in euthymic patients with bipolar disorder. J. Affect. Disord. 2016, 191, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Särkämö, T.; Laitinen, S.; Numminen, A.; Kurki, M.; Johnson, J.K.; Rantanen, P. Pattern of Emotional Benefits Induced by Regular Singing and Music Listening in Dementia. J. Am. Geriatr. Soc. 2016, 64, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Bai, Z.G.; Bo, A.; Chi, I. A systematic review and meta-analysis of music therapy for the older adults with depression. Int. J. Geriatr. Psychiatry 2016, 31, 1188–1198. [Google Scholar] [CrossRef]
- Chanel, G.; Kronegg, J.; Grandjean, D.; Pun, T. Emotion assessment: Arousal Evaluation Using Eeg’s and Peripheral Physiological Signals. In Proceedings of the MRCS 2006, LNCS, 4105, Istanbul, Turkey, 11–13 September 2006; Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B., Eds.; Springer: Heidelberg/Heidelberg, Germany, 2016; pp. 530–537. [Google Scholar]
- James, C.J.; Wang, S. Blind source separation in single channel EEG analysis: An application to BCI. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 6544–6547. [Google Scholar]
- Ramirez, R.; Vamvakousis, Z. Detecting emotion from EEG signals using the emotive epoc device. In Proceedings of the 2012 International Conference on Brain Informatics, Macau, China, 4–7 December 2012; pp. 175–184. [Google Scholar]
- Auer, T.; Schweizer, R.; Frahm, J. Training Efficiency and Transfer Success in an Extended Real-Time Functional MRI Neurofeedback Training of the Somatomotor Cortex of Healthy Subjects. Front. Hum. Neurosci. 2015, 9, 547. [Google Scholar] [CrossRef]
- Simoes, M.; Lima, J.; Direito, B.; Castelhano, J.; Ferreira, C.; Carvalho, P.; Castelo-Branco, M. Feature analysis for correlation studies of simultaneous EEG-fMRI data: A proof of concept for neurofeedback approaches. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; pp. 4065–4068. [Google Scholar]
- Wang, Y.; Sokhadze, E.M.; El-Baz, A.S.; Li, X.; Sears, L.; Casanova, M.F.; Tasman, A. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder. Front. Hum. Neurosci. 2016, 14, 723. [Google Scholar] [CrossRef]
- Herman, S.T.; Abend, N.S.; Bleck, T.P.; Chapman, K.E.; Drislane, F.W.; Emerson, R.G.; Gerard, E.E.; Hahn, C.D.; Husain, A.M.; Kaplan, P.W.; et al. Consensus statement on continuous EEG in critically ill adults and children, part II: Personnel, technical specifications, and clinical practice. J. Clin. Neurophysiol. 2015, 32, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Gruber, T.; Keil, A.; Müller, M.M. Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. Neurosci. Lett. 2001, 316, 29–32. [Google Scholar] [CrossRef] [PubMed]
- AlSahman, L.; AlBagieh, H.; AlSahman, R. Is There a Relationship between Salivary Cortisol and Temporomandibular Disorder: A Systematic Review. Diagnostics 2024, 14, 1435. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.; Egner, T. Critical validation studies of neurofeedback. Child Adolesc. Psychiatr. Clin. N. Am. 2005, 14, 83–104. [Google Scholar] [CrossRef]
- Engelbregt, H.J.; Keeser, D.; van Eijk, L.; Suiker, E.M.; Eichhorn, D.; Karch, S.; Deijen, J.B.; Pogarell, O. Short and long-term effects of sham-controlled prefrontal EEG-neurofeedback training in healthy subjects. Clin. Neurophysiol. 2016, 127, 1931–1937. [Google Scholar] [CrossRef]
- Gomez-Pilar, J.; Corralejo, R.; Nicolas-Alonso, L.F.; Álvarez, D.; Hornero, R. Neurofeedback training with a motor imagery-based BCI: Neurocognitive improvements and EEG changes in the elderly. Med. Biol. Eng. Comput. 2016, 54, 1655–1666. [Google Scholar] [CrossRef]
- Linden, M.; Gunkelman, J. QEEG-guided neurofeedback for autism: Clinical observations and outcomes. In Imaging the Brain in Autism; Casanova, M.F., El-Baz, A.S., Suri, J.S., Eds.; Springer: New York, NY, USA, 2013; pp. 45–60. [Google Scholar]
- Linden, M.; Habib, T.; Radojevic, V. A controlled study of the effects of EEG biofeedback on cognition and behavior of children with attention deficit disorder and learning disabilities. Biofeedback Self Regul. 1996, 21, 35–49. [Google Scholar] [CrossRef]
- Paret, C.; Kluetsch, R.; Ruf, M.; Demirakca, T.; Hoesterey, S.; Ende, G.; Schmahl, C. Down-regulation of amygdala activation with real-time fMRI neurofeedback in a healthy female sample. Front. Behav. Neurosci. 2014, 18, 299. [Google Scholar] [CrossRef]
- Yoo, J.J.; Hinds, O.; Ofen, N.; Thompson, T.W.; Whitfield-Gabrieli, S.; Triantafyllou, C.; Gabrieli, J.D.E. When the brain is prepared to learn: Enhancing human learning using real-time fMRI. NeuroImage 2012, 59, 846–852. [Google Scholar] [CrossRef]
- Zotev, V.; Yuan, H.; Misaki, M.; Phillips, R.; Young, K.D.; Feldner, M.T.; Bodurka, J. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRIneurofeedback training in patients with depression. Neuroimage Clin. 2016, 12, 224–238. [Google Scholar] [CrossRef]
- Zotev, V.; Krueger, F.; Phillips, R.; Alvarez, R.P.; Simmons, W.K.; Bellgowan, P.; Drevets, W.C.; Bodurka, J. Self-regulation of amygdala activation using real-time FMRI neurofeedback. PLoS ONE 2011, 6, e24522. [Google Scholar] [CrossRef] [PubMed]
- Reiter, K.; Andersen, S.B.; Carlsson, J. Neurofeedback Treatment and Posttraumatic Stress Disorder: Effectiveness of Neurofeedback on Posttraumatic Stress Disorder and the Optimal Choice of Protocol. J. Nerv. Ment. Dis. 2016, 204, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Starkman, M.N.; Gebarski, S.S.; Berent, S.; Schteingart, D.E. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol. Psychiatry 1992, 32, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.; Wysham, C.; Pfohl, B. Age-related changes in the circadian rhythm of plasma cortisol in man. J. Clin. Endocrinol. Metab. 1985, 61, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Newcomer, J.W.; Craft, S.; Hershey, T.; Askins, K.; Bardgett, M.E. Glucocorticoid-induced impairment in declarative memory performance in adult humans. J. Neurosci. 1994, 14, 2047–2053. [Google Scholar] [CrossRef]
- McGaugh, J.L. Memory—A century of consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef]
- Buchanan, T.W.; Lovallo, W.R. Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 2001, 26, 307–317. [Google Scholar] [CrossRef]
- Coben, R.; Myers, T.E. The relative efficacy of connectivity guided and symptom based EEG biofeedback for autistic disorders. Appl. Psychophysiol. Biofeedback 2010, 35, 13–23. [Google Scholar] [CrossRef]
- Henkin, R.I.; Levy, L.M. Lateralization of brain activation to imagination and smell of odors using functional magnetic resonance imaging (fMRI): Left hemispheric localization of pleasant and right hemispheric localization of unpleasant odors. J. Comput. Assist. Tomogr. 2001, 25, 493–514. [Google Scholar] [CrossRef]
- Armfield, J.M.; Heaton, L.J. Management of fear and anxiety in the dental clinic: A review. Aust. Dent. J. 2013, 58, 390–407. [Google Scholar] [CrossRef]
- Zabirunnisa, M.; Gadagi, J.S.; Gadde, P.; Myla, N.; Koneru, J.; Thatimatla, C. Dental patient anxiety: Possible deal with Lavender fragrance. J. Res. Pharm. Pract. 2014, 3, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Sayorwan, W.; Ruangrungsi, N.; Piriyapunyporn, T.; Hongratanaworakit, T.; Kotchabhakdi, N.; Siripornpanich, V. Effects of inhaled rosemary oil on subjective feelings and activities of the nervous system. Sci. Pharm. 2013, 81, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Manley, C.H. Psychophysiological effect of odor. Crit. Rev. Food Sci. Nutr. 1993, 33, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, H.R.; Gerbers, C.L. Functional properties of the olfactory system: Psychophysics. Dimensional salience of odors. Ann. N. Y. Acad. Sci. 1974, 237, 1–16. [Google Scholar] [CrossRef]
- Atsumi, T.; Tonosaki, K. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Res. 2007, 150, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Heuberger, E.; Redhammer, S.; Buchbauer, G. Transdermal absorption of (−)-linalool induces autonomic deactivation but has no impact on ratings of well-being in humans. Neuropsychopharmacology 2004, 29, 1925–1932. [Google Scholar] [CrossRef]
- Lehrner, J.; Marwinski, G.; Lehr, S.; Johren, P.; Deecke, L. Ambient odors of orange and Lavender reduce anxiety and improve mood in a dental office. Physiol. Behav. 2005, 86, 92–95. [Google Scholar] [CrossRef]
- Hawken, P.A.; Fiol, C.; Blache, D. Genetic differences in temperament determine whether lavender oil alleviates or exacerbates anxiety in sheep. Physiol. Behav. 2012, 105, 1117–1123. [Google Scholar] [CrossRef]
- Lis-Balchin, M.; Hart, S. Studies on the mode of action of the essential oil of Lavender (LaParetvandula angustifolia P. Miller) Phytother. Res. 1999, 13, 540–542. [Google Scholar] [CrossRef]
- Zald, D.H.; Pardo, J.V. Functional neuroimaging of the olfactory system in humans. Int. J. Psychophysiol. 2000, 36, 165–181. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Graham, J.E.; Malarkey, W.B.; Porter, K.; Lemeshow, S.; Glaser, R. Olfactory influences on mood and autonomic, endocrine, and immune function. Psychoneuroendocrinology 2008, 33, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Reus, V.I.; Peeke, H.V.; Miner, C. Habituation and cortisol dysregulation in depression. Biol. Psychiatry 1985, 20, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Field, T.; Diego, M.; Hernandez-Reif, M.; Cisneros, W.; Feijo, L.; Vera, Y.; Gil, K.; Grina, D.; Claire He, Q. Lavender fragrance cleansing gel effects on relaxation. Int. J. Neurosci. 2005, 115, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Shiina, Y.; Funabashi, N.; Lee, K.; Toyoda, T.; Sekine, T.; Honjo, S.; Hasegawa, R.; Kawata, T.; Wakatsuki, Y.; Hayashi, S.; et al. Relaxation effects of lavender aromatherapy improve coronary flow velocity reserve in healthy men evaluated by transthoracic Doppler echocardiography. Int. J. Cardiol. 2008, 129, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Toda, M.; Morimoto, K. Effect of lavender aroma on salivary endocrinological stress markers. Arch. Oral Biol. 2008, 53, 964–968. [Google Scholar] [CrossRef]
- Vukelić, M.; Gharabaghi, A. Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks. Front. Behav. Neurosci. 2015, 9, 181. [Google Scholar] [CrossRef]
- Khan, I.; Karim, N.; Ahmad, W.; Abdelhalim, A.; Chebib, M. GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from Artemisia indica Linn. Evid. Based Complement. Alternat. Med. 2016, 2016, 1215393. [Google Scholar] [CrossRef]
- Dias, A.M.; van Deusen, A. A new neurofeedback protocol for depression. Span. J. Psychol. 2011, 14, 374–384. [Google Scholar] [CrossRef]
- Swingle, P.G. Neurofeedback treatment of pseudoseizure disorder. Biol. Psychiatry 1998, 44, 1196–1199. [Google Scholar] [CrossRef]
- Fuchs, T.; Birbaumer, N.; Lutzenberger, W.; Gruzelier, J.H.; Kaiser, J. Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. Appl. Psychophysiol. Biofeedback 2003, 28, 1–12. [Google Scholar] [CrossRef]
- Rossiter, T. The effectiveness of neurofeedback and stimulant drugs in treating AD/HD: Part I. Review of methodological issues. Appl. Psychophysiol. Biofeedback 2004, 29, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Hurt, E.; Arnold, L.E.; Lofthouse, N. Quantitative EEG neurofeedback for the treatment of pediatric attention deficit/hyperactivity disorder, autism spectrum disorders, learning disorders, and epilepsy. Child Adolesc. Psychiatr. Clin. N. Am. 2014, 23, 465–486. [Google Scholar] [CrossRef]
- Marins, T.F.; Rodrigues, E.C.; Engel, A.; Hoefle, S.; Basílio, R.; Lent, R.; Moll, J.; Tovar-Moll, F. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex. Front. Behav. Neurosci. 2015, 24, 341. [Google Scholar] [CrossRef]
- Diego, M.A.; Jones, N.A.; Field, T.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C.; McAdam, V.; Galamaga, R.; Galamaga, M. Aromatherapy positively affects mood, EEG patterns of alertness and math computations. Int. J. Neurosci. 1998, 96, 217–224. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.A.; McGonigal, A.; Lopez, R.; Daudet, C.; Kotwas, I.; Bartolomei, F. Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. Neurophysiol. Clin. 2015, 45, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, V.; Dazzan, O.; Hepgul, N.; Di Forti, M.; Aas, M.; D’Albenzio, A.; Di Nicola, M.; Fisher, H.; Rowena, F.; Reis, M.; et al. Abnormal cortisol levels during the day and cortisol awakening response in first-episode psychosis: The role of stress and of antipsychotic treatment. Schizophr. Res. 2010, 116, 234–242. [Google Scholar] [CrossRef]
- Shimada, M.; Takahashi, K.; Ohkawa, T.; Segawa, M.; Higurashi, M. Determination of salivary cortisol by ELISA and its application to the assessment of the circadian rhythm in children. Horm. Res. 1995, 44, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Fritzen, V.M.; Colonetti, T.; Cruz, M.V.B.; Ferraz, S.D.; Ceretta, L.; Tuon, L.; DARosa, M.I.; Ceretta, R.A. Levels of salicvary cortisol in adults and children with bruxism diagnosis. A systematic review and meta-analysis. J. Evid. Based Dent. Pract. 2022, 22, 101634. [Google Scholar] [CrossRef]
- Gameiro, G.H.; da Silva Andrade, A.; Nouer, D.F.; Ferraz de Arruda Veiga, M.C. How may stressful experiences contribute to the development of temporomandibular disorders? Clin. Oral. Investig. 2006, 10, 261–268. [Google Scholar] [CrossRef]
- Suprajith, T.; Wali, A.; Jain, A.; Patil, K.; Mahale, P.; Niranjan, V. Effect of Temporomandibular Disorders on Cortisol Concentration in the Body and Treatment with Occlusal Equilibrium. J. Pharm. Bioallied Sci. 2022, 14 (Suppl. S1), S483–S485. [Google Scholar] [CrossRef]
- Lu, L.; Yang, B.; Li, M.; Bao, B. Salivary cortisol levels and temporomandibular disorders—A systematic review and meta-analysis of 13 case-control studies. Trop. J. Pharm. Res. 2022, 21, 1341–1349. [Google Scholar] [CrossRef]
20 °C—density | 0.894 |
15 °C—density | 0.898 |
20 °C—refractive index | 1.473 |
20 °C—optical rotation | +22.5 °C |
80%—miscibility | 1 mL of alcohol/ 1 volulme d’HE |
SETAFLASH—flaspoint | 55.9 °C |
Pesticides: Dosage Par GC MS Detected XSD (Method Multiresilides #NF V03-110) List of Pesticides Researched (European Pharmacopea): | Results |
---|---|
Alachlor, Aldrine, BromophosEthyl, BromphosMethyl, Chlordane, Chlorfenvinphos, Chlorpyriphos, ChlorpyriphosMethyl, ChlorthalDimethyl, Cyfluthrine, Cyhalothrine lambda, Cypermethrine, Dichlofluanide, Dichlorvos, Dicofol (Ronnel), Fenchlorphos-oxon, Fenvalerate, Fluvalinate, Heptachlor, Heptachlorepoxixe, Hexachorobenzene, Hexachlorocyclohexane alpha, Hexachlorocyclohexane beta, Hexachlorocyclohexane delta, Hexachlorocyclohexane epsilon, Lindane, Methoxychlore, Mirex, Naled, o,p′-DDD, o,p′-DDE, o,p′-DDT, Oxychlordane, p,p′-DDD, p,p′-DDE, pp′-DDT, Pentachloroaniline, Pentachloroanisole, Permethrine, Phosalone, Procymidone, Profenophos, Prothiofos, Quintozene, S421, Tecnazene, Tetradifon, Vinclozoline. | <LMR * * Limit maximal residual |
n Patients | Salivary | |
---|---|---|
Bruxismitle patients with Origanum majorana odor during 21 NeurOptimal-NO-sessions | 12 | 120 |
Bruxismitle patients trained during 21 NeurOptimal sessions, without Origanum majorana essential oil | 12 | 120 |
Bruxismitle patients (untrained in NO and without Origanum majorana exposure) | 20 | 150 |
Controls (without bruxism and non-trained in NeurOptimal) | 30 | 100 |
Controls expose to Origanum majorana odor without NO training | 10 | 50 |
Controls trained in NeurOptimal | 5 | 50 |
Total samples | 89 | 590 |
Session | Zen 1 | Zen 2 | Zen 3 | Zen 4 | Total Time |
---|---|---|---|---|---|
Demo | 5 | 5 | 5 | 15 | |
First | 11 | 11 | 11.5 | 33.5 | |
Second | 8 | 12 | 5 | 8.5 | 33.5 |
Third | 7 | 8 | 10 | 8.5 | 33.5 |
Regular | 5 | 7 | 14 | 7.5 | 33.5 |
Extended | 5 | 10 | 20 | 10 | 45.0 |
Modes | Exercise | Difference Between Modes |
---|---|---|
Zen 1 | Warm up | Both sides of the brain are trained separately over all frequencies, no comparison between sides |
Zen 2 | Weight lift | Both sides of the brain are trained together within each separate target range |
Zen 3 | Endurance | Both sides of the brctrain are trained together over all frequencies at the same time |
Zen 4 | Cool down | Integration of learning |
Pre vs. Post | Pre vs. Pre-AE | Pre-AE vs. Post | Pre-AE vs. Post-AE | Post vs. Post-AE |
---|---|---|---|---|
p = 0.049 (S12) | p = 0.037 (S12) | p = 0.024 (S6) | p = 0.049 (S1) (S21) p = 0.14, n.s | p = 0.014 (S1) p = 0.1 (H2), n.s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merino, J.J.; Parmigiani-Izquierdo, J.M.; Gasca, A.T.; Cabaña-Muñoz, M.E. Neurofeedback Technology Reduces Cortisol Levels in Bruxismitle Patients: Assessment of Cerebral Activity and Anxiolytic Effects of Origanum majorana Essential Oil. Biomimetics 2024, 9, 715. https://doi.org/10.3390/biomimetics9110715
Merino JJ, Parmigiani-Izquierdo JM, Gasca AT, Cabaña-Muñoz ME. Neurofeedback Technology Reduces Cortisol Levels in Bruxismitle Patients: Assessment of Cerebral Activity and Anxiolytic Effects of Origanum majorana Essential Oil. Biomimetics. 2024; 9(11):715. https://doi.org/10.3390/biomimetics9110715
Chicago/Turabian StyleMerino, José Joaquín, José María Parmigiani-Izquierdo, Adolfo Toledano Gasca, and María Eugenia Cabaña-Muñoz. 2024. "Neurofeedback Technology Reduces Cortisol Levels in Bruxismitle Patients: Assessment of Cerebral Activity and Anxiolytic Effects of Origanum majorana Essential Oil" Biomimetics 9, no. 11: 715. https://doi.org/10.3390/biomimetics9110715
APA StyleMerino, J. J., Parmigiani-Izquierdo, J. M., Gasca, A. T., & Cabaña-Muñoz, M. E. (2024). Neurofeedback Technology Reduces Cortisol Levels in Bruxismitle Patients: Assessment of Cerebral Activity and Anxiolytic Effects of Origanum majorana Essential Oil. Biomimetics, 9(11), 715. https://doi.org/10.3390/biomimetics9110715