Sodium Alginate–Starch Capsules for Enhanced Stability of Metformin in Simulated Gastrointestinal Fluids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Capsules’ Development
2.2.2. Testing Methods
2.3. Statistical Analyses
3. Results and Discussion
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vikulina, A.S.; Campbell, J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. Nanomat 2021, 11, 2502. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, M.S.; Ahmed, S.A.; Alkahtani, S.; Milivojevic, M.; Kandar, C.C.; Dhara, A.K.; Nayak, A.K. Biopolymers for Drug Delivery. In Biodegradable Polymers: Processing, Degradation and Applications; Nayak, A., Hasnain, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–29. [Google Scholar] [CrossRef]
- Jacob, J.; Haponiuk, T.; Thomas, S.; Gopi, S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem. 2018, 9, 43–55. [Google Scholar] [CrossRef]
- Nezamdoost-Sani, N.; Khaledabad, M.A.; Amiri, S.; Phimolsiripol, Y.; Mousavi Khaneghah, A. A comprehensive review on the utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Int. J. Biol. Macromol. 2024, 254, 127907. [Google Scholar] [CrossRef] [PubMed]
- Premjit, Y.; Pandey, S.; Mitra, J. Encapsulation of probiotics in freeze-dried calcium alginate and κ-carrageenan beads using definitive screening design: A comprehensive characterisation and in vitro digestion study. Int. J. Biol. Macromol. 2024, 258, 129279. [Google Scholar] [CrossRef]
- Han, M.; Yang, S.; Song, J.; Gao, Z. Layer-by-layer coated probiotics with chitosan and liposomes demonstrate improved stability and antioxidant properties in vitro. Int. J. Biol. Macromol. 2024, 258, 128826. [Google Scholar] [CrossRef]
- Carlan, I.C.; Estevinho, B.N.; Rocha, F. Production of vitamin B1 microparticles by a spray drying process using different biopolymers as wall materials. Can. J. Chem. Eng. 2020, 98, 1682–1695. [Google Scholar] [CrossRef]
- Wijekoon, M.M.J.O.; Mahmood, K.; Ariffin, F.; Mohammadi Nafchi, A.; Zulkurnain, M. Recent advances in encapsulation of fat-soluble vitamins using polysaccharides, proteins, and lipids: A review on delivery systems, formulation, and industrial applications. Int. J. Biol. Macromol. 2023, 241, 124539. [Google Scholar] [CrossRef]
- Dang, S.; Gupta, S.; Bansal, R.; Ali, J.; Gabrani, R. Nano-encapsulation of a natural polyphenol, green tea catechins: Way to preserve its antioxidative potential. In Free Radicals Human Health and Disease; Rani, V., Yadav, U., Eds.; Springer: New Delhi, India, 2015; pp. 397–415. [Google Scholar] [CrossRef]
- Shutava, T.G.; Lvov, Y.M. Encapsulation of Natural Polyphenols with Antioxidant Properties in Polyelectrolyte Capsules and Nanoparticles. Nat. Compd. Inducers Cell Death 2012, 1, 215–235. [Google Scholar] [CrossRef]
- Oh, J.K.; Lee, D.I.; Park, J.M. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2009, 34, 1261–1282. [Google Scholar] [CrossRef]
- Gopi, S.; Amalraj, A.; Sukumaran, N.P.; Haponiuk, J.T.; Thomas, S. Biopolymers and Their Composites for Drug Delivery: A Brief Review. In Macromolecular Symposia; Wiley Online Library: Hoboken, NJ, USA, 2018; Volume 380, p. 1800114. [Google Scholar] [CrossRef]
- Gorityala, S.; Kurakula, M. Advances in Functionalized Hybrid Biopolymer Augmented Lipid-based Systems: A Spotlight on Their Role in Design of Gastro Retentive Delivery Systems. Arch. Gastroenterol. Res. 2021, 2, 35–47. [Google Scholar] [CrossRef]
- Abourehab, M.A.; Rajendran, R.R.; Singh, A.; Pramanik, S.; Shrivastav, P.; Ansari, M.J.; Manne, R.; Amaral, L.S.; Deepak, A. Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int. J. Mol. Sci. 2022, 23, 9035. [Google Scholar] [CrossRef] [PubMed]
- Builders, P.F.; Arhewoh, M.I. Pharmaceutical applications of native starch in conventional drug delivery. Starch Stärke 2016, 68, 864–873. [Google Scholar] [CrossRef]
- Troncoso, O.P.; Torres, F.G. Non-conventional starch nanoparticles for drug delivery applications. Med. Devices Sens. 2020, 3, e10111. [Google Scholar] [CrossRef]
- Lemos, P.V.; Marcelino, H.R.; Cardoso, L.G.; de Souza, C.O.; Druzian, J.I. Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials. Int. J. Biol. Macromol. 2021, 184, 218–234. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends Food Sci. Technol. 2021, 114, 510–520. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Prata, A.S.; Grosso, C.R. Alginate and whey protein based-multilayered particles: Production, characterisation and resistance to pH, ionic strength and artificial gastric/intestinal fluid. J. Microencapsul. 2017, 34, 151–161. [Google Scholar] [CrossRef]
- Wiwattanapatapee, R.; Klabklay, K.; Raksajit, N.; Siripruekpong, W.; Leelakanok, N.; Petchsomrit, A. The development of an in-situ biopolymer-based floating gel for the oral delivery of metformin hydrochloride. Heliyon 2023, 9, e14796. [Google Scholar] [CrossRef]
- Pal, D.; Nayak, A. Plant polysaccharides-blended ionotropically-gelled alginate multiple-unit systems for sustained drug release. In Handbook of Composites from Renewable Materials, Polymeric Composites; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 399–406. [Google Scholar]
- Yari, K.; Akbari, I.; Yazdi, S. Development and evaluation of sodium alginate-basil seeds mucilage beads as a suitable carrier for controlled release of metformin. Int. J. Biol. Macromol. 2020, 159, 1–10. [Google Scholar] [CrossRef]
- Nanak, A.; Pal, D. Formulation optimization and evaluation of jackfruit seed starch-alginate mucoadhesive beads of metformin HCl. Int. J. Biol. Macromol. 2013, 59, 264–272. [Google Scholar] [CrossRef]
- Choudhury, P.K.; Kar, M. Preparation of Alginate Gel Beads Containing Metformin Hydrochloride Using Emulsion- Gelation Method. Trop. J. Pharm. Res. 2007, 4, 489–493. [Google Scholar] [CrossRef]
- Kumar, S.; Bhanjana, G.; Verma, R.K.; Dhingra, D.; Dilbaghi, N.; Kim, K.H. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J. Pharm. Pharmacol. 2017, 69, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Bouriche, S.; Cozar-Bernal, M.J.; Rezgui, F.; Rabasco Alvarez, A.M.; Gonzales-Rodriguez, M.L. Optimization of preparation method by W/O/W emulsion for entrapping metformin hydrochloride into poly (lactic acid) microparticles using Box-Behnken design. J. Drug Deliv. Sci. Technol. 2019, 51, 419–429. [Google Scholar] [CrossRef]
- Harsha, N.S. In Vitro and In Vivo Evaluation of Nanoparticles Prepared by Nano Spray Drying for Stomach Mucoadhesive Drug Delivery. Drying Technol. 2015, 33, 1199–1209. [Google Scholar] [CrossRef]
- Shehata, T.; Ibrahima, M. BÜCHI nano spray dryer B-90: A promising technology for the production of metformin hydrochloride-loaded alginate–gelatin nanoparticles. Drug Dev. Ind. Pharm. 2019, 45, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Szekalska, M.; Sosnowska, K.; Zakrzeska, A.; Kasacka, I.; Lewandowska, A.; Winnicka, K. The Influence of Chitosan Cross-linking on the Properties of Alginate Microparticles with Metformin Hydrochloride—In Vitro and In Vivo Evaluation. Molecules 2017, 22, 182. [Google Scholar] [CrossRef] [PubMed]
- Aassem, A.A.; Issa, D.A.E.; Kotry, G.S.; Farid, R.M. Thiolated alginate-based multiple layer mucoadhesive films of metformin forintra-pocket local delivery: In vitro characterization and clinical assessment. Drug Dev. Ind. Pharm. 2016, 43, 120–131. [Google Scholar]
- Rebitski, E.; Darder, M.; Carraro, R.; Aranda, P.; Ruiz-Hitsky, E. Chitosan and pectin core–shell beads encapsulating metformin–clay intercalation compounds for controlled delivery. New J. Chem. 2020, 44, 10102–10110. [Google Scholar] [CrossRef]
- Allam, A.N.; Mehanna, M.M. Formulation, physicochemical characterization and in-vivo evaluation of ion-sensitive metformin loaded-biopolymeric beads. Drug Dev. Ind. Pharm. 2015, 42, 497–505. [Google Scholar] [CrossRef]
- Maestrelli, F.; Mura, P.; González-Rodríguez, M.L.; Cózar-Bernal, M.J.; Rabasco, A.M.; Di Cesare Mannelli, L.; Ghelardini, C. Calcium alginate microspheres containing metformin hydrochloride niosomes and chitosomes aimed for oral therapy of type 2 diabetes mellitus. Int. J. Pharm. 2017, 530, 430–439. [Google Scholar] [CrossRef]
- Córdoba, A.L.; Deladino, L.; Martino, M. Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohydr. Polym. 2013, 95, 315–323. [Google Scholar] [CrossRef]
- Zheng, B.D.; Yu, Y.Z.; Yuan, X.L.; Chen, X.S.; Yang, Y.C.; Zhang, N.; Huang, Y.Y.; Ye, J.; Xiao, M.T. Sodium alginate/carboxymethyl starch/κ-carrageenan enteric soft capsule: Processing, characterization, and rupture time evaluation. Int. J. Biol. Macromol. 2023, 244, 125427. [Google Scholar] [CrossRef] [PubMed]
- Abbasiliasi, S.; Shun, T.; Ibrahim, T.; Ismail, N.; Ariff, A.; Mokhtara, N.; Mustafa, S. Use of sodium alginate in the preparation of gelatin-based hard capsule shells and their evaluation in vitro. RSC Adv. 2019, 9, 16147–16157. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.W.; Lim, L.T.; Heng, P. Microencapsulation of oils using sodium alginate. J. Microencapsul. 2000, 17, 757–766. [Google Scholar] [PubMed]
- Jarungsirawat, R.; Siriwachirachai, C.; Kajthunyakarn, W.; Jaipakdee, N.; Chitropas, P.; Pongjanyakul, T. Agglomeration of native tapioca starch using sodium alginate for use in tablets. J. Drug Deliv. Sci. Technol. 2024, 101, 106237. [Google Scholar] [CrossRef]
- Hassan, H.; Gomaa, A.; Subirade, M.; Kheadr, E.; St-Gelais, D.; Fliss, I. Novel design for alginate/resistant starch microcapsules controlling nisin release. Int. J. Biol. Macromol. 2020, 153, 1118–1192. [Google Scholar] [CrossRef]
- de Araújo Etchepare, M.; Raddatz, G.; Cichoski, A.; Moraes Flores, E.; Barin, J.; Zepka, L.; Jacob-Lopes, E.; Ferreira Grosso, C.R.; de Menezes, C.R. Effect of resistant starch (Hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. J. Funct. Foods 2016, 21, 321–329. [Google Scholar] [CrossRef]
- Gheorghita Puscaselu, R.; Gutt, D. The importance of starch source in the development of edible materials for food packaging. In Proceedings of the 21st International Scientific GeoConference SGEM 2021, Albena, Bulgaria, 16–22 August 2021. [Google Scholar]
- Nayak, A.K.; Malakar, J.; Pal, D.; Hasnain, M.S.; Beg, S. Soluble starch-blended Ca2+-Zn2+-alginate composites-based microparticles of aceclofenac: Formulation development and in vitro characterization. Future J. Pharm. Sci. 2018, 4, 63–70. [Google Scholar] [CrossRef]
- Lal, J.S.; Radha, D.; Devaky, K.S. Design and synthesis of chitosan/alginate/zinc oxide nanocomposite hydrogel beads as carrier for metformin hydrochloride. J. Mol. Struct. 2024, 1317, 139092. [Google Scholar] [CrossRef]
- Meligi, M.; Dyab, A.K.; Paunov, V. Sustained In Vitro and In Vivo Delivery of Metformin from Plant Pollen-Derived Composite Microcapsules. Pharmaceutics 2021, 13, 1048. [Google Scholar] [CrossRef]
- Gheorghita, R.; Anchidin-Norocel, L.; Filip, R.; Dimian, M.; Covasa, M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers 2021, 13, 2729. [Google Scholar] [CrossRef]
- Talebian, S.; Schofield, T.; Valtchev, P.; Schindeler, A.; Kavanagh, J.M.; Adil, Q.; Dehghani, F. Biopolymer-Based Multilayer Microparticles for Probiotic Delivery to Colon. Adv. Healthc. Mater. 2022, 11, 2102487. [Google Scholar] [CrossRef]
- Desai, S.; Perkins, J.; Harrison, B.S.; Sankar, J. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications. Mater. Sci. Eng. B 2010, 168, 127–131. [Google Scholar] [CrossRef]
- Cabbalero, F.; Foradada, M.; Minarro, M.; Perez-Lozano, P.; Garcia-Montoya, E.; Tico, J.R.; Sune-Negre, J.M. Characterization of alginate beads loaded with ibuprofen lysine salt and optimization of the preparation method. Int. J. Pharm. 2014, 460, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Wooster, T.J.; Acquistapace, S.; Mettraux, C.; Donato, L.; Dekkers, B.L. Hierarchically structured phase separated biopolymer hydrogels create tailorable delayed burst release during gastrointestinal digestion. J. Colloid Interface Sci. 2019, 553, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Mascaraque, L.G.; Martínez-Sanz, M.; Hogan, S.A.; López-Rubio, A.; Brodkorb, A. Nano- and microstructural evolution of alginate beads in simulated gastrointestinal fluids. Impact of M/G ratio, molecular weight and pH. Carbohydr. Polym. 2019, 223, 115121. [Google Scholar] [CrossRef]
- Mansour, S.; Majid, T.; Ali Mohammad, S.; Niloufar, R. Severity of Gastrointestinal Side Effects of Metformin Tablet Compared to Metformin Capsule in Type 2 Diabetes Mellitus Patients. J. Res. Pharm. Pract. 2017, 6, 73–76. [Google Scholar] [CrossRef]
- Hoffmann, I.; Roa, M.; Torrico, F.; Cubeddu, L. Ondansetron and Metformin-Induced Gastrointestinal Side Effects. Am. J. Ther. 2003, 10, 447–451. [Google Scholar] [CrossRef]
- Thanh Uyen, N.T.; Abdul Hamid, Z.A.; Thi, L.A.; Ahmad, N.B. Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J. Drug Deliv. Sci. Technol. 2020, 58, 101796. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Lazar, R.; Blaga, A.; Rocha, F. Preliminary evaluation and studies on the preparation, characterization and in vitro release studies of different biopolymer microparticles for controlled release of folic acid. Powder Technol. 2020, 369, 279–288. [Google Scholar] [CrossRef]
- Abd-El Hafeez, S.I.; Eleraky, N.E.; Hafez, E.; Abouelmagd, S.A. Design and optimization of metformin hydrophobic ion pairs for efficient encapsulation in polymeric drug carriers. Sci. Rep. 2022, 12, 5737. [Google Scholar] [CrossRef]
- Andreopoulos, A.G.; Tarantili, P.A. Study of biopolymers as carriers for controlled release. J. Macromol. Sci. Part B 2002, 41, 559–578. [Google Scholar] [CrossRef]
- Homayouni, A.; Azizi, A.; Ehsani, M.; Yarmand, M.; Razavi, S. Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chem. 2008, 111, 50–55. [Google Scholar] [CrossRef]
- Xu, L.; Chu, Z.; Wang, H.; Cai, L.; Tu, Z.; Liu, H.; Zhu, C.; Shi, H.; Pan, D.; Pan, J.; et al. Electrostatically Assembled Multilayered Films of Biopolymer Enhanced Nanocapsules for on-Demand Drug Release. ACS Appl. Bio Mater. 2019, 2, 3429–3438. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Cui, C.; Gao, L.; Qin, Y.; Ji, N.; Dai, L.; Wang, Y.; Xiong, L.; Shi, R.; Sun, Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr. Polym. 2023, 321, 121260. [Google Scholar] [CrossRef] [PubMed]
- Karoyo, A.H.; Wilson, L.D. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. Materials 2021, 14, 1095. [Google Scholar] [CrossRef]
- Narayani, R.; Rao, K.P. Polymer-coated gelatin capsules as oral delivery devices and their gastrointestinal tract behaviour in humans. J. Biomater. Sci Polym. Ed. 1996, 7, 39–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Chi, C.; Huang, X.; Zou, Q.; Li, X.; Chen, L. Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract. Carbohydr. Polym. 2017, 171, 242–251. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Singh, H. Biopolymer interactions during gastric digestion: Implications for nutrient delivery. Food Hydrocoll. 2021, 116, 106644. [Google Scholar] [CrossRef]
Technique | Formula | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Extrusion | Alginate, tamarind seed and MET | The technique was straightforward, easily manageable, cost-effective, and reliable. Sustained in vitro drug release profile for 10 h. | Rough surface and presence of polymeric debris due to method of preparation. | [21] |
Sodium alginate and basil seed mucilage, and MET | Thermal stability of beads (up to 136 °C). Slower release behavior in acidic pH (1.2) and higher at pH 7.4. | Porous structure, with cavities in internal regions. | [22] | |
Starch, alginate, and MET | Excellent mucoadhesive properties and a significant hypoglycemic effect in alloxan-induced diabetic rats over an extended period following oral administration. High drug encapsulation efficiency and good mucoadhesivity with biological membrane. | Not reported. | [23] | |
Emulsion | Alginate gel beads with MET | Being a cationic drug, MET’s release could be retarded due to interaction with alginate. Due to the oil entrapment technique, even a drug that is highly soluble in water can be delayed in the stomach. | The concentration of the oil influenced the pore size of the oil-entrapped beads. The higher the concentration of oil in the composition, the more the morphology of the capsules was affected: when the capsules were dried, they became uneven and lost their original spherical shape. | [24] |
Alginate and MET | Had hypoglycemic at low doses of alginate-metformin beads (approximately three times greater than that of pure metformin: 46.8 mg/kg vs. 150 mg/kg). Increased bioavailability in gastrointestinal tract. | Not reported. | [25] | |
Polylactic acid and MET | Low encapsulation efficiency at high doses of MET (up to 50 mg). | The release profile was higher in gastric fluids than in intestinal conditions. Non-homogenous size distribution. The need for an extra stabilizer. | [26] | |
Spray- drying | MET nanoparticles | The drug maintained its effects for an extended period. A rapid technique which improved the dry powder MET tablet’s characteristics. | The use of toxic solvents, drug loading, and encapsulation efficiency are not high. | [27] |
Alginate, gelatin and MET | Improved bioavailability due to nano-scale diameter of particles and high surface area. Control of particle size and shape. | Long time of method processing and use of toxic reagents. | [28] | |
Alginate, chitosan and MET | Excellent mucoadhesive properties, high drug loading capacity, and extended release of metformin hydrochloride. | Not reported. | [29] | |
Layer-by-layer | Sodium alginate, methyl cellulose sodium, and MET | The release kinetics can be controlled by modifying the concentration of the solution used for the layers, leading to coatings of different thicknesses. | Initial evaluation of the synergy among the biopolymers used. Potential unwanted interactions between the composition of each layer. | [30] |
Chitosan, pectin and MET | [31] | |||
Gellan and MET | 100% MET release within 3 h (regular tablets in 1 h). | The maximum urinary excretion rate (dAU/dt) for MT was 36.55 ± 7.15 mg/h after 2.49 h post-administration. The commercial tablets achieved maximum rates of 19.36 ± 4.60 mg/h and 20.47 ± 5.61 mg/h at 5.67 and 7.17 h after administration, respectively. | [32] | |
Chitosomal and niosomal dispersion | Sodium alginate, chitosan, and MET | Notable enhancement in the hypoglycemic effect of MTF when administered as chitosomal and niosomal dispersion. | Almost 70% of the drug was released in 30 min in simulated gastric fluids. | [33] |
Composition Type | Sodium Alginate, mg | Starch, mg | MET, mg |
---|---|---|---|
A | 2500 | 500 | 100 |
B | 2000 | 1000 | 100 |
C | 1500 | 1500 | 100 |
D | 2500 | 500 | - |
E | 2000 | 1000 | - |
F | 1500 | 1500 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghita, R.; Sirbu, I.-O.; Lobiuc, A.; Covasa, M. Sodium Alginate–Starch Capsules for Enhanced Stability of Metformin in Simulated Gastrointestinal Fluids. Biomimetics 2024, 9, 716. https://doi.org/10.3390/biomimetics9110716
Gheorghita R, Sirbu I-O, Lobiuc A, Covasa M. Sodium Alginate–Starch Capsules for Enhanced Stability of Metformin in Simulated Gastrointestinal Fluids. Biomimetics. 2024; 9(11):716. https://doi.org/10.3390/biomimetics9110716
Chicago/Turabian StyleGheorghita, Roxana, Ioan-Ovidiu Sirbu, Andrei Lobiuc, and Mihai Covasa. 2024. "Sodium Alginate–Starch Capsules for Enhanced Stability of Metformin in Simulated Gastrointestinal Fluids" Biomimetics 9, no. 11: 716. https://doi.org/10.3390/biomimetics9110716
APA StyleGheorghita, R., Sirbu, I. -O., Lobiuc, A., & Covasa, M. (2024). Sodium Alginate–Starch Capsules for Enhanced Stability of Metformin in Simulated Gastrointestinal Fluids. Biomimetics, 9(11), 716. https://doi.org/10.3390/biomimetics9110716