Extraction, Isolation, Identification, and Characterization of Anthocyanin from Banana Inflorescence by Liquid Chromatography-Mass Spectroscopy and Its pH Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
Sample Collection and Preparation
2.2. Processing Samples
2.2.1. Oven-Drying
2.2.2. Freeze-Drying
2.2.3. Milling
2.2.4. Extraction
2.3. Physicochemical Characteristics
2.3.1. Colour
2.3.2. pH
2.3.3. Total Soluble Solids (°Brix)
2.3.4. FTIR Analysis of ABI
2.3.5. UV-Vis Absorbance
2.3.6. Total Phenolic Content
2.3.7. Total Antioxidant Activity
2.3.8. Total Monomeric Anthocyanin Content
2.3.9. Characterization of Anthocyanins by LC-MS Analysis
2.3.10. pH Sensitivity and Colour Change
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Properties
3.1.1. Colour
3.1.2. pH
3.1.3. Brix
3.1.4. FTIR Analysis
3.1.5. UV-Vis Absorbance
3.1.6. Total Phenolic Content
3.1.7. Free Radical Scavenging Activity with 2,2-Diphenyl-1-Pricrylhydrazil (DPPH) Assay
3.1.8. Total Monomeric Anthocyanin
3.1.9. Characterization of Anthocyanins
3.1.10. pH Sensitivity and Colour Change
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Banana Market Review; FAO: Rome, Italy, 2023. [Google Scholar]
- Hort-Innovation. Australian Horticulture Statistics Handbook 2022/2023; Hort-Innovation: Sydney, Australia, 2023. [Google Scholar]
- Lau, B.F.; Kong, K.W.; Leong, K.H.; Sun, J.; He, X.; Wang, Z.; Mustafa, M.R.; Ling, T.C.; Ismail, A. Banana inflorescence: Its bio-prospects as an ingredient for functional foods. Trends Food Sci. Technol. 2020, 97, 14–28. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, Y.; Tong, Q.; Xu, W.; Wang, Z. Effects of sunflower pectin on thermal stability of purple sweet potato anthocyanins at different pH. Int. J. Biol. Macromol. 2023, 253, 126663. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Chen, X.; Yang, T.; Wang, Z.; Chen, Q.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Effects of whey protein isolate and ferulic acid/phloridzin/naringin/cysteine on the thermal stability of mulberry anthocyanin extract at neutral pH. Food Chem. 2023, 425, 136494. [Google Scholar] [CrossRef]
- Avula, B.; Katragunta, K.; Osman, A.G.; Ali, Z.; John Adams, S.; Chittiboyina, A.G.; Khan, I.A. Advances in the chemistry, analysis and adulteration of anthocyanin rich-berries and fruits: 2000–2022. Molecules 2023, 28, 560. [Google Scholar] [CrossRef]
- Fang, J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 2015, 31, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Tomé, A.C.; da Silva, F.A. Alginate based encapsulation as a tool for the protection of bioactive compounds from aromatic herbs. Food Hydrocoll. Health 2022, 2, 100051. [Google Scholar] [CrossRef]
- Kitdamrongsont, K.; Pothavorn, P.; Swangpol, S.; Wongniam, S.; Atawongsa, K.; Svasti, J.; Somana, J. Anthocyanin composition of wild bananas in Thailand. J. Agric. Food Chem. 2008, 56, 10853–10857. [Google Scholar] [CrossRef]
- Yuan, Y.; Tian, Y.; Gao, S.; Zhang, X.; Gao, X.; He, J. Effects of environmental factors and fermentation on red raspberry anthocyanins stability. LWT 2023, 173, 114252. [Google Scholar] [CrossRef]
- Mehran, M.; Masoum, S.; Memarzadeh, M. Improvement of thermal stability and antioxidant activity of anthocyanins of Echium amoenum petal using maltodextrin/modified starch combination as wall material. Int. J. Biol. Macromol. 2020, 148, 768–776. [Google Scholar] [CrossRef]
- Hernández-Acosta, E.; Muro, C.; Guadarrama-Lezama, A.Y.; Gutierrez-Cortez, E.; López-Solórzano, E. Valorization of black carrot industrial residues for the anthocyanin pigment production. Waste Biomass Valoris. 2024, 15, 4071–4086. [Google Scholar] [CrossRef]
- Kerio, L.; Wachira, F.; Wanyoko, J.; Rotich, M. Characterization of anthocyanins in Kenyan teas: Extraction and identification. Food Chem. 2012, 131, 31–38. [Google Scholar] [CrossRef]
- Kolekar, M.; Reddy, C.S.; Sharma, S.; Roy, S. Anthocyanin-Based Natural Color Induced Intelligent Food Packaging Sensor: A Review. Curr. Food Sci. Technol. Rep. 2024, 2, 157–167. [Google Scholar] [CrossRef]
- Lee, J.; Rennaker, C.; Wrolstad, R.E. Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chem. 2008, 110, 782–786. [Google Scholar] [CrossRef]
- Priyadharshini, U.; Rebeca, N.; Regi, S.C.; Narayan, S.; Priyadharshini, S.; Manivannan, S. Preparation and Characterization of Anthocyanin Loaded Lotus Pollen Exine Nanocapsules for its Use in Oral Drug Delivery Applications. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2024, 94, 341–350. [Google Scholar] [CrossRef]
- Chen, J.L.; Xu, B.J.; Sun, J.X.; Jiang, X.W.; Bai, W.B. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7242–7254. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Song, L.; Yang, Z.; Qiu, M.; Wang, J.; Shi, S. Anthocyanins: Promising natural products with diverse pharmacological activities. Molecules 2021, 26, 3807. [Google Scholar] [CrossRef]
- Chen, Y.; Belwal, T.; Xu, Y.; Ma, Q.; Li, D.; Li, L.; Xiao, H.; Luo, Z. Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Crit. Rev. Food Sci. Nutr. 2023, 63, 8639–8671. [Google Scholar] [CrossRef]
- Nurtiana, W. Anthocyanin as natural colorant: A review. Food ScienTech J. 2019, 1. [Google Scholar] [CrossRef]
- Nawawi, N.I.M.; Ijod, G.; Abas, F.; Ramli, N.S.; Mohd Adzahan, N.; Mohamad Azman, E. Influence of Different Drying Methods on Anthocyanins Composition and Antioxidant Activities of Mangosteen (Garcinia mangostana L.) Pericarps and LC-MS Analysis of the Active Extract. Foods 2023, 12, 2351. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, Y.; Li, C. Preparation and characterization of smart indicator films based on gellan gum/modified black rice anthocyanin/curcumin for improving the stability of natural anthocyanins. Int. J. Biol. Macromol. 2023, 253 Pt 6, 127436. [Google Scholar] [CrossRef]
- Le, X.T.; Huynh, M.T.; Pham, T.N.; Than, V.T.; Toan, T.Q.; Bach, L.G.; Trung, N.Q. Optimization of Total Anthocyanin Content, Stability and Antioxidant Evaluation of the Anthocyanin Extract from Vietnamese Carissa carandas L. Fruits. Processes 2019, 7, 468. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Navas, M.J.; Jiménez-Moreno, A.M.; Bueno, J.M.; Sáez-Plaza, P.; Asuero, A.G. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part III: An Introduction to Sample Preparation and Extraction. Crit. Rev. Anal. Chem. 2012, 42, 284–312. [Google Scholar] [CrossRef]
- Duan, C.; Xiao, X.; Yu, Y.; Xu, M.; Zhang, Y.; Liu, X.; Dai, H.; Pi, F.; Wang, J. In situ Raman characterization of the stability of blueberry anthocyanins in aqueous solutions under perturbations in temperature, UV, pH. Food Chem. 2024, 431, 137155. [Google Scholar] [CrossRef] [PubMed]
- Thottathil Nazar, M.I.; George, T.S.; Muhammadaly, S.A.; Kanoth, B.P.; George, N.; Balachandrakurup, V.; Chemmarickal Dominic, M.D.; Nair, A.B. Biodegradable pH sensor in packaging material using anthocyanin from banana bracts. Biomass Convers. Biorefinery 2023, 14, 20229–20240. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, P.; Wang, J.D.; Wu, Y.; Han, Y.B.; Zhou, J.Z. Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technol. 2017, 311, 77–87. [Google Scholar] [CrossRef]
- Sani, M.A.; Tavassoli, M.; Hamishehkar, H.; McClements, D.J. Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: Application as biodegradable smart food packaging materials. Carbohydr. Polym. 2021, 255, 117488. [Google Scholar] [CrossRef]
- Zou, T.B.; Wang, M.; Gan, R.Y.; Ling, W.H. Optimization of ultrasound-assisted extraction of anthocyanins from mulberry, using response surface methodology. Int. J. Mol. Sci. 2011, 12, 3006–3017. [Google Scholar] [CrossRef]
- Zanoni, F.; Primiterra, M.; Angeli, N.; Zoccatelli, G. Microencapsulation by spray-drying of polyphenols extracted from red chicory and red cabbage: Effects on stability and color properties. Food Chem. 2020, 307, 125535. [Google Scholar] [CrossRef]
- Schmidt, M.M.; Prestes, R.C.; Kubota, E.H.; Scapin, G.; Mazutti, M.A. Evaluation of antioxidant activity of extracts of banana inflorescences (Musa cavendishii). CYTA J. Food 2015, 13, 498–505. [Google Scholar] [CrossRef]
- Azian, M.; Anisa, A.I.; Iwai, Y. Mechanisms of ginger bioactive compounds extract using Soxhlet and accelerated water extraction. Int. J. Chem. Mater. Sci. Eng. 2014, 8, 438–442. [Google Scholar]
- Begum, Y.A.; Deka, S.C. Ultrasound-assisted extracted dietary fibre from culinary banana bract as matrices for anthocyanin: Its preparation, characterization and storage stability. J. Food Sci. Technol. 2020, 57, 2354–2363. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Yu, L. Free radical scavenging properties of conjugated linoleic acids. J. Agric. Food Chem. 2001, 49, 3452–3456. [Google Scholar] [CrossRef]
- Yan, J.T.; Zhang, H.; Yuan, M.L.; Qin, Y.Y.; Chen, H.Y. Effects of anthocyanin-rich extract on the physical, antioxidant, and pH-sensitive properties of biodegradable film. Food Biophys. 2022, 17, 375–385. [Google Scholar] [CrossRef]
- Sakulnarmrat, K.; Wongsrikaew, D.; Konczak, I. Microencapsulation of red cabbage anthocyanin-rich extract by drum drying technique. LWT 2021, 137, 110473. [Google Scholar] [CrossRef]
- Bhushan, B.; Bibwe, B.; Pal, A.; Mahawar, M.K.; Dagla, M.C.; Yathish, K.; Jat, B.S.; Kumar, P.; Aggarwal, S.K.; Singh, A. FTIR spectra, antioxidant capacity and degradation kinetics of maize anthocyanin extract under variable process conditions. Appl. Food Res. 2023, 3, 100282. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Çoklar, H.; Akbulut, M. Effect of sun, oven and freeze-drying on anthocyanins, phenolic compounds and antioxidant activity of black grape (Ekşikara) (Vitis vinifera L.). S. Afr. J. Enol. Vitic. 2017, 38, 264–272. [Google Scholar] [CrossRef]
- Ramírez-Bolaños, S.; Pérez-Jiménez, J.; Díaz, S.; Robaina, L. A potential of banana flower and pseudo-stem as novel ingredients rich in phenolic compounds. Int. J. Food Sci. Technol. 2021, 56, 5601–5608. [Google Scholar] [CrossRef]
- Truong, D.H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef]
- Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Mattila, P.H.; González-Paramás, A.M.; Törrönen, A.R. Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J. Agric. Food Chem. 2004, 52, 4477–4486. [Google Scholar] [CrossRef] [PubMed]
- Sirichokworrakit, S.; Rimkeeree, H.; Chantrapornchai, W.; Sukatta, U. Comparative study on conventional, accelerated solvent extraction and ultrasonic-assisted extraction of total phenolic and anthocyanin contents and antioxidant activities from Riceberry bran. Agric. Nat. Resour. 2022, 56, 243–254. [Google Scholar] [CrossRef]
- Begum, Y.A.; Deka, S.C. Stability of spray-dried microencapsulated anthocyanins extracted from culinary banana bract. Int. J. Food Prop. 2017, 20, 3135–3148. [Google Scholar] [CrossRef]
- Nistor, M.; Pop, R.; Daescu, A.; Pintea, A.; Socaciu, C.; Rugina, D. Anthocyanins as key phytochemicals acting for the prevention of metabolic diseases: An overview. Molecules 2022, 27, 4254. [Google Scholar] [CrossRef]
- Kumkum, R.; Aston-Mourney, K.; McNeill, B.A.; Hernández, D.; Rivera, L.R. Bioavailability of Anthocyanins: Whole Foods versus Extracts. Nutrients 2024, 16, 1403. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Akgun, B. Petunidin: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology. In Handbook of Dietary Flavonoids; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–34. [Google Scholar]
- Chen, P.-N.; Chu, S.-C.; Chiou, H.-L.; Chiang, C.-L.; Yang, S.-F.; Hsieh, Y.-S. Cyanidin 3-Glucoside and Peonidin 3-Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis In Vitro and Suppress Tumor Growth In Vivo. Nutr. Cancer 2005, 53, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.-W.; Jafari, S.M. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality. Trends Food Sci. Technol. 2020, 105, 93–144. [Google Scholar] [CrossRef]
- Yong, H.M.; Wang, X.C.; Bai, R.Y.; Miao, Z.Q.; Zhang, X.; Liu, J. Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocoll. 2019, 90, 216–224. [Google Scholar] [CrossRef]
Treatment | Drying Method | Extraction Solvent | Extraction Temperature (°C) |
---|---|---|---|
FDW1 | Freeze-drying | Water | 100 |
FDW2 | Freeze-drying | Water | 80 |
FDW3 | Freeze-drying | Water | 60 |
ODW1 | Oven-drying | Water | 100 |
ODW2 | Oven-drying | Water | 80 |
ODW3 | Oven-drying | Water | 60 |
FDM1 | Freeze-drying | Methanol | 100 |
FDM2 | Freeze-drying | Methanol | 80 |
FDM3 | Freeze-drying | Methanol | 60 |
ODM1 | Oven-drying | Methanol | 100 |
ODM2 | Oven-drying | Methanol | 80 |
ODM3 | Oven-drying | Methanol | 60 |
FRW | Fresh | Water | 100 |
FRM | Fresh | Methanol | 100 |
Treatment | a*-Redness | C*-Chroma | h*-Hue Angle | pH | Brix° | TPC (mg/g) | TAO % | TAC mg/100 g |
---|---|---|---|---|---|---|---|---|
FDW1 | 7.86 ± 0.05 k | 11.75 ± 0.07 i | 0.83 ± 0 b | 6.76 ± 0.05 c | 17.91 ± 0.01 | 28.16 ± 1.52 c,d | 34.51 ± 0.44 i | 32.34 ± 2.43 f |
FDW2 | 25.73 ± 0.11 b | 32.88 ± 0.07 b | 0.67 ± 0 e | 6.2 ± 0.1 f | 12.66 ± 9.78 | 30.17 ± 1.15 c | 58.25 ± 0.25 f | 33.5 ± 1.78 e,f |
FDW3 | 12.56 ± 0.05 h | 14.23 ± 0.24 g | 0.48 ± 0.03 h | 5.86 ± 0.05 g | 18.3 ± 0.07 | 28.83 ± 2.08 c,d | 47.34 ± 0.44 g | 52.6 ± 0 c |
ODW1 | 9.33 ± 0.05 j | 12.42 ± 0.04 h,i | 0.72 ± 0 d | 6.66 ± 0.05 c,d | 17.23 ± 0.03 | 13.83 ± 1.52 f | 31.11 ± 1.27 j | 15.58 ± 0.67 g |
ODW2 | 11.23 ± 0.05 h,i | 16.23 ± 0.03 f | 0.8 ± 0 b | 6.53 ± 0.11 d,e | 17.46 ± 0.04 | 19.5 ± 0.99 e | 59.13 ± 0.51 e,f | 16.36 ± 1.16 g |
ODW3 | 22 ± 1.73 c | 25.64 ± 1.55 c | 0.54 ± 0.02 g | 6.16 ± 0.05 f | 17.66 ± 0.03 | 16.83 ± 0.57 e,f | 41.44 ± 0.25 h | 18.7 ± 1.16 g |
FDM1 | 19.73± 0.11 d | 20.5 ± 0.12 d | 0.27 ± 0 j | 5.56 ± 0.05 h | 18.43 ± 0.03 | 45.17 ± 0.57 a | 82.49 ± 0.01 a | 92.92 ± 0.82 a |
FDM2 | 38.09 ± 0.16 a | 40.02 ± 0.13 a | 0.31 ± 0 j | 5.76 ± 0.05 g,h | 18.46 ± 0.02 | 42.5 ± 1 a | 71.33 ± 0.08 b | 95.07 ± 3.57 a |
FDM3 | 14.83 ± 0.05 g | 16.29 ± 0.04 e,f | 0.42 ± 0 i | 5.33 ± 0.05 i | 18.29 ± 0.09 | 37.17 ± 0.51 b | 63.72 ± 0.22 c | 70.91 ± 0.67 b |
ODM1 | 16.33 ± 0.11 f | 21.04 ± 0.07 d | 0.68 ± 0 d,e | 7.33 ± 0.11 b | 17.94 ± 0.01 | 27.83 ± 0.57 c,d | 60.31 ± 0.25 d,e | 30 ± 1.78 f |
ODM2 | 18.3 ± 0.17 e | 25.29 ± 0.11 c | 0.76 ± 0 c | 6.36 ± 0.05 e,f | 18.22 ± 0.03 | 28.83 ± 0.57 c,d | 63.86 ± 0.67 c | 45 ± 0.82 c,d |
ODM3 | 15.16 ± 0.05 f,g | 17.55 ± 0.1 e | 0.52 ± 0 g,h | 6.46 ± 0.05 d,e | 18.04 ± 0.04 | 28.81 ± 0.57 c,d | 60.02 ± 0.25 d,e | 40.32 ± 2.47 d,e |
FRW | 1.43 ± 0.05 l | 7.27 ± 0.05 j | 1.37 ± 0 a | 7.76 ± 0.05 a | 15.02 ± 0.03 | 17.17 ± 1.15 f | 30.82 ± 1.11 j | 12.46 ± 3.75 g |
FRM | 11.03 ± 0.05 i | 13.35 ± 0.04 g,h | 0.59 ± 0 f | 7.33 ± 0.05 b | 17.07 ± 0 | 26.5 ± 2.65 d | 61.05 ± 0.44 d | 34.48 ± 2.47 e,f |
Peak | Retention Time (min) | [M]+ m/z | Production + m/z | Identification | R1 Group | R2 Group | Responsible Colour |
---|---|---|---|---|---|---|---|
1 | 1.6 | 611.2 | 301.9, 463.9 | Dp-3-rutinoside | OH | OH | Dark Purple |
2 | 2.0 | 595.8 | 285.9, 447.9 | Cy-3-rutinoside | OH | H | Red–Magenta–Purple |
3 | 2.3 | 624.9 | 315.9 | Pt-3-rutinoside | OH | OCH3 | Blue–Purple |
4 | 2.4 | 579.4 | 269.9 | Pg-3-rutinoside | H | H | Orange–Dark Red |
5 | 2.7 | 608.7 | 299.9 | Pn-3-rutinoside | OCH3 | H | Purple–Red–Orange |
6 | 2.9 | 638.8 | 329.9 | Mv-3-rutinoside | OCH3 | OCH3 | Dark Blue–Purple |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senevirathna, N.; Hassanpour, M.; O’Hara, I.; Karim, A. Extraction, Isolation, Identification, and Characterization of Anthocyanin from Banana Inflorescence by Liquid Chromatography-Mass Spectroscopy and Its pH Sensitivity. Biomimetics 2024, 9, 702. https://doi.org/10.3390/biomimetics9110702
Senevirathna N, Hassanpour M, O’Hara I, Karim A. Extraction, Isolation, Identification, and Characterization of Anthocyanin from Banana Inflorescence by Liquid Chromatography-Mass Spectroscopy and Its pH Sensitivity. Biomimetics. 2024; 9(11):702. https://doi.org/10.3390/biomimetics9110702
Chicago/Turabian StyleSenevirathna, Nuwanthi, Morteza Hassanpour, Ian O’Hara, and Azharul Karim. 2024. "Extraction, Isolation, Identification, and Characterization of Anthocyanin from Banana Inflorescence by Liquid Chromatography-Mass Spectroscopy and Its pH Sensitivity" Biomimetics 9, no. 11: 702. https://doi.org/10.3390/biomimetics9110702
APA StyleSenevirathna, N., Hassanpour, M., O’Hara, I., & Karim, A. (2024). Extraction, Isolation, Identification, and Characterization of Anthocyanin from Banana Inflorescence by Liquid Chromatography-Mass Spectroscopy and Its pH Sensitivity. Biomimetics, 9(11), 702. https://doi.org/10.3390/biomimetics9110702