A Novel Adaptive Sand Cat Swarm Optimization Algorithm for Feature Selection and Global Optimization
Abstract
:1. Introduction
- An innovative multi-objective feature selection method, the improved Sand Cat Swarm Optimization algorithm, is proposed for the feature selection problem. This method enhances feature selection efficiency while considering both the classification error rate and feature selection ratio as objectives, aiming to obtain the optimal feature subset, reduce redundant features, and improve classification accuracy.
- The population initialization method, nonlinear parameter handling, and position update strategy have been innovatively improved, and the Gaussian–Cauchy mutation strategy has been introduced. These enhancements significantly boost the algorithm’s global search capability, convergence speed, and optimization accuracy, while effectively avoiding the issue of local optima.
- The global optimization performance of MSCSO was evaluated through the CEC2005 benchmark test, with results showing that it performed excellently on 65.2% of the test functions. Additionally, in feature selection experiments conducted on 15 datasets from UCI, MSCSO achieved the optimal average fitness in 93.3% of the datasets, demonstrated the optimal number of feature selections in 86.7% of the datasets, and reached the highest average accuracy in 100% of the datasets, all superior to other comparative algorithms.
2. Related Work
2.1. Feature Selection Based on Traditional Methods
2.2. Feature Selection Based on Metaheuristic Algorithm
2.3. Motivation
- (1)
- Traditional feature selection methods struggle with feature correlation and computational efficiency. Filter methods, though simple, overlook correlations between features; wrapper methods consider feature relationships but are computationally intensive, making them unsuitable for high-dimensional data; and embedded methods are often affected by model dependency. Addressing these issues requires an efficient method capable of accurately identifying feature correlations.
- (2)
- In heuristic algorithm applications, many algorithms exhibit low accuracy and fail to identify the optimal subset in feature selection, limiting their practical utility. Thus, designing superior optimization strategies to improve accuracy and applicability has become a current research focus.
- (3)
- Additionally, heuristic algorithms in feature selection often suffer from premature convergence, getting trapped in local optima and failing to reach the global optimum, thereby limiting their effectiveness. The key to overcoming this lies in enhancing convergence speed and solution diversity to ensure a comprehensive search and optimal solutions.
3. Improved Sand Cat Swarm Optimization Algorithm
3.1. Improved Population Initialization
3.2. Nonlinear Parameterization
3.3. Enhanced Location Update Strategy
3.4. Out of Optimal Value
3.5. MSCSO for Feature Selection
3.6. Complexity Analysis of MSCSO
Algorithm 1 Pseudocode for the MSCSO optimization algorithm |
1: Initialization parameters: population size , maximum iteration count , upper and lower limits of solutions and . 2: Initialize the optimal position of the sand cat and the optimal fitness value . 3: Fitness function : see Equation (19). 4: Population initialization: to initialize the sand cat population, use Equations (1) and (2) to compute fitness value of every sand cat individual, and take the first to form a new sand cat population. 5: While do 6: for every individual sand cat do 7: To ensure that each individual sand cat is in the limits of the solution and to calculate the , the fitness value of the is used. 8: if , then 9: Assign the value of to , updating the optimal location . 10: end if 11: end for 12: Set S to 2 and initialize rg and r according to Equations (3) and (4). 13: if > 1 then 14: Update individual positions according to Equation (5). 15: Use the Weibull flight strategy to obtain a new position, see Equation (6). 16: else 17: Adjust positions based on Formula (9). 18: Use the triangle parade to obtain a new position, see Equation (10). 19: end if 20: Calculate the fitness of the individual value and the new position of fitness value . 21: if , then 22: Assign to . 23: end if 24: Use Formulas (15) and (18) to update the location of the entire sand cat population. 25: Use Formula (19) to ensure excellence. 26: If the number of iterations increases by 1, t = t + 1. 27: end while |
4. Performance Metrics of Experiment
4.1. Performance Metrics of Experiment
4.2. Parameter Setting of Algorithm
4.3. Experiment 1: Global Optimization of CEC2005 Test Functions
4.3.1. Numerical and Statistical Analysis of Experiment 1
4.3.2. Comparative Analysis of MSCSO and Other Algorithms on Test Functions
4.3.3. Graphic Analysis of Experiment 1
4.4. Experiment 2: Feature Selection
4.4.1. Feature Selection Dataset Collection and Preprocessing
4.4.2. Numerical and Statistical Analysis of Experiment 2
Dataset | Measures | MSCSO | SCSO | MFO | SSA | FVIM | AOA | SCA | PSO | DO | SFO |
---|---|---|---|---|---|---|---|---|---|---|---|
Zoo | Mean | 0.0411 | 0.0431 | 0.0444 | 0.0476 | 0.0428 | 0.0424 | 0.0483 | 0.0588 | 0.0412 | 0.0701 |
Std | 0.0064 | 0.0068 | 0.0064 | 0.0064 | 0.0061 | 0.0047 | 0.0074 | 0.0953 | 0.0062 | 0.0081 | |
Wine | Mean | 0.0316 | 0.0324 | 0.0339 | 0.0372 | 0.0333 | 0.0318 | 0.0343 | 0.0469 | 0.0329 | 0.0440 |
Std | 0.0037 | 0.0034 | 0.0044 | 0.0025 | 0.0042 | 0.0037 | 0.0043 | 0.0964 | 0.0042 | 0.0094 | |
Vote | Mean | 0.0826 | 0.0903 | 0.0955 | 0.1042 | 0.0906 | 0.0897 | 0.0998 | 0.1152 | 0.0876 | 0.1073 |
Std | 0.0092 | 0.0083 | 0.0086 | 0.0075 | 0.0107 | 0.0077 | 0.0115 | 0.0901 | 0.0094 | 0.0164 | |
Lymphography | Mean | 0.1021 | 0.1099 | 0.1137 | 0.1196 | 0.1110 | 0.1089 | 0.1115 | 0.1274 | 0.1065 | 0.1468 |
Std | 0.0134 | 0.0124 | 0.0108 | 0.0080 | 0.0111 | 0.0098 | 0.0147 | 0.0886 | 0.0117 | 0.0085 | |
HeartEW | Mean | 0.1131 | 0.1197 | 0.1142 | 0.1320 | 0.1161 | 0.1185 | 0.1273 | 0.1395 | 0.1167 | 0.1553 |
Std | 0.0112 | 0.0118 | 0.0123 | 0.0106 | 0.0115 | 0.0078 | 0.0144 | 0.0876 | 0.0097 | 0.0132 | |
Sonar | Mean | 0.0452 | 0.0487 | 0.0520 | 0.0532 | 0.0498 | 0.0512 | 0.0514 | 0.0642 | 0.0513 | 0.0611 |
Std | 0.0034 | 0.0039 | 0.0032 | 0.0032 | 0.0022 | 0.0017 | 0.0060 | 0.0946 | 0.0031 | 0.0116 | |
SpectEW | Mean | 0.1493 | 0.1580 | 0.1613 | 0.1652 | 0.1622 | 0.1593 | 0.1655 | 0.1721 | 0.1626 | 0.1862 |
Std | 0.0114 | 0.0092 | 0.0098 | 0.0084 | 0.0090 | 0.0075 | 0.0182 | 0.0842 | 0.0117 | 0.0103 | |
Lung-Cancer | Mean | 0.0515 | 0.0553 | 0.0583 | 0.0645 | 0.0616 | 0.0516 | 0.0557 | 0.0706 | 0.0548 | 0.1541 |
Std | 0.0235 | 0.0198 | 0.0219 | 0.0257 | 0.0616 | 0.0080 | 0.0129 | 0.0959 | 0.0187 | 0.0260 | |
BreastEW | Mean | 0.0312 | 0.0331 | 0.0357 | 0.0372 | 0.0011 | 0.0355 | 0.0358 | 0.0495 | 0.0346 | 0.0379 |
Std | 0.0026 | 0.0021 | 0.0017 | 0.0011 | 0.0020 | 0.0014 | 0.0037 | 0.0961 | 0.0016 | 0.0064 | |
CongressEW | Mean | 0.0315 | 0.0349 | 0.0379 | 0.0412 | 0.0348 | 0.0334 | 0.0402 | 0.0567 | 0.0359 | 0.0483 |
Std | 0.0054 | 0.0067 | 0.0059 | 0.0041 | 0.0055 | 0.0044 | 0.0059 | 0.0955 | 0.0062 | 0.0112 | |
Clean1 | Mean | 0.1200 | 0.1272 | 0.1336 | 0.1386 | 0.1315 | 0.1279 | 0.1346 | 0.1493 | 0.1246 | 0.1417 |
Std | 0.0066 | 0.0062 | 0.0058 | 0.0037 | 0.0049 | 0.0035 | 0.0140 | 0.0862 | 0.0061 | 0.0113 | |
Exactly | Mean | 0.0635 | 0.0690 | 0.0812 | 0.1026 | 0.0662 | 0.0638 | 0.0870 | 0.1005 | 0.0652 | 0.2544 |
Std | 0.0359 | 0.0424 | 0.0546 | 0.0447 | 0.0412 | 0.0293 | 0.0380 | 0.1015 | 0.0430 | 0.0096 | |
Rank | 1 | 5 | 6 | 9 | 4 | 2 | 7 | 8 | 3 | 10 | |
Exactly2 | Mean | 0.1727 | 0.1740 | 0.1770 | 0.1812 | 0.1757 | 0.1739 | 0.1782 | 0.1916 | 0.1740 | 0.1833 |
Std | 0.0034 | 0.0036 | 0.0040 | 0.0038 | 0.0040 | 0.0031 | 0.0181 | 0.0818 | 0.0038 | 0.0147 | |
M-of-n | Mean | 0.0541 | 0.0561 | 0.0592 | 0.0654 | 0.0537 | 0.0541 | 0.0654 | 0.0734 | 0.0576 | 0.1169 |
Std | 0.0148 | 0.0160 | 0.0183 | 0.0175 | 0.0141 | 0.0129 | 0.0158 | 0.0950 | 0.0155 | 0.0105 | |
VP | Mean | 0.0895 | 0.0915 | 0.0942 | 0.0948 | 0.0940 | 0.0945 | 0.0932 | 0.1101 | 0.0942 | 0.0935 |
Std | 0.0016 | 0.0007 | 0.0004 | 0.0001 | 0.0002 | 0.0001 | 0.0094 | 0.0899 | 0.0002 | 0.0065 | |
Avg. rank | 1.07 | 3.47 | 5.53 | 7.73 | 4.40 | 3.20 | 6.40 | 9.20 | 3.60 | 8.93 |
Dataset | Measures | MSCSO | SCSO | MFO | SSA | FVIM | AOA | SCA | PSO | DO | SFO |
---|---|---|---|---|---|---|---|---|---|---|---|
Zoo | Mean | 5.95 | 6.2 | 6.15 | 7.05 | 6 | 6.2 | 7.1 | 7.15 | 5.95 | 8.15 |
Std | 0.3940 | 0.6156 | 0.5871 | 0.7592 | 0.6489 | 0.8335 | 0.5525 | 0.4894 | 0.6048 | 2.1831 | |
Wine | Mean | 3.65 | 3.8 | 3.9 | 4.55 | 3.9 | 3.65 | 4.3 | 4.25 | 3.85 | 5.15 |
Std | 0.4894 | 0.6156 | 0.3078 | 0.6048 | 0.4472 | 0.4894 | 0.5712 | 0.6387 | 0.4894 | 1.0894 | |
Vote | Mean | 4.3 | 4.8 | 4.4 | 4.95 | 4.6 | 4.9 | 4.75 | 4.85 | 4.45 | 4.8 |
Std | 0.6569 | 1.1517 | 0.9403 | 1.2763 | 0.9947 | 1.0208 | 0.9665 | 0.8127 | 0.7592 | 1.3992 | |
Lymphography | Mean | 8.25 | 8.45 | 8.9 | 9.45 | 9.1 | 9.25 | 8.5 | 9.1 | 8.75 | 9.15 |
Std | 1.4824 | 0.9987 | 1.2937 | 1.0501 | 1.0208 | 1.1180 | 1.3955 | 1.0711 | 1.2085 | 1.4965 | |
HeartEW | Mean | 4 | 4.85 | 4.25 | 5.75 | 4.25 | 4.95 | 5.85 | 6.1 | 4.95 | 5.35 |
Std | 0.8584 | 1.2680 | 1.0195 | 1.4096 | 0.8507 | 1.7614 | 1.2680 | 1.5526 | 1.5035 | 1.1821 | |
Sonar | Mean | 25.9 | 27.65 | 29.9 | 30.15 | 28.65 | 29.95 | 29.85 | 31 | 29.15 | 28.1 |
Std | 1.4832 | 2.1095 | 2.2688 | 2.2308 | 2.4554 | 2.0894 | 2.1588 | 1.5560 | 1.8994 | 2.5526 | |
SpectEW | Mean | 10.45 | 11.4 | 12.55 | 12.6 | 12.4 | 12.75 | 13.15 | 12.15 | 12.2 | 9.7 |
Std | 2.2355 | 2.1619 | 2.2355 | 2.6238 | 2.3486 | 1.9160 | 2.1588 | 2.7961 | 2.0417 | 1.5927 | |
Lung-Cancer | Mean | 23.9 | 26.1 | 28.2 | 29.45 | 27.65 | 26.9 | 28.8 | 30.05 | 27.25 | 25.55 |
Std | 2.5319 | 2.9182 | 1.9084 | 2.4810 | 2.2775 | 3.1606 | 3.6935 | 2.1145 | 1.9160 | 3.0517 | |
BreastEW | Mean | 8.85 | 9.35 | 10.1 | 10.65 | 9.9 | 10 | 10.45 | 10.95 | 9.7 | 10.9 |
Std | 0.8127 | 0.8127 | 0.9119 | 1.5313 | 1.2096 | 1.1239 | 1.1910 | 0.9987 | 0.9787 | 1.1653 | |
CongressEW | Mean | 2.65 | 3 | 3.15 | 4.2 | 3.15 | 3.1 | 4.25 | 4.45 | 2.95 | 4.65 |
Std | 0.4894 | 0.7947 | 0.6708 | 1.0052 | 0.8127 | 0.5525 | 0.6387 | 0.8870 | 0.9445 | 1.6311 | |
Clean1 | Mean | 89.65 | 95.8 | 97 | 99.7 | 99.1 | 95.35 | 94.5 | 102.6 | 95.6 | 80.15 |
Std | 9.1495 | 10.2834 | 8.4043 | 10.4584 | 8.9731 | 8.7856 | 9.7306 | 5.4328 | 7.9763 | 6.8077 | |
Exactly | Mean | 6.05 | 6.25 | 6.5 | 7.15 | 6.2 | 6.25 | 6.95 | 6.95 | 6.1 | 6.5 |
Std | 0.2236 | 0.4443 | 0.5130 | 0.4894 | 0.4104 | 0.4443 | 0.3940 | 0.5104 | 0.3078 | 2.1643 | |
Exactly2 | Mean | 1 | 1.25 | 1.35 | 1.85 | 1.25 | 1.15 | 2.15 | 2.2 | 1.05 | 2.45 |
Std | 0 | 0.4443 | 0.4894 | 0.7452 | 0.4443 | 0.3663 | 0.5871 | 0.8944 | 0.2236 | 0.8256 | |
M-of-n | Mean | 6.1 | 6.15 | 6.35 | 6.85 | 6.15 | 6.15 | 6.8 | 6.9 | 6.3 | 7.1 |
Std | 0.3078 | 0.3663 | 0.4894 | 0.6708 | 0.3663 | 0.3663 | 0.6156 | 0.4472 | 0.4702 | 1.6827 | |
VP | Mean | 52.25 | 55.6 | 58.8 | 58 | 59.1 | 59.75 | 57.25 | 67.3 | 57.65 | 54.25 |
Std | 2.2449 | 3.6907 | 3.9815 | 4.3649 | 4.9407 | 4.3271 | 5.4374 | 2.9753 | 6.5154 | 5.4374 | |
Avg. rank | 1.13 | 3.27 | 5.07 | 7.33 | 4.53 | 5.13 | 6.00 | 7.80 | 3.47 | 5.47 |
Dataset | Measures | MSCSO | SCSO | MFO | SSA | FVIM | AOA | SCA | PSO | DO | SFO |
---|---|---|---|---|---|---|---|---|---|---|---|
Zoo | Mean | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.9800 |
Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0251 | |
Wine | Mean | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.9971 |
Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0088 | |
Vote | Mean | 0.9467 | 0.9425 | 0.9333 | 0.9275 | 0.9433 | 0.9417 | 0.9275 | 0.9292 | 0.9442 | 0.9167 |
Std | 0.0068 | 0.0101 | 0.0108 | 0.0135 | 0.0100 | 0.0086 | 0.0124 | 0.0142 | 0.0082 | 0.0162 | |
Lymphography | Mean | 0.9534 | 0.9431 | 0.9414 | 0.9328 | 0.9466 | 0.9483 | 0.9362 | 0.9328 | 0.9483 | 0.8948 |
Std | 0.0169 | 0.0169 | 0.0162 | 0.0077 | 0.0176 | 0.0177 | 0.0126 | 0.0077 | 0.0177 | 0.0136 | |
HeartEW | Mean | 0.9241 | 0.9222 | 0.9213 | 0.9130 | 0.9222 | 0.9231 | 0.9148 | 0.9194 | 0.9231 | 0.8750 |
Std | 0.0057 | 0.0076 | 0.0082 | 0.0087 | 0.0076 | 0.0068 | 0.0093 | 0.0091 | 0.0068 | 0.0158 | |
Sonar | Mean | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.9866 |
Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0124 | |
SpectEW | Mean | 0.8991 | 0.8934 | 0.8981 | 0.8887 | 0.8925 | 0.8953 | 0.8915 | 0.8915 | 0.8962 | 0.8434 |
Std | 0.0111 | 0.0176 | 0.0128 | 0.0161 | 0.0151 | 0.0156 | 0.0148 | 0.0161 | 0.0115 | 0.0195 | |
Lung-Cancer | Mean | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.8833 |
Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0784 | |
BreastEW | Mean | 1 | 1 | 1 | 0.9996 | 0.9991 | 0.9991 | 0.9991 | 0.9996 | 0.9996 | 0.9991 |
Std | 0 | 0 | 0 | 0.0020 | 0.0027 | 0.0027 | 0.0027 | 0.0020 | 0.0020 | 0.0027 | |
CongressEW | Mean | 0.9884 | 0.9884 | 0.9884 | 0.9878 | 0.9884 | 0.9884 | 0.9878 | 0.9866 | 0.9884 | 0.9802 |
Std | 0 | 0 | 0 | 0.0046 | 0 | 0 | 0.0026 | 0.0043 | 0 | 0.0114 | |
Clean1 | Mean | 0.9337 | 0.9305 | 0.9258 | 0.9174 | 0.9263 | 0.9258 | 0.9147 | 0.9195 | 0.9332 | 0.8979 |
Std | 0.0103 | 0.0093 | 0.111 | 0.0104 | 0.0084 | 0.0093 | 0.0090 | 0.0052 | 0.0129 | 0.0128 | |
Exactly | Mean | 1 | 1 | 1 | 0.9828 | 0.9995 | 1 | 0.9905 | 0.9915 | 1 | 0.7748 |
Std | 0 | 0 | 0 | 0.0212 | 0.0022 | 0 | 0.0150 | 0.0171 | 0 | 0.0983 | |
Exactly2 | Mean | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 |
Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0031 | 0 | 0 | |
M-of-n | Mean | 1 | 1 | 1 | 0.9975 | 1 | 1 | 0.9983 | 0.9993 | 1 | 0.9323 |
Std | 0 | 0 | 0 | 0.0062 | 0 | 0 | 0.0054 | 0.0034 | 0 | 0.0513 | |
VP | Mean | 0.9474 | 0.9470 | 0.9470 | 0.9451 | 0.9470 | 0.9470 | 0.9451 | 0.9474 | 0.9459 | 0.9451 |
Std | 0 | 0.0017 | 0.0017 | 0.0035 | 0.0017 | 0.0017 | 0.0035 | 0 | 0.0031 | 0.0035 | |
Avg. rank | 1 | 2 | 2.2 | 3.93 | 2.2 | 2.07 | 3.67 | 3.2 | 1.6 | 4.87 |
4.4.3. Graphical Analysis of Experiment 2
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zebari, R.; Abdulazeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Houssein, E.H.; Oliva, D.; Celik, E.; Emam, M.M.; Ghoniem, R.M. Boosted sooty tern optimization algorithm for global optimization and feature selection. Expert Syst. Appl. 2023, 213, 119015. [Google Scholar] [CrossRef]
- Chhabra, A.; Hussien, A.G.; Hashim, F.A. Improved bald eagle search algorithm for global optimization and feature selection. Alex. Eng. J. 2023, 68, 141–180. [Google Scholar] [CrossRef]
- He, J.; Qu, L.; Wang, P.; Li, Z. An oscillatory particle swarm optimization feature selection algorithm for hybrid data based on mutual information entropy. Appl. Soft Comput. 2024, 152, 111261. [Google Scholar] [CrossRef]
- Sampson, J.R. Adaptation in Natural and Artificial Systems (John H. Holland); The MIT Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Huning, A. Evolutionsstrategie. Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution; Franz Steiner Verlag: Stuttgart, Germany, 1976. [Google Scholar]
- Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey badger algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Mohammed, H.; Rashid, T. Fox: A fox-inspired optimization algorithm. Appl. Intell. 2023, 53, 1030–1050. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Talatahari, S.; Azizi, M.; Tolouei, M.; Talatahari, B.; Sareh, P. Crystal structure algorithm (crystal): A metaheuristic optimization method. IEEE Access 2021, 9, 71244–71261. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. Gsa: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Wang, Y.; Wang, J.; Qin, L. Love evolution algorithm: A stimulus–value–role theory-inspired evolutionary algorithm for global optimization. J. Supercomput. 2024, 80, 12346–12407. [Google Scholar] [CrossRef]
- Binu, D.; Kariyappa, B. Ridenn: A new rider optimization algorithm-based neural network for fault diagnosis in analog circuits. IEEE Trans. Instrum. Meas. 2018, 68, 2–26. [Google Scholar] [CrossRef]
- Nemati, M.; Zandi, Y.; Agdas, A.S. Application of a novel meta-heuristic algorithm inspired by stadium spectators in global optimization problems. Sci. Rep. 2024, 14, 3078. [Google Scholar]
- Bai, J.; Li, Y.; Zheng, M.; Khatir, S.; Benaissa, B.; Abualigah, L.; Wahab, M.A. A sinh cosh optimizer. Knowl.-Based Syst. 2023, 282, 111081. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Cai, L.; Yang, R. Triangulation topology aggregation optimizer: A novel mathematics-based meta-heuristic algorithm for continuous optimization and engineering applications. Expert Syst. Appl. 2024, 238, 121744. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; El-Shahat, D.; Jameel, M.; Abouhawwash, M. Exponential distribution optimizer (edo): A novel math-inspired algorithm for global optimization and engineering problems. Artif. Intell. Rev. 2023, 56, 9329–9400. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. Sand cat swarm optimization: A nature inspired algorithm to solve global optimization problems. Eng. Comput. 2023, 39, 2627–2651. [Google Scholar] [CrossRef]
- Karami, S.; Saberi-Movahed, F.; Tiwari, P.; Marttinen, P.; Vahdati, S. Unsupervised feature selection based on variance–covariance subspace distance. Neural Netw. 2023, 166, 188–203. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Cao, Y. A variable selection method based on mutual information and variance inflation factor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120652. [Google Scholar] [CrossRef] [PubMed]
- Shafizadeh-Moghadam, H.; Minaei, M.; Pontius, R.G., Jr.; Asghari, A.; Dadashpoor, H. Integrating a forward feature selection algorithm, random forest, and cellular automata to extrapolate urban growth in the Tehran-Karaj region of Iran. Comput. Environ. Urban Syst. 2021, 87, 101595. [Google Scholar] [CrossRef]
- Awad, M.; Fraihat, S. Recursive feature elimination with cross-validation with decision tree: Feature selection method for machine learning-based intrusion detection systems. J. Sens. Actuator Netw. 2023, 12, 67. [Google Scholar] [CrossRef]
- Afrin, S.; Shamrat, F.J.M.; Nibir, T.I.; Muntasim, M.F.; Moharram, M.S.; Imran, M.; Abdulla, M. Supervised machine learning based liver disease prediction approach with lasso feature selection. Bull. Electr. Eng. Inform. 2021, 10, 3369–3376. [Google Scholar] [CrossRef]
- Malik, A.; Jamei, M.; Ali, M.; Prasad, R.; Karbasi, M.; Yaseen, Z.M. Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection. Agric. Water Manag. 2022, 272, 107812. [Google Scholar] [CrossRef]
- Li, X.D.; Wang, J.S.; Liu, Y.; Song, H.M.; Wang, Y.C.; Hou, J.N.; Zhang, M.; Hao, W.K. Classification feature selection and dimensionality reduction based on logical binary sine-cosine function arithmetic optimization algorithm. Egypt. Inform. J. 2024, 26, 100472. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, R.; Zhang, X. Simultaneous svm parameters and feature selection optimization based on improved slime mould algorithm. IEEE Access 2024, 12, 18215–18236. [Google Scholar] [CrossRef]
- Hussien, R.M.; Abohany, A.A.; Abd El-Mageed, A.A.; Hosny, K.M. Improved binary meerkat optimization algorithm for efficient feature selection of supervised learning classification. Knowl. Based Syst. 2024, 292, 111616. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mostafa, R.R.; Hussien, A.G.; Helmy, F. An efficient adaptive-mutated coati optimization algorithm for feature selection and global optimization. Alex. Eng. J. 2023, 85, 29–48. [Google Scholar] [CrossRef]
- Pan, H.; Chen, S.; Xiong, H. A high-dimensional feature selection method based on modified gray wolf optimization. Appl. Soft Comput. 2023, 135, 110031. [Google Scholar] [CrossRef]
- Peng, L.; Cai, Z.; Heidari, A.A.; Zhang, L.; Chen, H. Hierarchical Harris Hawks optimizer for feature selection. J. Adv. Res. 2023, 53, 261–278. [Google Scholar] [CrossRef]
- Moosavi, S.K.R.; Saadat, A.; Abaid, Z.; Ni, W.; Li, K.; Guizani, M. Feature selection based on dataset variance optimization using hybrid sine cosine–firehawk algorithm (hscfha). Future Gener. Comput. Syst. 2024, 155, 272–286. [Google Scholar] [CrossRef]
- Kwakye, B.D.; Li, Y.; Mohamed, H.H.; Baidoo, E.; Asenso, T.Q. Particle guided metaheuristic algorithm for global optimization and feature selection problems. Expert Syst. Appl. 2024, 248, 123362. [Google Scholar] [CrossRef]
- Abdelhamid, A.A.; El-Kenawy, E.S.M.; Ibrahim, A.; Eid, M.M.; Khafaga, D.S.; Alhussan, A.A.; Mirjalili, S.; Khodadadi, N.; Lim, W.H.; Shams, M.Y. Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms. IEEE Access 2023, 11, 79750–79776. [Google Scholar] [CrossRef]
- Ragab, M. Hybrid firefly particle swarm optimisation algorithm for feature selection problems. Expert Syst. 2024, 41, e13363. [Google Scholar] [CrossRef]
- Alkanhel, R.; El-kenawy, E.S.M.; Abdelhamid, A.A.; Ibrahim, A.; Alohali, M.A.; Abotaleb, M.; Khafaga, D.S. Network intrusion detection based on feature selection and hybrid metaheuristic optimization. Comput. Mater. Contin. 2023, 74, 2677–2693. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Fakhouri, H.N.; Awaysheh, F.M.; Alawadi, S.; Alkhalaileh, M.; Hamad, F. Four vector intelligent metaheuristic for data optimization. Computing 2024, 106, 2321–2359. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Mirjalili, S. Sca: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948. [Google Scholar]
- Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
- Shadravan, S.; Naji, H.R.; Bardsiri, V.K. The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 2019, 80, 20–34. [Google Scholar] [CrossRef]
Algorithm | Parameter |
---|---|
All | Global optimization parameters: Population size = 30, Maximum iterations = 1000, Run count = 30 Feature selection parameters: Population size = 30, Maximum iterations = 100, Run count = 20 |
MSCSO | k = 0.75, p = [1:360], S = 2 |
SCSO | p = [1:360], S = 2 |
MFO | b = 1 |
SSA | - |
FVIM | alpha = 1.5 |
AOA | MOP_Max = 1, MOP_Min = 0.2, Alpha = 5, Mu = 0.499 |
SCA | a = 2 |
PSO | w = 0.85, c1 = 1.2, c2 = 1.2 |
DO | - |
SFO | PD = 2/3 |
Function | Measures | MSCSO | SCSO | MFO | SSA | FVIM | AOA | SCA | PSO | DO | SFO |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 0 | 1.6732 × 10−22 | 6.6835 | 1.2217 × 10−8 | 7.8252 × 10−55 | 1.0115 × 10−18 | 5.011 × 10−2 | 8.8258 × 10−7 | 1.2027 × 10−8 | 5.9286 × 10−19 |
Std | 0 | 0 | 2.5366 | 2.8644 × 10−9 | 2.3666 × 10−54 | 5.5403 × 10−18 | 1.2384 × 10−1 | 1.2243 × 10−6 | 8.8765 × 10−9 | 1.2626 × 10−18 | |
F2 | Mean | 0 | 1.2274 × 10−11 | 3.3333 | 8.7898 × 10−1 | 6.0333 × 10−32 | 0 | 8.8029 × 10−5 | 3.4267 × 10−1 | 7.9067 × 10−5 | 2.9971 × 10−9 |
Std | 0 | 6.5811 × 10−11 | 2.0228 | 8.4123 × 10−1 | 7.6058 × 10−32 | 0 | 4.1444 × 10−4 | 1.8244 | 3.3934 × 10−5 | 2.3602 × 10−9 | |
F3 | Mean | 0 | 7.1882 × 10−19 | 1.4705 | 2.6345 | 2.1786 × 10−6 | 2.6499 × 10−3 | 3.3952 × 103 | 2.5677 | 1.0250 | 1.2079 × 10−16 |
Std | 0 | 0 | 1.0837 | 2.1461 | 7.2399 × 10−6 | 7.6668 × 10−3 | 3.4423 × 103 | 1.1124 | 1.2048 | 2.1024 × 10−16 | |
F4 | Mean | 0 | 9.6592 × 10−10 | 6.8430 | 8.0524 | 7.1856 × 10−2 | 1.6863 × 10−2 | 1.9320 × 101 | 3.8051 | 9.6583 × 10−2 | 2.0926 × 10−10 |
Std | 0 | 4.8151 × 10−10 | 8.5460 | 3.5330 | 3.1181 × 10−2 | 2.1198 × 10−2 | 1.3087 × 101 | 1.3945 | 5.1918 × 10−2 | 1.8565 × 10−10 | |
F5 | Mean | 1.3318 | 2.8212 × 101 | 6.8812 | 1.8062 | 3.0309 × 101 | 2.8215 × 101 | 5.1516 × 102 | 9.4887 | 2.8709 × 101 | 2.8706 × 101 |
Std | 1.2855 | 6.9124 × 10−1 | 2.2651 | 3.6087 | 1.1645 × 101 | 4.3180 × 10−1 | 1.6177 × 103 | 1.1385 | 1.6104 × 101 | 1.4421 × 10−3 | |
F6 | Mean | 1.67 | 1.82 | 2.3367 | 1.2538 × 10−8 | 3.5837 | 2.7693 | 4.7484 | 9.4045 × 10−7 | 9.1274 × 10−7 | 3.1592 |
Std | 6.3222 | 6.1323 × 10−1 | 6.8034 | 2.4312 × 10−9 | 8.3087 × 10−1 | 2.4581 × 10−1 | 8.6016 × 10−1 | 1.0517 × 10−6 | 4.1544 × 10−7 | 2.2552 | |
F7 | Mean | 6.1529 | 9.1979 × 10−5 | 4.0113 | 1.0180 × 10−1 | 7.4159 × 10−3 | 3.9189 × 10−5 | 2.9036 × 10−2 | 2.4734 × 10−2 | 9.3052 × 10−3 | 8.1435 × 10−5 |
Std | 6.1166 | 1.1144 × 10−4 | 8.6251 | 3.7415 × 10−2 | 3.1360 × 10−3 | 4.5493 × 10−5 | 2.2559 × 10−2 | 7.8311 × 10−3 | 4.9979 × 10−3 | 6.9022 × 10−5 | |
F8 | Mean | −1.203 | −6.9303 | −8.9559 | −7.3619 | −5.3718 | −5.8265 | −3.8623 | −7.6221 | −8.2970 | −3.9342 |
Std | 1.1679 | 8.6264 × 102 | 9.3253 | 6.9246 | 1.1014 × 103 | 3.7253 × 102 | 2.8576 × 102 | 7.3327 | 6.2155 × 102 | 1.1031 × 103 | |
F9 | Mean | 0 | 0 | 1.7763 | 5.8006 | 3.5712 × 101 | 0 | 1.6014 × 101 | 4.8457 | 1.5862 × 101 | 0 |
Std | 0 | 0 | 4.3103 | 2.2665 | 9.3304 | 0 | 1.9496 × 101 | 1.3825 | 1.1639 × 101 | 0 | |
F10 | Mean | 4.4409 × 10−1 | 4.4409 × 10−1 | 1.2452 | 2.0840 | 8.1416 × 10−15 | 4.4409 × 10−1 | 1.4426 × 101 | 4.5028 × 10−1 | 2.4648 × 10−5 | 5.2770 × 10−10 |
Std | 0 | 0 | 8.5861 | 8.4850 × 10−1 | 1.8853 × 10−15 | 0 | 8.1441 | 6.5171 × 10−1 | 1.1472 × 10−5 | 5.3965 × 10−10 | |
F11 | Mean | 0 | 0 | 1.5158 | 1.1401 × 10−2 | 5.5451 × 10−3 | 9.9232 × 10−2 | 2.7640 × 10−1 | 1.9719 × 10−2 | 1.5936 × 10−2 | 0 |
Std | 0 | 0 | 3.4452 | 1.1605 × 10−2 | 8.8110 × 10−3 | 8.2692 × 10−2 | 2.8250 × 10−1 | 2.5921 × 10−2 | 1.6144 × 10−2 | 0 | |
F12 | Mean | 2.6045 | 7.3425 × 10−2 | 1.5387 | 4.8849 × 101 | 8.1274 × 10−1 | 4.0717 × 10−1 | 6.5974 × 102 | 8.5519 × 10−2 | 6.9630 × 10−8 | 2.7687 × 10−1 |
Std | 1.3674 | 2.9459 × 10−2 | 4.6668 | 3.0881 | 6.0639 × 10−1 | 4.6520 × 10−2 | 3.5664 × 103 | 2.0937 × 10−1 | 3.6371 × 10−8 | 3.8328 × 10−1 | |
F13 | Mean | 4.7895 | 2.4395 | 1.3669 | 1.6889 | 2.2887 | 2.7819 | 4.5932 × 102 | 6.2330 × 10−3 | 1.0343 × 10−6 | 1.0019 × 10−2 |
Std | 1.0445 | 4.2140 × 10−1 | 7.4867 | 6.2236 | 3.9923 × 10−1 | 1.2718 × 10−1 | 2.4504 × 103 | 1.1425 × 10−2 | 3.7267 × 10−7 | 3.2748 × 10−2 | |
F14 | Mean | 1.0311 | 6.0842 | 2.3483 | 9.98 × 10−1 | 9.1841 | 1.0218 × 101 | 1.4618 | 9.98 × 10−1 | 9.98 × 10−1 | 8.1515 |
Std | 1.8148 | 4.5054 | 1.9251 | 2.6562 × 10−16 | 4.6576 | 3.1487 | 8.5309 × 10−1 | 4.1233 × 10−17 | 4.9736 × 10−16 | 4.8078 | |
F15 | Mean | 3.1987 | 4.0878 × 10−4 | 1.7980 × 10−3 | 8.3495 × 10−4 | 5.0951 × 10−3 | 2.2018 × 10−2 | 8.5939 × 10−4 | 3.6175 × 10−3 | 1.1016 × 10−3 | 1.8113 × 10−2 |
Std | 3.9231 | 2.7855 × 10−4 | 3.5397 × 10−3 | 2.8094 × 10−4 | 8.6189 × 10−3 | 3.5493 × 10−2 | 3.5571 × 10−4 | 1.1204 × 10−2 | 3.6516 × 10−3 | 3.0145 × 10−2 | |
F16 | Mean | −1.031628 | −1.0316284 | −1.0316284 | −1.0316284 | −1.0316282 | −1.0316283 | −1.0316002 | −1.0316284 | −1.0316284 | −1.0316282 |
Std | 4.0375 × 10−1 | 2.4429 × 10−10 | 6.7752 × 10−16 | 7.2408 × 10−15 | 8.8799 × 10−7 | 1.0438 × 10−7 | 2.7392 × 10−5 | 6.7752 × 10−16 | 8.2357 × 10−14 | 1.0214 × 10−6 | |
F17 | Mean | 0.3978873 | 0.39788737 | 0.39788736 | 0.39788736 | 0.39788755 | 0.40560883 | 0.39892979 | 0.39788736 | 0.39788736 | 0.39791132 |
Std | 5.1770 | 2.0828 × 10−8 | 0 | 5.2723 × 10−15 | 4.3609 × 10−7 | 7.5248 × 10−3 | 9.4806 × 10−4 | 0 | 3.4351 × 10−12 | 1.0370 × 10−4 | |
F18 | Mean | 3.0000007 | 3.00000123 | 3 | 3 | 3.00003310 | 10.9652648 | 3.00003931 | 3 | 3.00000000 | 12.0000119 |
Std | 1.5252 | 1.8880 × 10−6 | 1.3297 × 10−15 | 1.3386 × 10−13 | 5.1040 × 10−5 | 1.2387 × 101 | 8.7638 × 10−5 | 8.8049 × 10−16 | 2.2231 × 10−9 | 2.4901 × 101 | |
F19 | Mean | 3.8627805 | −3.8616140 | −3.8627821 | −3.8627821 | −3.8627257 | −3.8536551 | −3.8550555 | −3.8627821 | −3.8627821 | −3.8035099 |
Std | 2.3680 × 10−6 | 2.7517 × 10−3 | 2.7101 × 10−15 | 5.2138 × 10−14 | 6.4765 × 10−5 | 2.6938 × 10−3 | 1.8405 × 10−3 | 2.6823 × 10−15 | 2.3382 × 10−8 | 1.9563 × 10−1 | |
F20 | Mean | −3.322 | −3.2477 | −3.1982 | −3.2238 | −3.2821 | −3.0976 | −2.8989 | −3.2679 | −3.2744 | −2.9596 |
Std | 2.1588 × 10−6 | 1.1059 × 10−1 | 5.7419 × 10−2 | 5.0081 × 10−2 | 5.7438 × 10−2 | 7.5351 × 10−2 | 3.0548 × 10−1 | 6.9818 × 10−2 | 5.9241 × 10−2 | 1.9696 × 10−1 | |
F21 | Mean | −9.983 | −5.0860 | −6.3886 | −7.3946 | −7.1978 | −3.7087 | −2.2721 | −5.7286 | −6.0454 | −5.7652 |
Std | 9.3075 × 10−1 | 1.2230 | 3.4639 | 3.3091 | 3.2043 | 1.1244 | 1.9682 | 3.3243 | 3.3225 | 2.8908 | |
F22 | Mean | −9.694 | −6.8608 | −8.7772 | −9.5422 | −9.5982 | −4.2464 | −3.1372 | −6.5563 | −7.3459 | −5.8515 |
Std | 1.8377 | 2.5475 | 3.0521 | 2.2747 | 2.2776 | 1.6229 | 1.7211 | 3.5019 | 3.6572 | 2.9746 | |
F23 | Mean | −9.996 | −6.4471 | −7.4247 | −8.2498 | −9.7547 | −4.2953 | −3.8125 | −7.6379 | −6.7571 | −6.0959 |
Std | 1.6501 | 3.1867 | 3.6601 | 3.5821 | 2.3855 | 1.1388 | 1.9384 | 3.6788 | 3.7216 | 3.1840 | |
Avg. rank | 1.57 | 3.61 | 6.22 | 4.52 | 4.48 | 5.65 | 7.70 | 4.65 | 3.61 | 5.39 |
Function | SCSO | MFO | SSA | FVIM | AOA | SCA | PSO | DO | SFO |
---|---|---|---|---|---|---|---|---|---|
F1 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 4.57 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 |
F2 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.00 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 |
F3 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 |
F4 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 |
F5 | 1.19 × 10−6 | 3.02 × 10−11 | 2.57 × 10−7 | 1.29 × 10−6 | 4.08 × 10−5 | 5.49 × 10−11 | 1.43 × 10−5 | 0.074827 | 1.07 × 10−7 |
F6 | 3.02 × 10−11 | 5.11 × 10−1 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 6.70 × 10−11 |
F7 | 2.84 × 10−1 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.92 × 10−2 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 0.22257 |
F8 | 3.02 × 10−11 | 3.82 × 10−9 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 6.70 × 10−11 | 8.99 × 10−11 | 3.02 × 10−11 |
F9 | 1.00 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.00 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.00 |
F10 | 1.00 | 1.21 × 10−12 | 1.21 × 10−12 | 6.13 × 10−14 | 1.00 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 |
F11 | 1.00 | 1.21 × 10−12 | 1.21 × 10−12 | 1.37 × 10−3 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.21 × 10−12 | 1.00 |
F12 | 3.02 × 10−11 | 6.07 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 0.61001 | 3.02 × 10−11 | 8.15 × 10−11 |
F13 | 3.02 × 10−11 | 2.32 × 10−6 | 9.94 × 10−1 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 0.0072884 | 3.02 × 10−11 | 0.0076171 |
F14 | 8.84 × 10−7 | 9.47 × 10−1 | 1.41 × 10−11 | 4.07 × 10−11 | 3.02 × 10−11 | 2.87 × 10−10 | 1.72 × 10−12 | 1.44 × 10−10 | 4.97 × 10−11 |
F15 | 2.32 × 10−2 | 3.01 × 10−11 | 8.99 × 10−11 | 8.15 × 10−5 | 1.33 × 10−10 | 6.70 × 10−11 | 0.52014 | 0.12967 | 1.61 × 10−10 |
F16 | 2.17 × 10−1 | 1.21 × 10−12 | 2.98 × 10−11 | 6.01 × 10−8 | 3.02 × 10−11 | 3.02 × 10−11 | 1.21 × 10−12 | 1.33 × 10−10 | 2.23 × 10−9 |
F17 | 8.53 × 10−1 | 1.21 × 10−12 | 2.70 × 10−11 | 8.84 × 10−7 | 3.02 × 10−11 | 3.02 × 10−11 | 1.21 × 10−12 | 3.02 × 10−11 | 9.53 × 10−7 |
F18 | 2.81 × 10−2 | 1.27 × 10−11 | 3.02 × 10−11 | 2.37 × 10−10 | 4.12 × 10−1 | 1.16 × 10−7 | 7.87 × 10−12 | 1.17 × 10−9 | 0.021506 |
F19 | 2.61 × 10−2 | 1.21 × 10−12 | 3.01 × 10−11 | 1.25 × 10−7 | 3.02 × 10−11 | 3.02 × 10−11 | 2.36 × 10−12 | 7.77 × 10−9 | 1.73 × 10−7 |
F20 | 9.12 × 10−1 | 9.92 × 10−7 | 6.77 × 10−5 | 2.25 × 10−4 | 3.02 × 10−11 | 3.02 × 10−11 | 0.17902 | 0.18577 | 3.02 × 10−11 |
F21 | 1.78 × 10−10 | 4.27 × 10−1 | 3.33 × 10−1 | 3.82 × 10−9 | 4.08 × 10−11 | 3.69 × 10−11 | 0.034625 | 0.099258 | 7.39 × 10−11 |
F22 | 6.97 × 10−3 | 2.00 × 10−4 | 6.05 × 10−7 | 5.87 × 10−4 | 3.16 × 10−10 | 9.92 × 10−11 | 0.33154 | 0.26433 | 9.76 × 10−10 |
F23 | 6.10 × 10−3 | 3.52 × 10−1 | 6.97 × 10−3 | 9.21 × 10−5 | 2.37 × 10−10 | 9.92 × 10−11 | 0.14395 | 0.83026 | 6.12 × 10−10 |
Dataset | Feature Count | Sample Count | Classes |
---|---|---|---|
Zoo | 16 | 101 | 7 |
Wine | 13 | 178 | 3 |
Vote | 16 | 300 | 2 |
Lymphography | 18 | 148 | 4 |
HeartEW | 13 | 270 | 2 |
Sonar | 60 | 208 | 2 |
SpectEW | 22 | 267 | 2 |
Lung-Cancer | 56 | 32 | 3 |
BreastEW | 30 | 568 | 2 |
CongressEW | 16 | 434 | 2 |
Clean1 | 166 | 476 | 2 |
Exactly | 13 | 1000 | 2 |
Exactly2 | 13 | 1000 | 2 |
M-of-n | 13 | 1000 | 2 |
VP | 128 | 669 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Fang, R.; Zeng, T.; Fei, H.; Qi, Q.; Zuo, P.; Xu, L.; Liu, W. A Novel Adaptive Sand Cat Swarm Optimization Algorithm for Feature Selection and Global Optimization. Biomimetics 2024, 9, 701. https://doi.org/10.3390/biomimetics9110701
Liu R, Fang R, Zeng T, Fei H, Qi Q, Zuo P, Xu L, Liu W. A Novel Adaptive Sand Cat Swarm Optimization Algorithm for Feature Selection and Global Optimization. Biomimetics. 2024; 9(11):701. https://doi.org/10.3390/biomimetics9110701
Chicago/Turabian StyleLiu, Ruru, Rencheng Fang, Tao Zeng, Hongmei Fei, Quan Qi, Pengxiang Zuo, Liping Xu, and Wei Liu. 2024. "A Novel Adaptive Sand Cat Swarm Optimization Algorithm for Feature Selection and Global Optimization" Biomimetics 9, no. 11: 701. https://doi.org/10.3390/biomimetics9110701
APA StyleLiu, R., Fang, R., Zeng, T., Fei, H., Qi, Q., Zuo, P., Xu, L., & Liu, W. (2024). A Novel Adaptive Sand Cat Swarm Optimization Algorithm for Feature Selection and Global Optimization. Biomimetics, 9(11), 701. https://doi.org/10.3390/biomimetics9110701