Multi-Level Thresholding Color Image Segmentation Using Modified Gray Wolf Optimizer
Abstract
:1. Introduction
- Establish a multi-level thresholding segmentation framework for color images.
- Propose a GWO algorithm for image segmentation and improve it with the selection of leader wolves and mutation.
- Validate the algorithm’s performance on the BSD500 benchmark dataset.
2. Related Works
3. Multi-Level Thresholding Image Segmentation
3.1. Objective Functions
3.1.1. Otsu Method
3.1.2. Kapur Entropy
3.2. Modified Gray Wolf Optimizer
3.2.1. The Leader Pool
3.2.2. Mutation
4. Experimental Results and Analysis
4.1. Experimental Analysis Based on Kapur Entropy
4.2. Experimental Analysis Based on the Otsu Method
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Cai, Z.; Xiao, L.; Heidari, A.A.; Chen, H.; Zhao, D.; Wang, S.; Zhang, Y. Face Image Segmentation Using Boosted Grey Wolf Optimizer. Biomimetics 2023, 8, 484. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Huang, C.; Heidari, A.A.; Chen, H.; Liang, G. An improved weighted mean of vectors optimizer for multi-threshold image segmentation: Case study of breast cancer. Clust. Comput. 2024, 27, 13945–14004. [Google Scholar] [CrossRef]
- Khan, I.R.; Sangari, M.S.; Shukla, P.K.; Aleryani, A.; Alqahtani, O.; Alasiry, A.; Alouane, M.T.H. An Automatic-Segmentation-and Hyper-Parameter-Optimization-Based Artificial Rabbits Algorithm for Leaf Disease Classification. Biomimetics 2023, 8, 438. [Google Scholar] [CrossRef] [PubMed]
- Ameur, M.; Habba, M.; Jabrane, Y. A comparative study of nature inspired optimization algorithms on multilevel thresholding image segmentation. Multimed. Tools Appl. 2019, 78, 34353–34372. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Meng, K.; Zhu, Z. Otsu multi-threshold image segmentation based on adaptive double-mutation differential evolution. Biomimetics 2023, 8, 418. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, A. A non-revisiting quantum-behaved particle swarm optimization based multilevel thresholding for image segmentation. Neural Comput. Appl. 2020, 32, 12011–12031. [Google Scholar] [CrossRef]
- Gupta, S.; Deep, K. Hybrid sine cosine artificial bee colony algorithm for global optimization and image segmentation. Neural Comput. Appl. 2020, 32, 9521–9543. [Google Scholar] [CrossRef]
- Jia, H.; Lu, C.; Xing, Z. Memory backtracking strategy: An evolutionary updating mechanism for meta-heuristic algorithms. Swarm Evol. Comput. 2024, 84, 101456. [Google Scholar] [CrossRef]
- Xiaoqiong, W.; Zhang, Y.E. Image segmentation algorithm based on dynamic particle swarm optimization and K-means clustering. Int. J. Comput. Appl. 2020, 42, 649–654. [Google Scholar] [CrossRef]
- Jia, H.; Li, Z. Hybrid Multistrategy Remora Optimization Algorithm-Based Band Selection for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Ren, L.; Zhao, D.; Zhao, X.; Chen, W.; Li, L.; Wu, T.; Liang, G.; Cai, Z.; Xu, S. Multi-level thresholding segmentation for pathological images: Optimal performance design of a new modified differential evolution. Comput. Biol. Med. 2022, 148, 105910. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish optimization algorithm. Artif. Intell. Rev. 2023, 56, 1919–1979. [Google Scholar] [CrossRef]
- Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- RahkarFarshi, T.; K. Ardabili, A. A hybrid firefly and particle swarm optimization algorithm applied to multilevel image thresholding. Multimed. Syst. 2021, 27, 125–142. [Google Scholar] [CrossRef]
- Hu, P.; Pan, J.S.; Chu, S.C.; Sun, C. Multi-surrogate assisted binary particle swarm optimization algorithm and its application for feature selection. Appl. Soft Comput. 2022, 121, 108736. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, P.; Heidari, A.A.; Chen, H.; He, W.; Xu, S. Performance optimization of salp swarm algorithm for multi-threshold image segmentation: Comprehensive study of breast cancer microscopy. Comput. Biol. Med. 2021, 139, 105015. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.S.; Chu, S.C. A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access 2020, 8, 32018–32030. [Google Scholar] [CrossRef]
- Jia, H.; Wen, Q.; Wang, Y.; Mirjalili, S. Catch fish optimization algorithm: A new human behavior algorithm for solving clustering problems. Clust. Comput. 2024, 27, 13295–13332. [Google Scholar] [CrossRef]
- Jia, H.; Lu, C. Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement. Knowl.-Based Syst. 2024, 286, 111402. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Ma, G.; Yue, X.; Zhu, J. Multi-threshold segmentation of grayscale and color images based on Kapur entropy by bald eagle search optimization algorithm with horizontal crossover and vertical crossover. Soft Comput. 2023, 27, 14759–14790. [Google Scholar] [CrossRef]
- Guo, Q.; Peng, H. A novel multilevel color image segmentation technique based on an improved firefly algorithm and energy curve. Evol. Syst. 2023, 14, 685–733. [Google Scholar] [CrossRef]
- Anitha, J.; Pandian, S.I.A.; Agnes, S.A. An efficient multilevel color image thresholding based on modified whale optimization algorithm. Expert Syst. Appl. 2021, 178, 115003. [Google Scholar] [CrossRef]
- Xing, Z. An improved emperor penguin optimization based multilevel thresholding for color image segmentation. Knowl.-Based Syst. 2020, 194, 105570. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Wang, H.J.; Dao, T.K.; Pan, J.S.; Ngo, T.G.; Yu, J. A scheme of color image multithreshold segmentation based on improved moth-flame algorithm. IEEE Access 2020, 8, 174142–174159. [Google Scholar] [CrossRef]
- Dhal, K.G.; Ray, S.; Das, A.; Gálvez, J.; Das, S. Fuzzy multi-level color satellite image segmentation using nature-inspired optimizers: A comparative study. J. Indian Soc. Remote Sens. 2019, 47, 1391–1415. [Google Scholar] [CrossRef]
- Abualigah, L.; Al-Okbi, N.K.; Elaziz, M.A.; Houssein, E.H. Boosting marine predators algorithm by salp swarm algorithm for multilevel thresholding image segmentation. Multimed. Tools Appl. 2022, 81, 16707–16742. [Google Scholar] [CrossRef]
- Fu, X.; Zhu, L.; Wu, B.; Wang, J.; Zhao, X.; Ryspayev, A. An efficient multilevel thresholding segmentation method based on improved chimp optimization algorithm. J. Intell. Fuzzy Syst. 2023, 44, 4693–4715. [Google Scholar] [CrossRef]
- Hu, P.; Pan, J.S.; Chu, S.C. Improved binary grey wolf optimizer and its application for feature selection. Knowl.-Based Syst. 2020, 195, 105746. [Google Scholar] [CrossRef]
- Li, D.; Bai, Y.; Bai, Z.; Li, Y.; Shang, C.; Shen, Q. Decomposed neural architecture search for image denoising. Appl. Soft Comput. 2022, 124, 108914. [Google Scholar] [CrossRef]
- Rahkar Farshi, T.; Demirci, R.; Feizi-Derakhshi, M.R. Image Clustering with Optimization Algorithms and Color Space. Entropy 2018, 20, 296. [Google Scholar] [CrossRef] [PubMed]
Algorithm | Key Parameters |
---|---|
GWO & MGWO | a = 2 (Equation (14)). |
FOA | area_limit (limit of trees in the forest) = 200; |
Life_time (age limit to be part of the candidate list) = 15; | |
Transfer_rate (percentage of the trees in the candidate list that are going to global seed) = 10. | |
WOA | a = 2; a2 = −1; b = 1 (parameters to control update position). |
Level | Image | GWO | MGWO | FOA | MWOA | ||||
---|---|---|---|---|---|---|---|---|---|
Value | Variance | Value | Variance | Value | Variance | Value | Variance | ||
2 | 8068 | 1.1902 × | 8.5419 × | 1.1902 × | 7.6804 × | 1.1870 × | 9.8410 × | 1.1902 × | 2.9956 × |
113044 | 1.2121 × | 7.7357 × | 1.2100 × | 1.3179 × | 1.2039 × | 1.1184 × | 1.2153 × | 1.4094 × | |
118035 | 1.0844 × | 2.3426 × | 1.0830 × | 1.2965 × | 1.0716 × | 9.7160 × | 1.0845 × | 2.5778 × | |
140075 | 1.2350 × | 1.3491 × | 1.2350 × | 1.0143 × | 1.2288 × | 1.0685 × | 1.2350 × | 5.5595 × | |
176019 | 1.2696 × | 1.6421 × | 1.2696 × | 4.0287 × | 1.2658 × | 1.4973 × | 1.2696 × | 1.0097 × | |
196027 | 1.1768 × | 4.6764 × | 1.1768 × | 3.1959 × | 1.1533 × | 1.4548 × | 1.1768 × | 1.0121 × | |
208001 | 1.2446 × | 1.5307 × | 1.1902 × | 1.2827 × | 1.2401 × | 2.2423 × | 1.2446 × | 4.6799 × | |
209070 | 1.2563 × | 2.9000 × | 1.2564 × | 9.8704 × | 1.2540 × | 6.3441 × | 1.2563 × | 3.1640 × | |
288024 | 1.2606 × | 8.2327 × | 1.2606 × | 4.4667 × | 1.2565 × | 9.2084 × | 1.2606 × | 3.5134 × | |
296059 | 1.2198 × | 6.9453 × | 1.2198 × | 4.1639 × | 1.2109 × | 1.0636 × | 1.2198 × | 3.1262 × | |
3 | 8068 | 1.5274 × | 2.1798 × | 1.5274 × | 9.0891 × | 1.5224 × | 8.4500 × | 1.5273 × | 2.7010 × |
113044 | 1.5327 × | 6.3871 × | 1.5329 × | 2.3435 × | 1.5154 × | 3.9407 × | 1.5328 × | 3.2677 × | |
118035 | 1.4276 × | 4.4832 × | 1.4247 × | 5.1335 × | 1.4149 × | 1.6903 × | 1.4302 × | 1.8138 × | |
140075 | 1.5433 × | 5.6939 × | 1.5433 × | 2.0135 × | 1.5331 × | 4.5250 × | 1.5433 × | 5.6873 × | |
176019 | 1.5856 × | 1.3274 × | 1.5856 × | 2.0694 × | 1.5808 × | 4.3773 × | 1.5855 × | 4.3987 × | |
196027 | 1.4668 × | 1.6506 × | 1.4632 × | 1.2371 × | 1.4312 × | 7.3531 × | 1.4655 × | 5.4111 × | |
208001 | 1.5478 × | 1.5551 × | 1.5478 × | 5.2621 × | 1.5326 × | 4.1266 × | 1.5478 × | 2.2421 × | |
209070 | 1.5685 × | 1.2024 × | 1.5686 × | 3.6814 × | 1.5629 × | 1.8334 × | 1.5685 × | 3.8213 × | |
288024 | 1.5666 × | 4.4438 × | 1.5668 × | 1.4162 × | 1.5572 × | 1.5380 × | 1.5666 × | 2.6642 × | |
296059 | 1.5176 × | 2.1353 × | 1.5179 × | 2.6285 × | 1.5073 × | 1.5682 × | 1.5179 × | 1.9770 × | |
4 | 8068 | 1.8342 × | 9.2740 × | 1.8282 × | 9.6670 × | 1.8027 × | 5.5451 × | 1.8340 × | 1.3507 × |
113044 | 1.8157 × | 8.8248 × | 1.8166 × | 3.6804 × | 1.7510 × | 1.9608 × | 1.8161 × | 1.5968 × | |
118035 | 1.7540 × | 3.2793 × | 1.7543 × | 2.3837 × | 1.6818 × | 1.3857 × | 1.7543 × | 4.9621 × | |
140075 | 1.8262 × | 3.6488 × | 1.8262 × | 1.8918 × | 1.7482 × | 2.6341 × | 1.8261 × | 1.4499 × | |
176019 | 1.8794 × | 1.1416 × | 1.8794 × | 3.4774 × | 1.8457 × | 6.2378 × | 1.8792 × | 2.6159 × | |
196027 | 1.7373 × | 1.2662 × | 1.7370 × | 1.0765 × | 1.6005 × | 3.0660 × | 1.7381 × | 3.4051 × | |
208001 | 1.8302 × | 1.4680 × | 1.8303 × | 1.8772 × | 1.7942 × | 9.9034 × | 1.8300 × | 2.9631 × | |
209070 | 1.8562 × | 1.6392 × | 1.8562 × | 1.2052 × | 1.8122 × | 1.5156 × | 1.8560 × | 2.9888 × | |
288024 | 1.8532 × | 7.7414 × | 1.8534 × | 3.4938 × | 1.8075 × | 6.9957 × | 1.8530 × | 1.9334 × | |
296059 | 1.7994 × | 1.8631 × | 1.8009 × | 9.5785 × | 1.7494 × | 2.2678 × | 1.8003 × | 2.1074 × | |
5 | 8068 | 2.0976 × | 8.5506 × | 2.1085 × | 4.6980 × | 2.0530 × | 2.8209 × | 2.1080 × | 5.2297 × |
113044 | 2.0735 × | 1.8430 × | 2.0738 × | 2.2087 × | 1.9440 × | 2.9525 × | 2.0722 × | 2.3028 × | |
118035 | 2.0154 × | 2.6834 × | 2.0188 × | 1.6981 × | 1.9159 × | 6.7358 × | 2.0171 × | 8.8101 × | |
140075 | 2.0863 × | 6.6966 × | 2.0864 × | 5.6506 × | 1.9480 × | 2.2544 × | 2.0856 × | 2.8546 × | |
176019 | 2.1540 × | 6.0726 × | 2.1542 × | 7.6179 × | 2.1008 × | 6.3971 × | 2.1535 × | 1.3808 × | |
196027 | 1.9776 × | 1.3590 × | 1.9816 × | 3.1380 × | 1.7445 × | 3.1206 × | 1.9801 × | 4.5807 × | |
208001 | 2.0919 × | 4.7231 × | 2.0926 × | 1.8102 × | 1.9907 × | 1.7524 × | 2.0907 × | 1.6447 × | |
209070 | 2.1230 × | 2.9622 × | 2.1234 × | 2.2795 × | 2.0418 × | 1.5892 × | 2.1217 × | 5.7495 × | |
288024 | 2.1192 × | 2.5612 × | 2.1242 × | 4.4796 × | 2.0601 × | 2.7745 × | 2.1206 × | 2.0630 × | |
296059 | 2.0600 × | 1.0276 × | 2.0585 × | 2.4028 × | 1.9147 × | 1.9505 × | 2.0589 × | 5.7304 × | |
>/=/< | 6/9/25 | 27/7/6 | 0/0/40 | 7/10/23 | |||||
Rank | 2.3 | 1.55 | 3.975 | 2.175 |
Level | Image | GWO | MGWO | FOA | MWOA |
---|---|---|---|---|---|
2 | 8068 | 2.5348 × | 2.5382 × | 3.4200 × | 2.5263 × |
113044 | 2.5143 × | 2.5259 × | 3.4328 × | 2.4717 × | |
118035 | 2.5345 × | 2.5301 × | 3.4685 × | 2.4898 × | |
140075 | 2.5350 × | 2.5463 × | 3.4592 × | 2.5923 × | |
176019 | 2.5345 × | 2.5388 × | 3.5196 × | 2.5383 × | |
196027 | 2.4593 × | 2.4539 × | 3.5104 × | 2.4501 × | |
208001 | 2.5283 × | 2.5377 × | 3.5156 × | 2.5591 × | |
209070 | 2.5282 × | 2.5140 × | 3.5788 × | 2.5521 × | |
288024 | 2.5025 × | 2.5114 × | 3.5579 × | 2.5341 × | |
296059 | 2.5120 × | 2.5187 × | 3.5562 × | 2.5351 × | |
3 | 8068 | 2.8955 × | 2.9130 × | 3.8698 × | 2.8439 × |
113044 | 2.8000 × | 2.8120 × | 3.7716 × | 2.7619 × | |
118035 | 2.8276 × | 2.8155 × | 3.7910 × | 2.7790 × | |
140075 | 2.8783 × | 2.8889 × | 3.8775 × | 2.9603 × | |
176019 | 2.8830 × | 2.8968 × | 3.9531 × | 2.8768 × | |
196027 | 2.7268 × | 2.7404 × | 3.8260 × | 2.7563 × | |
208001 | 2.8871 × | 2.8941 × | 3.8968 × | 2.9099 × | |
209070 | 2.8663 × | 2.8541 × | 3.9595 × | 2.8975 × | |
288024 | 2.8397 × | 2.8279 × | 3.9290 × | 2.8445 × | |
296059 | 2.8283 × | 2.8343 × | 3.9252 × | 2.8549 × | |
4 | 8068 | 3.4369 × | 3.4557 × | 4.3947 × | 3.3829 × |
113044 | 3.3124 × | 3.3248 × | 4.2480 × | 3.2801 × | |
118035 | 3.3064 × | 3.3130 × | 4.2654 × | 3.2662 × | |
140075 | 3.3994 × | 3.4010 × | 4.4154 × | 3.6151 × | |
176019 | 3.4107 × | 3.4164 × | 4.4972 × | 3.3982 × | |
196027 | 3.2195 × | 3.2093 × | 4.2661 × | 3.2080 × | |
208001 | 3.4092 × | 3.4148 × | 4.4104 × | 3.8744 × | |
209070 | 3.4592 × | 3.4773 × | 4.4953 × | 3.4876 × | |
288024 | 3.3324 × | 3.3423 × | 4.4625 × | 3.3513 × | |
296059 | 3.3648 × | 3.3581 × | 4.4335 × | 3.4058 × | |
5 | 8068 | 4.0045 × | 4.0751 × | 4.9174 × | 4.0295 × |
113044 | 3.8784 × | 3.8006 × | 4.6178 × | 3.7766 × | |
118035 | 3.8350 × | 3.8109 × | 4.7504 × | 3.7850 × | |
140075 | 3.9455 × | 3.9303 × | 4.8520 × | 4.0127 × | |
176019 | 4.0878 × | 4.0986 × | 4.8714 × | 4.0538 × | |
196027 | 3.7872 × | 3.7797 × | 4.7204 × | 3.8031 × | |
208001 | 4.1469 × | 4.1753 × | 4.8827 × | 4.5643 × | |
209070 | 3.9760 × | 4.0034 × | 4.9757 × | 4.0339 × | |
288024 | 3.9730 × | 3.9829 × | 4.8832 × | 3.9840 × | |
296059 | 3.8812 × | 3.9036 × | 4.8788 × | 3.9630 × |
Level | Image | GWO | MGWO | FOA | MWOA | ||||
---|---|---|---|---|---|---|---|---|---|
Value | Variance | Value | Variance | Value | Variance | Value | Variance | ||
2 | 8068 | 3.7513 × | 4.2126 × | 3.7513 × | 5.9854 × | 3.7404 × | 4.2340 × | 3.7513 × | 5.9854 × |
113044 | 1.1662 × | 2.7576 × | 1.1514 × | 1.0889 × | 1.1419 × | 6.4290 × | 1.1537 × | 1.0477 × | |
118035 | 3.0857 × | 1.8415 × | 3.0857 × | 3.2344 × | 3.0706 × | 3.2083 × | 3.0833 × | 1.2223 × | |
140075 | 2.7493 × | 1.9019 × | 2.7493 × | 7.7258 × | 2.7105 × | 1.3699 × | 2.7493 × | 3.5547 × | |
176019 | 1.2287 × | 2.6044 × | 1.2287 × | 0.0000 × | 1.2073 × | 2.1838 × | 1.2287 × | 0.0000 × | |
196027 | 1.2008 × | 2.6979 × | 1.1979 × | 1.7265 × | 1.1744 × | 6.5826 × | 1.2008 × | 6.1211 × | |
208001 | 1.5725 × | 6.9609 × | 1.5725 × | 0.0000 × | 1.5343 × | 1.1406 × | 3.7513 × | 1.3556 × | |
209070 | 1.5942 × | 1.1088 × | 1.5877 × | 8.4468 × | 1.5537 × | 1.8792 × | 1.5942 × | 8.6521 × | |
288024 | 1.6975 × | 2.0477 × | 1.6975 × | 2.1768 × | 1.6806 × | 6.0779 × | 1.6975 × | 9.3242 × | |
296059 | 1.7013 × | 1.6275 × | 1.7013 × | 1.5119 × | 1.6585 × | 2.1447 × | 1.7013 × | 6.1282 × | |
3 | 8068 | 3.8286 × | 6.0611 × | 3.8286 × | 1.7918 × | 3.8260 × | 2.4600 × | 3.8286 × | 2.3636 × |
113044 | 1.2506 × | 5.5267 × | 1.2426 × | 1.7243 × | 1.2145 × | 2.2393 × | 1.2377 × | 2.9128 × | |
118035 | 3.1305 × | 2.1187 × | 3.1286 × | 5.8529 × | 3.1205 × | 1.2130 × | 3.1273 × | 3.9913 × | |
140075 | 2.8992 × | 1.5157 × | 2.8993 × | 3.3348 × | 2.8365 × | 2.4574 × | 2.8993 × | 1.4402 × | |
176019 | 1.3525 × | 2.4362 × | 1.3507 × | 6.8789 × | 1.3243 × | 5.2852 × | 1.3525 × | 3.8564 × | |
196027 | 1.2941 × | 6.1103 × | 1.2941 × | 7.4134 × | 1.2166 × | 2.2517 × | 1.2942 × | 6.7370 × | |
208001 | 1.6870 × | 2.2851 × | 1.6870 × | 5.4420 × | 1.6585 × | 6.4638 × | 1.6870 × | 3.2663 × | |
209070 | 1.7069 × | 2.3414 × | 1.7070 × | 8.6371 × | 1.6795 × | 3.4063 × | 1.7051 × | 6.6984 × | |
288024 | 1.8675 × | 7.6363 × | 1.8675 × | 2.5607 × | 1.8429 × | 3.6138 × | 1.8675 × | 1.7371 × | |
296059 | 1.8018 × | 1.2265 × | 1.8015 × | 4.9475 × | 1.7534 × | 1.4136 × | 1.8003 × | 3.1988 × | |
4 | 8068 | 3.8811 × | 7.2838 × | 3.8812 × | 7.6560 × | 3.8495 × | 1.8577 × | 3.8797 × | 2.1848 × |
113044 | 1.2936 × | 5.6506 × | 1.2921 × | 3.1971 × | 1.2333 × | 5.7124 × | 1.2832 × | 1.2498 × | |
118035 | 3.1581 × | 7.6005 × | 3.1579 × | 9.1017 × | 3.1392 × | 1.1621 × | 3.1560 × | 1.5965 × | |
140075 | 2.9667 × | 5.4818 × | 2.9669 × | 3.2778 × | 2.8818 × | 9.6639 × | 2.9669 × | 9.2454 × | |
176019 | 1.4138 × | 1.9875 × | 1.4140 × | 2.1885 × | 1.3610 × | 7.4662 × | 1.4130 × | 2.1116 × | |
196027 | 1.3308 × | 1.5310 × | 1.3305 × | 8.5334 × | 1.2496 × | 1.1096 × | 1.3280 × | 3.6646 × | |
208001 | 1.7460 × | 1.1270 × | 1.7461 × | 2.5713 × | 1.6900 × | 1.2028 × | 1.7456 × | 5.2104 × | |
209070 | 1.7678 × | 8.7322 × | 1.7680 × | 9.1547 × | 1.7183 × | 6.4965 × | 1.7651 × | 5.0130 × | |
288024 | 1.9224 × | 1.0740 × | 1.9226 × | 6.0528 × | 1.8675 × | 6.4144 × | 1.9207 × | 3.3265 × | |
296059 | 1.8627 × | 9.0410 × | 1.8628 × | 3.4808 × | 1.7971 × | 1.2264 × | 1.8613 × | 2.3305 × | |
5 | 8068 | 3.9041 × | 9.7653 × | 3.9044 × | 4.4262 × | 3.8837 × | 9.1217 × | 3.9033 × | 5.1813 × |
113044 | 1.3120 × | 2.3389 × | 1.3166 × | 1.3106 × | 1.2584 × | 1.5393 × | 1.3050 × | 6.0236 × | |
118035 | 3.1745 × | 2.1484 × | 3.1752 × | 4.1850 × | 3.1532 × | 2.0832 × | 3.1716 × | 1.0546 × | |
140075 | 3.0055 × | 1.3296 × | 3.0060 × | 1.9376 × | 2.9367 × | 2.0392 × | 3.0043 × | 1.7942 × | |
176019 | 1.4473 × | 5.5752 × | 1.4477 × | 2.0612 × | 1.3862 × | 2.9378 × | 1.4465 × | 1.2777 × | |
196027 | 1.3476 × | 2.0516 × | 1.3504 × | 1.0507 × | 1.2874 × | 1.2368 × | 1.3410 × | 3.6864 × | |
208001 | 1.7747 × | 1.3073 × | 1.7752 × | 5.2632 × | 1.7292 × | 2.7469 × | 1.7711 × | 3.3760 × | |
209070 | 1.8009 × | 2.4700 × | 1.8018 × | 1.4600 × | 1.7378 × | 2.3626 × | 1.7930 × | 1.0632 × | |
288024 | 1.9588 × | 1.9516 × | 1.9594 × | 1.5040 × | 1.9011 × | 3.4154 × | 1.9546 × | 6.5146 × | |
296059 | 1.8893 × | 1.2565 × | 1.8899 × | 1.2159 × | 1.8175 × | 3.2412 × | 1.8851 × | 4.6062 × | |
>/=/< | 4/4/32 | 28/6/6 | 0/0/40 | 8/12/20 | |||||
Rank | 2.30 | 1.625 | 4 | 2.075 |
Level | Image | GWO | MGWO | FOA | MWOA |
---|---|---|---|---|---|
2 | 8068 | 2.5501 × | 2.5150 × | 3.4924 × | 2.5048 × |
113044 | 2.4913 × | 2.5302 × | 3.4126 × | 2.4566 × | |
118035 | 2.4775 × | 2.4894 × | 3.4401 × | 2.4278 × | |
140075 | 2.5015 × | 2.5057 × | 3.4810 × | 2.4614 × | |
176019 | 2.5007 × | 2.5049 × | 3.4308 × | 2.4541 × | |
196027 | 2.4710 × | 2.4669 × | 3.4666 × | 2.4373 × | |
208001 | 2.4531 × | 2.4979 × | 3.4256 × | 2.4431 × | |
209070 | 2.4784 × | 2.4959 × | 3.4292 × | 2.4287 × | |
288024 | 2.4695 × | 2.4674 × | 3.4295 × | 2.4190 × | |
296059 | 2.4581 × | 2.4693 × | 3.4487 × | 2.4253 × | |
3 | 8068 | 2.8773 × | 2.8674 × | 3.8198 × | 2.8432 × |
113044 | 2.8274 × | 2.8514 × | 3.7249 × | 2.7853 × | |
118035 | 2.8223 × | 2.8296 × | 3.7156 × | 2.7562 × | |
140075 | 2.8445 × | 2.8352 × | 3.8505 × | 2.7869 × | |
176019 | 2.8291 × | 2.8379 × | 3.8145 × | 2.7945 × | |
196027 | 2.7645 × | 2.7585 × | 3.7522 × | 2.7141 × | |
208001 | 2.8571 × | 2.8602 × | 3.8004 × | 2.7968 × | |
209070 | 2.8235 × | 2.8242 × | 3.8314 × | 2.7637 × | |
288024 | 2.8034 × | 2.7742 × | 3.8065 × | 2.7535 × | |
296059 | 2.7983 × | 2.8033 × | 3.7879 × | 2.7649 × | |
4 | 8068 | 3.3991 × | 3.3858 × | 4.3397 × | 3.3712 × |
113044 | 3.3266 × | 3.3666 × | 4.3057 × | 3.2873 × | |
118035 | 3.3603 × | 3.3396 × | 4.2313 × | 3.3014 × | |
140075 | 3.3783 × | 3.3943 × | 4.3459 × | 3.3260 × | |
176019 | 3.3373 × | 3.3555 × | 4.3529 × | 3.2856 × | |
196027 | 3.2157 × | 3.2376 × | 4.3401 × | 3.1716 × | |
208001 | 3.4067 × | 3.3868 × | 4.3219 × | 3.3447 × | |
209070 | 3.3971 × | 3.4012 × | 4.3750 × | 3.3325 × | |
288024 | 3.2882 × | 3.2859 × | 4.2860 × | 3.2241 × | |
296059 | 3.2707 × | 3.2861 × | 4.3621 × | 3.2193 × | |
5 | 8068 | 3.9879 × | 3.8959 × | 4.7991 × | 3.9502 × |
113044 | 3.9623 × | 4.0147 × | 4.6309 × | 3.8914 × | |
118035 | 3.8452 × | 3.8146 × | 4.7899 × | 3.7835 × | |
140075 | 3.8938 × | 3.9810 × | 4.7787 × | 3.8634 × | |
176019 | 4.0076 × | 4.0396 × | 4.8227 × | 3.8985 × | |
196027 | 3.7919 × | 3.7897 × | 4.6061 × | 3.7465 × | |
208001 | 4.1003 × | 4.0067 × | 4.9648 × | 3.9734 × | |
209070 | 3.9699 × | 3.9279 × | 4.7790 × | 3.8670 × | |
288024 | 3.8112 × | 3.8513 × | 5.0524 × | 3.8086 × | |
296059 | 3.8148 × | 3.8290 × | 4.9697 × | 3.7986 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, P.; Han, Y.; Zhang, Z. Multi-Level Thresholding Color Image Segmentation Using Modified Gray Wolf Optimizer. Biomimetics 2024, 9, 700. https://doi.org/10.3390/biomimetics9110700
Hu P, Han Y, Zhang Z. Multi-Level Thresholding Color Image Segmentation Using Modified Gray Wolf Optimizer. Biomimetics. 2024; 9(11):700. https://doi.org/10.3390/biomimetics9110700
Chicago/Turabian StyleHu, Pei, Yibo Han, and Zheng Zhang. 2024. "Multi-Level Thresholding Color Image Segmentation Using Modified Gray Wolf Optimizer" Biomimetics 9, no. 11: 700. https://doi.org/10.3390/biomimetics9110700
APA StyleHu, P., Han, Y., & Zhang, Z. (2024). Multi-Level Thresholding Color Image Segmentation Using Modified Gray Wolf Optimizer. Biomimetics, 9(11), 700. https://doi.org/10.3390/biomimetics9110700