A Multi-Objective Sine Cosine Algorithm Based on a Competitive Mechanism and Its Application in Engineering Design Problems
Abstract
:1. Introduction
- A new position updating operation based on a competitive mechanism with the shift-based density estimation (SDE) strategy is proposed. In this operation, an agent with better SDE fitness value is employed to guide the search of evolution. This operation can make use of the SDE-based competitive mechanism to attain a well balance between the diversity and convergence.
- We also present two variants of the CMOSCA, which utilize the Euclidean distance-based competitive mechanism and angle-based competitive mechanism, respectively. The performance of these two variants with CMOSCA was experimentally compared, and the experimental results indicate the virtue of the SDE-based competition mechanism.
- The performance of the CMOSCA is extensively analyzed via comparing CMOSCA with several representative MOEAs on twenty test functions having various landscapes of Pareto fronts. Furthermore, the proposed CMOSCA is also applied to address several engineering design problems. The comparison results evidence the competitive performance of our proposed CMOSCA.
2. Related Work
2.1. Sine Cosine Algorithm (SCA)
2.2. Existing Multi-Objective SCA Algorithms
3. The Proposed CMOSCA
3.1. The Framework of the CMOSCA
Algorithm 1 The framework of CMOSCA |
Input: Number of search agents N, Dimension of the problem D, Maximum number of function evaluations , Current number of function evaluations . |
Output: All non-dominant search agents in P. |
|
3.2. The SCA Position Update Scheme Based on a Competition Mechanism
Algorithm 2 CompetitionBasedSCAPositionUpdate(P) |
Input: current population P, the size of elite agent set . |
Output: descendant population . |
|
3.3. Two Variants of the Proposed CMOSCA
Algorithm 3 CompetitionBasedSCAPositionUpdate_Angle(P) |
Input: current population P, the size of elite agent set . |
Output: descendant population . |
|
Algorithm 4 CompetitionBasedSCAPositionUpdate_Distance(P) |
Input: current population P, the size of leader set . |
Output: descendant population . |
|
3.4. Computational Complexity of the CMOSCA
4. Experimental Studies
4.1. Comparisons CMOSCA with Other Competing MOEAs
4.2. Parameter Analysis
4.3. Comparisons among Three CMOSCA Variants
4.4. Applying Our Proposed CMOSCA to Engineering Design Problems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
CMOPSO | competitive mechanism based multi-objective particle swarm optimizer |
CMOSCA | multi-objective sine cosine algorithm based on the competitive mechanism |
CMOSCAA | multi-objective sine cosine algorithm based on the angle competitive mechanism |
CMOSCAD | multi-objective sine cosine algorithm based on the Euclidean distance competitive mechanism |
CSO | competitive swarm optimizer |
DE | differential evolution |
DTLZ | scalable test problems for evolutionary multiobjective optimization, DTLZ are abbreviations of the reference authors |
EA-M2SCA | energy-aware multi-objective modified sine cosine algorithm |
EA-MHSCA | hybrid improved version multi-objective modified sine cosine algorithm |
EED | environmental/economic dispatch |
EELD | economic emission load dispatch |
EMOSO | efficient multi-objective optimization algorithm based on level swarm optimizer |
FES | current number of function evaluations |
HV | hypervolume |
IBEA | indicator-based evolutionary algorithm |
MaOSCA | many-objective sine cosine algorithm |
MaxFES | maximum number of function evaluations |
MMOPSO | multi-objective particle swarm optimization with multiple search strategies |
MOEA/D | multiobjective evolutionary algorithm based on decomposition |
MOEA/D-AM2M | a new variant of MOEA/D-M2M with adaptive adjustment |
MOEA/DD | evolutionary many-objective optimization algorithm based on dominance and decomposition |
MOEA/D-DE | MOEA/D with differential evolution operators |
MOEA/D-M2M | decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems |
MOEA/D-PaS | decomposition-based algorithms using pareto adaptive scalarizing methods |
MOEAs | multi-objective evolutionary algorithms |
MOPs | multi-objective optimization problems |
MOSCA | multi-objective sine cosine algorithm |
MOSCA-SSC | multi-objective sine cosine algorithm for spatial-spectral clustering |
MPS | multiprocessor systems |
MSCA | modified sine cosine algorithm |
MSCO | multi-objective sine cosine optimization algorithm |
NSGA-II | fast and elitist multiobjective genetic algorithm |
NSGA-III | evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach |
PF | Pareto front |
PlatEMO | platform for evolutionary multi-objective optimization |
PS | Pareto-optimal set |
PSO | particle swarm optimization |
RVEA | reference vector guided evolutionary algorithm |
SCA | sine cosine algorithm |
SDE | shift-based density estimation |
SMS-EMOA | s-metric selection based MOEA |
TC-MOPSO | multiobjective particle swarm optimization algorithm based on tripartite competition mechanism |
Two-arch2 | improved two-archive algorithm for many-objective optimization |
VEGA | vector evaluated genetic algorithm |
WFG | scalable multi-objective test problem toolkit, WFG is abbreviation of Walking Fish Group |
ZDT | multi-objective test problem, ZDT are abbreviations of the reference authors |
References
- Luo, Q.; Yin, S.; Zhou, G.; Meng, W.; Zhao, Y.; Zhou, Y. Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems. Struct. Multidiscip. Optim. 2023, 66, 1–41. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, H.; Su, Y.; Zhang, X.; Niu, Y. A Mixed Representation-Based Multiobjective Evolutionary Algorithm for Overlapping Community Detection. IEEE Trans. Cybern. 2017, 47, 2703–2716. [Google Scholar] [CrossRef]
- Deb, S.; Tammi, K.; Gao, X.Z.; Kalita, K.; Mahanta, P. A Hybrid Multi-Objective Chicken Swarm Optimization and Teaching Learning Based Algorithm for Charging Station Placement Problem. IEEE Access 2020, 8, 92573–92590. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A.; Asadi, D. Detection of the ice assertion on aircraft using empirical mode decomposition enhanced by multi-objective optimization. Mech. Syst. Signal Process. 2017, 88, 9–24. [Google Scholar] [CrossRef]
- Ponsich, A.; Jaimes, A.L.; Coello, C.A. A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evol. Comput. 2013, 17, 321–344. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, S.; Zhang, X.; Jin, Y. Using PlatEMO to Solve Multi-Objective Optimization Problems in Applications: A Case Study on Feature Selection. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation, CEC 2019—Proceedings, Wellington, New Zealand, 10–13 June 2019; pp. 1710–1717. [Google Scholar]
- Xue, Y.; Tang, Y.; Xu, X.; Liang, J.; Neri, F. Multi-Objective Feature Selection with Missing Data in Classification. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 6, 355–364. [Google Scholar] [CrossRef]
- Xue, Y.; Cai, X.; Neri, F. A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification. Appl. Soft Comput. 2022, 127, 109420. [Google Scholar] [CrossRef]
- Schaffer, J. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the 1st international Conference on Genetic Algorithms, Pittsburgh, PA, USA, 24–26 July 1985; pp. 93–100. [Google Scholar]
- Zeng, N.; Song, D.; Li, H.; You, Y.; Liu, Y.; Alsaadi, F.E. A competitive mechanism integrated multi-objective whale optimization algorithm with differential evolution. Neurocomputing 2021, 432, 170–182. [Google Scholar] [CrossRef]
- Qin, S.; Sun, C.; Zhang, G.; He, X.; Tan, Y. A modified particle swarm optimization based on decomposition with different ideal points for many-objective optimization problems. Complex Intell. Syst. 2020, 6, 263–274. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C. A Multi-Objective Carnivorous Plant Algorithm for Solving Constrained Multi-Objective Optimization Problems. Biomimetics 2023, 8, 136. [Google Scholar] [CrossRef]
- Pan, J.S.; Liu, N.; Chu, S.C. A competitive mechanism based multi-objective differential evolution algorithm and its application in feature selection. Knowl.-Based Syst. 2022, 245, 108582. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, Y. Differential Evolution with exponential crossover can be also competitive on numerical optimization. Appl. Soft Comput. 2023, 146, 110750. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, B.; Vega-Rodríguez, M.A.; Santander-Jiménez, S. A multi-objective butterfly optimization algorithm for protein encoding. Appl. Soft Comput. 2023, 139, 110269. [Google Scholar] [CrossRef]
- Long, H.; Chen, Z.; Huang, H.; Yu, L.; Li, Z.; Liu, J.; Long, Y. Research on Multi-Objective Optimization Power Flow of Power System Based on Improved Remora Optimization Algorithm. Eng. Lett. 2023, 31, 1191–1207. [Google Scholar]
- Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish optimization algorithm. Artif. Intell. Rev. 2023, 56, 1919–1979. [Google Scholar] [CrossRef]
- Yue, L.; Hu, P.; Chu, S.C.; Pan, J.S. Multi-Objective Gray Wolf Optimizer with Cost-Sensitive Feature Selection for Predicting Students’ Academic Performance in College English. Mathematics 2023, 11, 3396. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, H.; Wang, B.; Yao, X. A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans. Evol. Comput. 2016, 20, 16–37. [Google Scholar] [CrossRef]
- Yang, S.; Li, M.; Liu, X.; Zheng, J. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2013, 17, 721–736. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, H. Fuzzy-dominance and its application in evolutionary many objective optimization. In Proceedings of the Proceedings—CIS Workshops 2007, 2007 International Conference on Computational Intelligence and Security Workshops, Harbin, China, 15–19 December 2007; pp. 195–198. [Google Scholar]
- Laumanns, M.; Thiele, L.; Deb, K.; Zitzler, E. Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 2002, 10, 263–282. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y. A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 2015, 45, 191–204. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, X.; Cheng, R.; Qiu, J.; Jin, Y. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf. Sci. 2018, 427, 63–76. [Google Scholar] [CrossRef]
- Han, F.; Zheng, M.; Ling, Q. An improved multiobjective particle swarm optimization algorithm based on tripartite competition mechanism. Appl. Intell. 2022, 52, 5784–5816. [Google Scholar] [CrossRef]
- Zhang, X.W.; Liu, H.; Tu, L.P.; Zhao, J. An efficient multi-objective optimization algorithm based on level swarm optimizer. Math. Comput. Simul. 2020, 177, 588–602. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Han, J.; Watanabe, S. A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework. Biomimetics 2023, 8, 521. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Gu, F.; Zhang, Q. Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 2014, 18, 450–455. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q. Multiobjective optimization problems with complicated pareto sets, MOEA/ D and NSGA-II. IEEE Trans. Evol. Comput. 2009, 13, 284–302. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Q.; Zhang, T. Decomposition-based algorithms using pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. 2016, 20, 821–837. [Google Scholar] [CrossRef]
- Liu, H.L.; Chen, L.; Zhang, Q.; Deb, K. Adaptively Allocating Search Effort in Challenging Many-Objective Optimization Problems. IEEE Trans. Evol. Comput. 2018, 22, 433–448. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, C.; Zeng, J.; Tan, Y.; Zhang, G. A surrogate-ensemble assisted expensive many-objective optimization. Knowl.-Based Syst. 2021, 211, 106520. [Google Scholar] [CrossRef]
- Yang, C.; Wang, P.; Ji, J. A dual decomposition strategy for large-scale multiobjective evolutionary optimization. Neural Comput. Appl. 2023, 35, 3767–3788. [Google Scholar] [CrossRef]
- Beume, N.; Naujoks, B.; Emmerich, M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 2007, 181, 1653–1669. [Google Scholar] [CrossRef]
- Zitzler, E.; Künzli, S. Indicator-based selection in multiobjective search. Lect. Notes Comput. Sci. 2004, 3242, 832–842. [Google Scholar]
- Bader, J.; Zitzler, E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 2011, 19, 45–76. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Cheng, F.; Jin, Y. An Indicator-Based Multiobjective Evolutionary Algorithm with Reference Point Adaptation for Better Versatility. IEEE Trans. Evol. Comput. 2018, 22, 609–622. [Google Scholar] [CrossRef]
- Li, K.; Deb, K.; Zhang, Q.; Kwong, S. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 2015, 19, 694–716. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Wang, H.; Jiao, L.; Yao, X. Two Arch2: An Improved Two-Archive Algorithm for Many-Objective Optimization. IEEE Trans. Evol. Comput. 2015, 19, 524–541. [Google Scholar] [CrossRef]
- Liu, N.; Pan, J.S.; Chu, S.C. A Competitive Learning QUasi Affine Transformation Evolutionary for Global Optimization and Its Application in CVRP. J. Internet Technol. 2020, 21, 1863–1883. [Google Scholar]
- Tian, Y.; Zheng, X.; Zhang, X.; Jin, Y. Efficient Large-Scale Multiobjective Optimization Based on a Competitive Swarm Optimizer. IEEE Trans. Cybern. 2020, 50, 3696–3708. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Hassanien, A.E. A comprehensive survey on the sine-cosine optimization algorithm. Artif. Intell. Rev. 2023, 56, 4801–4858. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Mageed, H.M.; El-Sehiemy, R.A.; Aleem, S.H.; El Shahat, A. A new sine cosine optimization algorithm for solving combined non-convex economic and emission power dispatch problems. Int. J. Energy Convers. 2017, 5, 180–192. [Google Scholar] [CrossRef]
- Tawhid, M.A.; Savsani, V. Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Comput. Appl. 2019, 31, 915–929. [Google Scholar] [CrossRef]
- Wan, Y.; Zhong, Y.; Ma, A.; Zhang, L. Hyperspectral Remote Sensing Image Band Selection Via Multi-Objective Sine Cosine Algorithm. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3796–3799. [Google Scholar]
- Wan, Y.; Ma, A.; Zhang, L.; Zhong, Y. Multiobjective Sine Cosine Algorithm for Remote Sensing Image Spatial-Spectral Clustering. IEEE Trans. Cybern. 2022, 52, 11172–11186. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chakrabortty, R.K.; Ryan, M.J. EA-MSCA: An effective energy-aware multi-objective modified sine-cosine algorithm for real-time task scheduling in multiprocessor systems: Methods and analysis. Expert Syst. Appl. 2021, 173, 114699. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Du, P.; Niu, T. A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Energy Convers. Manag. 2018, 163, 134–150. [Google Scholar] [CrossRef]
- Selim, A.; Kamel, S.; Jurado, F. Optimal allocation of distribution static compensators using a developed multi-objective sine cosine approach. Comput. Electr. Eng. 2020, 85, 106671. [Google Scholar] [CrossRef]
- Altay, E.V.; Alatas, B. Differential evolution and sine cosine algorithm based novel hybrid multi-objective approaches for numerical association rule mining. Inf. Sci. 2021, 554, 198–221. [Google Scholar] [CrossRef]
- Raut, U.; Mishra, S. A new Pareto multi-objective sine cosine algorithm for performance enhancement of radial distribution network by optimal allocation of distributed generators. Evol. Intell. 2021, 14, 1635–1656. [Google Scholar] [CrossRef]
- Narayanan, R.C.; Ganesh, N.; Čep, R.; Jangir, P.; Chohan, J.S.; Kalita, K. A Novel Many-Objective Sine-Cosine Algorithm (MaOSCA) for Engineering Applications. Mathematics 2023, 11, 2301. [Google Scholar] [CrossRef]
- Karimulla, S.; Ravi, K. Solving multi objective power flow problem using enhanced sine cosine algorithm. Ain Shams Eng. J. 2021, 12, 3803–3817. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A. Advances in Sine Cosine Algorithm: A comprehensive survey. Artif. Intell. Rev. 2021, 54, 2567–2608. [Google Scholar] [CrossRef]
- Gabis, A.B.; Meraihi, Y.; Mirjalili, S.; Ramdane-Cherif, A. A comprehensive survey of sine cosine algorithm: Variants and applications. Artif. Intell. Rev. 2021, 54, 5469–5540. [Google Scholar] [CrossRef]
- Schussler, N.; Axhausen, K.W. SPEA2: Improving the strength pareto evolutionary algorithm. Transp. Res. Rec. 2009, 2105, 28–36. [Google Scholar]
- Li, M.; Yang, S.; Liu, X. Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans. Evol. Comput. 2014, 18, 348–365. [Google Scholar] [CrossRef]
- Lin, Q.; Li, J.; Du, Z.; Chen, J.; Ming, Z. A novel multi-objective particle swarm optimization with multiple search strategies. Eur. J. Oper. Res. 2015, 247, 732–744. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Test Problems for Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective Optimization; Springer: London, UK, 2005; pp. 105–145. [Google Scholar]
- Huband, S.; Barone, L.; While, L.; Hingston, P. A scalable multi-objective test problem toolkit. Lect. Notes Comput. Sci. 2005, 3410, 280–295. [Google Scholar]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef]
- Sun, Y.; Yen, G.G.; Yi, Z. IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems. IEEE Trans. Evol. Comput. 2019, 23, 173–187. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhou, Y.; Li, M.; Chen, Z. A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization. IEEE Trans. Evol. Comput. 2017, 21, 131–152. [Google Scholar] [CrossRef]
- Coello, C.A.; Cortés, N.C. Solving multiobjective optimization problems using an artificial immune system. Genet. Program. Evolvable Mach. 2005, 6, 163–190. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Li, X.S. Generalized center method for multiobjective engineering optimization. Eng. Optim. 1999, 31, 641–661. [Google Scholar] [CrossRef]
- Amir, H.M.; Hasegawa, T. Nonlinear Mixed-Discrete Structural Optimization. J. Struct. Eng. 1989, 115, 626–646. [Google Scholar] [CrossRef]
- Coello Coello, C.A.; Pulido, G.T. Multiobjective structural optimization using a microgenetic algorithm. Struct. Multidiscip. Optim. 2005, 30, 388–403. [Google Scholar] [CrossRef]
- Ray, T.; Liew, K.M. A swarm metaphor for multiobjective design optimization. Eng. Optim. 2002, 34, 141–153. [Google Scholar] [CrossRef]
- Zhang, W.; Liao, X.; Zhong, Z. Multi-objective optimization for crash safety design of vehicles using stepwise regression model. Jixie Gongcheng Xuebao/Chin. J. Mech. Eng. 2007, 43, 142–147. [Google Scholar]
- Tanabe, R.; Ishibuchi, H. An easy-to-use real-world multi-objective optimization problem suite. Appl. Soft Comput. J. 2020, 89, 106078. [Google Scholar] [CrossRef]
- Jia, H.; Lu, C.; Xing, Z. Memory backtracking strategy:an evolutionary updating mechanism for meta-heuristic algorithms. Swarm Evol. Comput. 2023, 84, 101456. [Google Scholar] [CrossRef]
- Jia, H.; Lu, C. Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement. Knowl.-Based Syst. 2024, 286, 111402. [Google Scholar] [CrossRef]
Test Problems | Objective Numbers | Properties of PF |
---|---|---|
DTLZ1 | Linear | |
DTLZ2 | Concave, Uni-modal | |
DTLZ3 | Multimodal | |
DTLZ4 | Concave, Biased, Uni-modal | |
DTLZ5 | Concave, Degenerated | |
DTLZ6 | Concave, Degenerated, Biased | |
DTLZ7 | Mixed, Disconnected, Scaled | |
WFG1 | Sharp tails | |
WFG2 | Disconnected | |
WFG3 | Mostly degenerated | |
WFG4-9 | Concave | |
ZDT1 | 2 | Convex |
ZDT2 | 2 | Concave |
ZDT3 | 2 | Disconnected, Multimodal |
ZDT4 | 2 | Convex, Multimodal |
Method | Parameters Settings |
---|---|
EMOSO | |
CMOPSO | |
MOEA/D | |
NSGA-II | |
MOEA/D-DE | |
MMOPSO | |
CMOSCA |
Problem | M | D | EMOSO | CMOPSO | MOEAD | CMOSCA |
---|---|---|---|---|---|---|
DTLZ1 | 2 | 6 | 1.7772 (2.97) = | 8.0014 (1.15) + | 2.6325 (7.36) + | 1.8233 (6.02) |
3 | 7 | 1.6639 (2.89) - | 8.2647 (4.52) + | 2.1353 (1.59) + | 1.1081 (4.81) | |
DTLZ2 | 2 | 11 | 4.3749 (6.68) - | 4.3891 (6.81) - | 3.9697 (1.32) + | 4.1149 (3.78) |
3 | 12 | 5.8551 (9.79) - | 5.7573 (9.46) - | 5.4467 (1.71) - | 5.3243 (4.56) | |
DTLZ3 | 2 | 11 | 1.8287 (1.26 ) - | 3.2331 (1.91 ) + | 9.9329 (2.00) + | 1.5902 (1.94 ) |
3 | 12 | 1.8301 (1.44 ) - | 8.9128 (4.24 ) + | 7.5061 (8.10) + | 1.6203 (1.60 ) | |
DTLZ4 | 2 | 11 | 1.7657 (3.17) - | 1.7657 (3.17) - | 2.5001 (3.54) - | 4.1119 (3.26) |
3 | 12 | 9.8710 (9.90) - | 1.2015 (2.24) - | 3.9264 (3.35) = | 5.9577 (1.47) | |
DTLZ5 | 2 | 11 | 4.4092 (6.13) - | 4.3778 (5.31) - | 3.9714 (1.59) + | 4.1107 (2.65) |
3 | 12 | 7.6799 (9.41) - | 6.5749 (6.23) - | 3.3783 (5.81) - | 4.3665 (1.69) | |
DTLZ6 | 2 | 11 | 4.1288 (3.15) = | 4.1243 (3.07) = | 3.9659 (7.10) + | 4.1140 (3.03) |
3 | 12 | 4.1934 (4.70) = | 4.2017 (5.73) = | 3.3854 (9.78) - | 4.1788 (5.83) | |
DTLZ7 | 2 | 21 | 3.3686 (1.11) - | 3.3711 (1.11) = | 1.2727 (1.96) - | 4.5057 (5.13) |
3 | 22 | 6.4654 (1.67) - | 1.3352 (1.95) - | 1.9754 (1.64) - | 5.8941 (6.68) | |
WFG1 | 2 | 11 | 1.4596 (3.48) - | 6.6972 (1.00) - | 1.6275 (2.19) + | 3.8033 (1.19) |
3 | 12 | 1.8478 (4.27) - | 1.4486 (5.24) - | 3.2387 (3.54) + | 8.5394 (1.43) | |
WFG2 | 2 | 11 | 1.2332 (4.29) = | 1.1911 (3.63) = | 6.9447 (4.10) - | 3.5635 (5.38) |
3 | 12 | 1.8572 (6.77) + | 1.7966 (4.66) = | 2.5232 (1.07) - | 1.9064 (3.08) | |
WFG3 | 2 | 11 | 1.3828 (3.72) + | 1.3974 (3.74) + | 2.2398 (3.39) + | 2.9280 (5.16) |
3 | 12 | 2.0509 (1.10) - | 1.5467 (1.40) - | 1.7054 (1.83) - | 1.3883 (6.04) | |
WFG4 | 2 | 11 | 6.9249 (4.63) - | 4.5178 (1.29) - | 3.1383 (4.21) - | 2.0532 (4.51) |
3 | 12 | 2.6565 (5.11) - | 2.6055 (5.32) - | 2.6299 (6.02) - | 2.4095 (8.39) | |
WFG5 | 2 | 11 | 6.6847 (1.72) - | 6.7869 (2.04) - | 7.1356 (1.40) - | 6.3608 (1.83) |
3 | 12 | 2.4004 (4.84) - | 2.4796 (6.45) - | 2.5268 (3.45) - | 2.2262 (3.68) | |
WFG6 | 2 | 11 | 1.9095 (8.98) + | 1.8875 (5.49) + | 9.9941 (2.20) + | 2.2547 (1.68) |
3 | 12 | 2.3183 (5.23) + | 2.4133 (7.05) + | 2.9133 (1.67) + | 3.3555 (1.77) | |
WFG7 | 2 | 11 | 1.4701 (3.70) - | 1.4495 (3.87) - | 2.9914 (3.85) - | 1.2639 (1.05) |
3 | 12 | 2.2766 (3.31) - | 2.3370 (4.57) - | 3.4056 (4.60) - | 2.1066 (1.88) | |
WFG8 | 2 | 11 | 1.2258 (3.57) - | 1.1731 (3.10) = | 1.2890 (1.08) - | 1.1660 (3.17) |
3 | 12 | 3.4539 (7.05) - | 3.3864 (7.18) - | 3.2357 (1.07) - | 3.1606 (9.77) | |
WFG9 | 2 | 11 | 2.8963 (2.07) + | 2.6831 (1.65) + | 7.5073 (6.03) + | 2.2676 (2.47) |
3 | 12 | 2.3940 (4.84) + | 2.2124 (4.13) + | 2.9889 (3.10) + | 3.4464 (3.88) | |
ZDT1 | 2 | 30 | 4.0907 (6.75) - | 4.1992 (1.03) - | 1.3219 (1.17) - | 3.8994 (4.98) |
ZDT2 | 2 | 30 | 4.0207 (6.83) - | 4.1095 (7.72) - | 2.9084 (3.89) - | 3.8933 (3.48) |
ZDT3 | 2 | 30 | 4.6658 (8.52) = | 4.6397 (6.51) + | 3.1477 (2.11) - | 4.6982 (7.19) |
ZDT4 | 2 | 10 | 1.7673 (4.62) - | 3.0164 (3.89) + | 2.3644 (1.66) + | 1.7501 (1.63 ) |
+/-/= | 6/25/5 | 11/19/6 | 15/20/1 | |||
Problem | M | D | NSGAII | MOEADDE | MMOPSO | CMOSCA |
DTLZ1 | 2 | 6 | 2.4598 (3.99) + | 2.3927 (1.30) + | 9.1228 (3.15) + | 1.8233 (6.02) |
3 | 7 | 3.7968 (4.95) + | 7.2322 (9.75) + | 3.5135 (2.76) + | 1.1081 (4.81) | |
DTLZ2 | 2 | 11 | 5.0930 (1.71) - | 3.9778 (5.04) + | 5.3158 (5.06) - | 4.1149 (3.78) |
3 | 12 | 7.2640 (2.81) - | 7.6176 (1.11) - | 7.1806 (3.05) - | 5.3243 (4.56) | |
DTLZ3 | 2 | 11 | 6.4469 (1.99) + | 1.0659 (1.22 ) + | 9.3097 (7.97) + | 1.5902 (1.94 ) |
3 | 12 | 2.3057 (3.63) + | 4.5983 (7.79) + | 1.3998 (9.70) + | 1.6203 (1.60 ) | |
DTLZ4 | 2 | 11 | 1.0339 (2.55) - | 4.1241 (9.48) = | 1.2797 (2.79) - | 4.1119 (3.26) |
3 | 12 | 9.9949 (1.60) - | 1.2732 (6.97) - | 7.0944 (2.98) - | 5.9577 (1.47) | |
DTLZ5 | 2 | 11 | 5.0880 (2.22) - | 3.9799 (9.64) + | 5.2739 (2.28) - | 4.1107 (2.65) |
3 | 12 | 6.3135 (3.30) - | 1.4368 (9.98) - | 6.2533 (4.41) - | 4.3665 (1.69) | |
DTLZ6 | 2 | 11 | 5.6922 (3.31) - | 3.9664 (7.16) + | 5.6898 (4.63) - | 4.1140 (3.03) |
3 | 12 | 6.4813 (3.20) - | 1.4503 (5.27) - | 6.8147 (8.01) - | 4.1788 (5.83) | |
DTLZ7 | 2 | 21 | 5.2692 (1.42) - | 9.4450 (1.78) - | 1.8044 (2.18) - | 4.5057 (5.13) |
3 | 22 | 7.8673 (3.90) - | 2.5102 (1.37) - | 1.5383 (1.57) - | 5.8941 (6.68) | |
WFG1 | 2 | 11 | 8.3736 (3.38) + | 3.9448 (9.68) = | 1.1203 (5.09) + | 3.8033 (1.19) |
3 | 12 | 2.3801 (1.60) + | 1.1987 (1.32) - | 3.8707 (4.84) + | 8.5394 (1.43) | |
WFG2 | 2 | 11 | 1.2893 (5.50) + | 2.2462 (7.29) + | 1.2785 (5.11) + | 3.5635 (5.38) |
3 | 12 | 2.3473 (1.62) - | 3.4041 (1.91) - | 2.2874 (1.07) - | 1.9064 (3.08) | |
WFG3 | 2 | 11 | 1.5434 (7.48) + | 1.5965 (7.23) + | 1.4776 (6.86) + | 2.9280 (5.16) |
3 | 12 | 1.0219 (1.42) + | 1.7134 (2.62) - | 9.9848 (2.37) + | 1.3883 (6.04) | |
WFG4 | 2 | 11 | 1.5646 (6.48) + | 5.1517 (8.41) - | 1.7160 (1.10) + | 2.0532 (4.51) |
3 | 12 | 2.8260 (8.38) - | 3.8857 (8.12) - | 3.0067 (1.15) - | 2.4095 (8.39) | |
WFG5 | 2 | 11 | 6.5711 (1.52) - | 6.8569 (1.90) - | 6.6765 (2.47) - | 6.3608 (1.83) |
3 | 12 | 2.8644 (9.22) - | 3.3799 (5.88) - | 2.8841 (1.13) - | 2.2262 (3.68) | |
WFG6 | 2 | 11 | 7.7548 (1.95) + | 6.4813 (7.48) + | 6.0904 (6.81) + | 2.2547 (1.68) |
3 | 12 | 3.1640 (1.97) + | 3.9947 (3.51) - | 3.3096 (5.51) + | 3.3555 (1.77) | |
WFG7 | 2 | 11 | 1.7271 (7.33) - | 1.4203 (3.44) - | 1.6735 (1.51) - | 1.2639 (1.05) |
3 | 12 | 2.9255 (1.31) - | 3.5950 (5.15) - | 2.8503 (1.25) - | 2.1066 (1.88) | |
WFG8 | 2 | 11 | 1.1129 (1.44) + | 1.0641 (4.83) + | 1.1043 (2.34) + | 1.1660 (3.17) |
3 | 12 | 3.7766 (1.28) - | 4.2707 (1.17) - | 3.6982 (1.18) - | 3.1606 (9.77) | |
WFG9 | 2 | 11 | 2.7899 (3.79) + | 2.8731 (2.89) + | 2.3062 (2.93) + | 2.2676 (2.47) |
3 | 12 | 3.0118 (3.33) + | 3.3531 (4.42) + | 2.8868 (2.06) + | 3.4464 (3.88) | |
ZDT1 | 2 | 30 | 4.7757 (1.65) - | 1.2678 (3.54) - | 4.8826 (2.46) - | 3.8994 (4.98) |
ZDT2 | 2 | 30 | 4.8999 (1.74) - | 8.5343 (1.84) - | 5.1728 (2.42) - | 3.8933 (3.48) |
ZDT3 | 2 | 30 | 6.4385 (5.32) - | 1.7481 (6.53) - | 5.5287 (2.89) - | 4.6982 (7.19) |
ZDT4 | 2 | 10 | 5.3574 (7.20) + | 1.9761 (1.30) + | 2.1125 (4.84) + | 1.7501 (1.63 ) |
+/-/= | 16/20/0 | 14/20/2 | 16/20/0 |
Problem | M | D | EMOSO | CMOPSO | MOEAD | CMOSCA |
---|---|---|---|---|---|---|
DTLZ1 | 2 | 6 | 0.0000 (0.00) = | 1.5837 (2.39) + | 5.7877 (2.40) + | 0.0000 (0.00) |
3 | 7 | 0.0000 (0.00) = | 0.0000 (0.00) = | 8.3698 (5.86) + | 0.0000 (0.00) | |
DTLZ2 | 2 | 11 | 3.4650 (1.66) - | 3.4644 (1.89) - | 3.4720 (5.03) - | 3.4743 (5.68) |
3 | 12 | 5.4144 (3.16) - | 5.4220 (2.65) - | 5.5947 (3.80) + | 5.5278 (1.94) | |
DTLZ3 | 2 | 11 | 0.0000 (0.00) = | 0.0000 (0.00) = | 2.5915 (6.32) + | 0.0000 (0.00) |
3 | 12 | 0.0000 (0.00) = | 0.0000 (0.00) = | 2.0017 (2.09) + | 0.0000 (0.00) | |
DTLZ4 | 2 | 11 | 2.8682 (1.10) - | 2.8669 (1.10) - | 2.6177 (1.23) - | 3.4733 (7.32) |
3 | 12 | 5.3362 (3.36) - | 5.0357 (1.12) - | 3.9433 (1.71) = | 5.3966 (3.31) | |
DTLZ5 | 2 | 11 | 3.4643 (1.26) - | 3.4643 (1.22) - | 3.4720 (4.70) - | 3.4744 (6.74) |
3 | 12 | 1.9630 (9.65) - | 1.9766 (4.40) - | 1.8191 (2.68) - | 1.9972 (1.87) | |
DTLZ6 | 2 | 11 | 3.4755 (3.67) = | 3.4755 (5.26) = | 3.4721 (1.01) - | 3.4753 (4.45) |
3 | 12 | 2.0018 (4.09) = | 2.0017 (4.09) = | 1.8187 (1.12) - | 2.0017 (3.98) | |
DTLZ7 | 2 | 21 | 2.3843 (1.70) - | 2.3839 (1.69) - | 2.2259 (2.88) - | 2.4294 (1.03) |
3 | 22 | 2.7138 (1.60) - | 2.6245 (1.85) - | 2.5032 (1.32) - | 2.7871 (5.17) | |
WFG1 | 2 | 11 | 5.5400 (8.56) - | 3.3397 (4.65) - | 6.2054 (1.24) + | 5.0330 (5.46) |
3 | 12 | 1.0248 (2.21) - | 3.1667 (1.98) - | 8.4128 (3.92) + | 5.6834 (5.89) | |
WFG2 | 2 | 11 | 6.3175 (3.41) = | 6.3196 (3.95) = | 6.1218 (8.57) - | 6.1720 (3.33) |
3 | 12 | 9.2764 (1.28) + | 9.2689 (2.04) + | 8.9243 (1.45) - | 9.1668 (3.63) | |
WFG3 | 2 | 11 | 5.7980 (3.01) + | 5.7966 (3.02) + | 5.7376 (2.14) + | 5.7214 (2.70) |
3 | 12 | 3.2577 (6.90) - | 3.5440 (7.68) - | 3.5180 (1.12) - | 3.6348 (3.13) | |
WFG4 | 2 | 11 | 3.1782 (1.16) - | 3.2833 (6.54) - | 3.3684 (1.71) - | 3.3972 (3.23) |
3 | 12 | 4.8848 (3.95) - | 4.9065 (3.94) - | 5.2865 (4.09) + | 5.0911 (8.68) | |
WFG5 | 2 | 11 | 3.1084 (1.58) - | 3.1021 (2.03) - | 3.0645 (6.45) - | 3.1363 (1.39) |
3 | 12 | 4.8677 (5.07) - | 4.8050 (5.54) - | 4.9739 (3.17) - | 5.0496 (3.75) | |
WFG6 | 2 | 11 | 3.4199 (6.34) + | 3.4151 (4.22) + | 2.9466 (1.19) + | 2.2697 (5.36) |
3 | 12 | 5.2590 (5.49) + | 5.1572 (8.77) + | 4.7715 (1.76) + | 4.1628 (8.87) | |
WFG7 | 2 | 11 | 3.4528 (2.57) - | 3.4525 (2.83) - | 3.3629 (1.67) - | 3.4719 (1.15) |
3 | 12 | 5.3049 (3.25) - | 5.2333 (3.58) - | 5.0286 (2.07) - | 5.5302 (2.17) | |
WFG8 | 2 | 11 | 2.8272 (1.61) - | 2.8459 (1.61) - | 2.7964 (4.85) - | 2.8525 (1.69) |
3 | 12 | 4.2466 (5.19) - | 4.2870 (5.08) - | 4.5009 (6.01) + | 4.4087 (6.67) | |
WFG9 | 2 | 11 | 3.3360 (1.95) + | 3.3452 (1.99) + | 3.0765 (3.14) + | 2.2643 (1.04) |
3 | 12 | 4.9830 (4.16) + | 5.1324 (4.38) + | 4.6505 (2.97) + | 4.0623 (2.68) | |
ZDT1 | 2 | 30 | 7.1962 (1.51) - | 7.1928 (2.26) - | 7.0904 (9.57) - | 7.2049 (5.25) |
ZDT2 | 2 | 30 | 4.4442 (1.64) - | 4.4401 (2.07) - | 4.0696 (4.05) - | 4.4510 (4.02) |
ZDT3 | 2 | 30 | 5.9952 (9.36) - | 5.9965 (1.10) - | 6.2106 (5.00) = | 5.9979 (2.39) |
ZDT4 | 2 | 10 | 0.0000 (0.00) = | 4.4020 (2.14) + | 6.9311 (1.65) + | 0.0000 (0.00) |
+/-/= | 6/22/8 | 8/22/6 | 15/19/2 | |||
Problem | M | D | NSGAII | MOEADDE | MMOPSO | CMOSCA |
DTLZ1 | 2 | 6 | 5.7995 (1.60) + | 5.8013 (4.16) + | 5.6631 (6.57) + | 0.0000 (0.00) |
3 | 7 | 7.9637 (1.21) + | 6.9729 (2.31) + | 2.7383 (3.22) + | 0.0000 (0.00) | |
DTLZ2 | 2 | 11 | 3.4656 (2.11) - | 3.4702 (3.78) - | 3.4668 (2.19) - | 3.4743 (5.68) |
3 | 12 | 5.2873 (4.91) - | 5.2691 (1.65) - | 5.3071 (4.40) - | 5.5278 (1.94) | |
DTLZ3 | 2 | 11 | 3.0575 (8.42) + | 5.6429 (1.19) + | 0.0000 (0.00) = | 0.0000 (0.00) |
3 | 12 | 3.8921 (1.62) + | 1.8937 (2.22) + | 1.5222 (8.34) = | 0.0000 (0.00) | |
DTLZ4 | 2 | 11 | 3.1245 (8.84) - | 3.4683 (6.56) - | 3.0403 (9.70) - | 3.4733 (7.32) |
3 | 12 | 5.1573 (8.03) - | 5.1937 (2.29) - | 5.3269 (4.90) - | 5.3966 (3.31) | |
DTLZ5 | 2 | 11 | 3.4650 (2.07) - | 3.4701 (3.21) - | 3.4664 (1.78) - | 3.4744 (6.74) |
3 | 12 | 1.9874 (2.30) - | 1.9438 (7.71) - | 1.9916 (1.77) - | 1.9972 (1.87) | |
DTLZ6 | 2 | 11 | 3.4638 (2.33) - | 3.4721 (7.87) - | 3.4663 (2.18) - | 3.4753 (4.45) |
3 | 12 | 1.9912 (1.80) - | 1.9477 (2.22) - | 1.9922 (1.59) - | 2.0017 (3.98) | |
DTLZ7 | 2 | 21 | 2.4272 (4.13) - | 2.2855 (2.69) - | 2.1603 (3.32) - | 2.4294 (1.03) |
3 | 22 | 2.6689 (2.12) - | 2.0996 (1.76) - | 2.5880 (1.52) - | 2.7871 (5.17) | |
WFG1 | 2 | 11 | 6.6884 (1.32) + | 4.9843 (4.87) = | 6.5123 (2.76) + | 5.0330 (5.46) |
3 | 12 | 9.2184 (5.97) + | 4.0981 (5.21) - | 8.1347 (2.81) + | 5.6834 (5.89) | |
WFG2 | 2 | 11 | 6.3234 (4.78) + | 6.2802 (9.83) + | 6.3307 (1.90) + | 6.1720 (3.33) |
3 | 12 | 9.1559 (3.51) - | 8.7644 (6.11) - | 9.1401 (3.42) - | 9.1668 (3.63) | |
WFG3 | 2 | 11 | 5.7929 (6.66) + | 5.7806 (6.61) + | 5.8024 (4.29) + | 5.7214 (2.70) |
3 | 12 | 3.9521 (3.69) + | 3.4249 (1.55) - | 3.9426 (5.41) + | 3.6348 (3.13) | |
WFG4 | 2 | 11 | 3.4575 (2.63) + | 3.2351 (3.49) - | 3.4422 (6.90) + | 3.3972 (3.23) |
3 | 12 | 5.1694 (6.01) + | 4.6432 (7.04) - | 4.9689 (6.50) - | 5.0911 (8.68) | |
WFG5 | 2 | 11 | 3.1238 (1.39) - | 3.0803 (1.69) - | 3.1289 (1.73) - | 3.1363 (1.39) |
3 | 12 | 4.8840 (5.07) - | 4.5556 (3.66) - | 4.8551 (7.37) - | 5.0496 (3.75) | |
WFG6 | 2 | 11 | 3.0608 (1.10) + | 3.1454 (4.13) + | 3.1757 (3.76) + | 2.2697 (5.36) |
3 | 12 | 4.7001 (1.56) + | 4.2788 (4.57) + | 4.6580 (4.83) + | 4.1628 (8.87) | |
WFG7 | 2 | 11 | 3.4503 (3.59) - | 3.4474 (2.90) - | 3.4583 (2.75) - | 3.4719 (1.15) |
3 | 12 | 5.1679 (4.32) - | 4.9114 (5.76) - | 5.2276 (5.08) - | 5.5302 (2.17) | |
WFG8 | 2 | 11 | 2.8775 (6.89) + | 2.8973 (2.51) + | 2.8842 (1.33) + | 2.8525 (1.69) |
3 | 12 | 4.3610 (4.36) - | 3.9117 (9.68) - | 4.3457 (5.02) - | 4.4087 (6.67) | |
WFG9 | 2 | 11 | 3.3651 (2.11) + | 3.3126 (2.28) + | 3.3914 (2.07) + | 2.2643 (1.04) |
3 | 12 | 4.8142 (3.13) + | 4.7633 (5.60) + | 4.9105 (2.08) + | 4.0623 (2.68) | |
ZDT1 | 2 | 30 | 7.1910 (2.07) - | 7.0598 (4.70) - | 7.1932 (2.26) - | 7.2049 (5.25) |
ZDT2 | 2 | 30 | 4.4383 (2.18) - | 4.3332 (3.65) - | 4.4400 (2.21) - | 4.4510 (4.02) |
ZDT3 | 2 | 30 | 6.0228 (1.62) + | 5.9542 (6.91) - | 5.9942 (9.92) - | 5.9979 (2.39) |
ZDT4 | 2 | 10 | 7.1724 (1.44) + | 4.8618 (1.38) + | 6.9739 (6.24) + | 0.0000 (0.00) |
+/-/= | 18/18/0 | 12/23/1 | 14/20/2 |
Problem | M | D | CMOSCA 2 | CMOSCA 10 | CMOSCA 15 | CMOSCA 5 |
---|---|---|---|---|---|---|
DTLZ1 | 2 | 6 | 1.9342 (5.45) = | 1.5759 (5.60) = | 1.7927 (4.60) = | 1.8233 (6.02) |
3 | 7 | 1.1176 (3.34) = | 1.0587 (4.83) = | 1.2098 (4.92) = | 1.1081 (4.81) | |
DTLZ2 | 2 | 11 | 4.1321 (2.54) = | 4.1045 (2.59) = | 4.1115 (3.16) = | 4.1149 (3.78) |
3 | 12 | 5.3615 (6.60) - | 5.3771 (6.50) - | 5.4166 (7.16) - | 5.3243 (4.56) | |
DTLZ3 | 2 | 11 | 1.7068 (1.35) - | 1.6755 (2.07) - | 1.6684 (1.54) - | 1.5902 (1.94) |
3 | 12 | 1.5333 (1.49) + | 1.6358 (1.43) = | 1.6016 (1.60) = | 1.6203 (1.60) | |
DTLZ4 | 2 | 11 | 4.1405 (4.41) - | 4.1098 (2.08) = | 4.1039 (3.59) = | 4.1119 (3.26) |
3 | 12 | 5.7988 (1.69) + | 5.8669 (2.07) = | 5.8298 (1.97) + | 5.9577 (1.47) | |
DTLZ5 | 2 | 11 | 4.1298 (2.95) - | 4.1037 (3.67) = | 4.1130 (3.83) = | 4.1107 (2.65) |
3 | 12 | 4.5261 (2.47) - | 4.3021 (1.38) = | 4.3323 (1.75) = | 4.3665 (1.69) | |
DTLZ6 | 2 | 11 | 4.1265 (2.99) = | 4.1003 (3.25) = | 4.0799 (3.55) + | 4.1140 (3.03) |
3 | 12 | 4.2171 (8.36) = | 4.1822 (4.75) = | 4.1835 (4.99) = | 4.1788 (5.83) | |
DTLZ7 | 2 | 21 | 4.5212 (4.63) = | 4.5097 (6.11) = | 4.5075 (5.73) = | 4.5057 (5.13) |
3 | 22 | 5.8902 (1.13) = | 5.8975 (1.10) = | 5.8410 (8.37) + | 5.8941 (6.68) | |
WFG1 | 2 | 11 | 4.4875 (1.15) - | 3.9312 (1.50) = | 3.4205 (6.73) = | 3.8033 (1.19) |
3 | 12 | 7.0762 (1.32) + | 1.1179 (1.55) - | 1.2398 (1.14) - | 8.5394 (1.43) | |
WFG2 | 2 | 11 | 3.5297 (4.81) + | 3.1870 (4.89) = | 2.1731 (3.61) = | 3.5635 (5.38) |
3 | 12 | 1.9292 (3.11) = | 1.9270 (3.23) = | 1.8012 (4.91) = | 1.9064 (3.08) | |
WFG3 | 2 | 11 | 1.0300 (9.72) - | 2.3611 (4.27) = | 1.8118 (3.09) = | 2.9280 (5.16) |
3 | 12 | 1.7046 (6.91) - | 1.1792 (1.20) = | 1.2634 (3.23) = | 1.3883 (6.04) | |
WFG4 | 2 | 11 | 2.5007 (6.96) - | 2.1590 (4.26) = | 2.1172 (5.39) = | 2.0532 (4.51) |
3 | 12 | 2.4046 (1.03) = | 2.5109 (6.54) - | 2.5137 (4.65) - | 2.4095 (8.39) | |
WFG5 | 2 | 11 | 6.3656 (3.17) = | 6.4203 (1.56) - | 6.5213 (2.10) - | 6.3608 (1.83) |
3 | 12 | 2.2368 (3.67) = | 2.2769 (6.21) - | 2.2713 (4.49) - | 2.2262 (3.68) | |
WFG6 | 2 | 11 | 2.2547 (2.73) = | 2.2547 (2.81) = | 2.2546 (2.27) = | 2.2547 (1.68) |
3 | 12 | 3.3557 (1.70) = | 3.3865 (5.34) - | 3.4089 (6.47) - | 3.3555 (1.77) | |
WFG7 | 2 | 11 | 1.2707 (2.23) = | 1.2798 (1.62) - | 1.2839 (1.68) - | 1.2639 (1.05) |
3 | 12 | 2.1060 (2.51) = | 2.1305 (2.58) - | 2.1501 (3.23) - | 2.1066 (1.88) | |
WFG8 | 2 | 11 | 1.1816 (7.35) = | 1.1589 (3.96) = | 1.1436 (2.76) + | 1.1660 (3.17) |
3 | 12 | 3.0929 (9.22) + | 3.1856 (6.98) = | 3.2552 (9.20) - | 3.1606 (9.77) | |
WFG9 | 2 | 11 | 2.1662 (3.48) + | 2.1669 (4.58) + | 2.2253 (3.17) + | 2.2676 (2.47) |
3 | 12 | 3.4457 (3.72) = | 3.4867 (5.88) - | 3.4698 (4.62) - | 3.4464 (3.88) | |
ZDT1 | 2 | 30 | 3.9024 (3.96) = | 3.8799 (5.26) = | 3.8795 (4.55) = | 3.8994 (4.98) |
ZDT2 | 2 | 30 | 3.8961 (4.41) = | 3.8674 (2.93) + | 3.8695 (4.29) + | 3.8933 (3.48) |
ZDT3 | 2 | 30 | 4.6500 (4.80) + | 4.6965 (5.97) = | 4.6808 (6.32) = | 4.6982 (7.19) |
ZDT4 | 2 | 10 | 2.2937 (1.94) = | 2.2757 (2.03) = | 1.9949 (2.04) = | 1.7501 (1.63) |
+/-/= | 7/9/20 | 2/10/24 | 6/11/19 | |||
Problem | M | D | CMOSCA 2 | CMOSCA 10 | CMOSCA 15 | CMOSCA 5 |
DTLZ1 | 2 | 6 | 1.6761 (3.94) = | 1.5874 (3.94) = | 1.7088 (3.40) = | 1.8233 (6.02) |
3 | 7 | 1.1537 (4.01) = | 1.0875 (4.65) = | 9.7277 (3.74) = | 1.1081 (4.81) | |
DTLZ2 | 2 | 11 | 4.0992 (2.59) = | 4.1089 (3.28) = | 4.1011 (2.87) = | 4.1149 (3.78) |
3 | 12 | 5.4058 (7.27) - | 5.4141 (6.94) - | 5.4381 (7.65) - | 5.3243 (4.56) | |
DTLZ3 | 2 | 11 | 1.6731 (1.56) = | 1.6652 (1.58) = | 1.6064 (1.71) = | 1.5902 (1.94) |
3 | 12 | 1.6290 (1.42) = | 1.5810 (1.35) = | 1.6358 (1.34) = | 1.6203 (1.60) | |
DTLZ4 | 2 | 11 | 4.1022 (3.43) = | 4.1235 (3.78) = | 4.1188 (3.42) = | 4.1119 (3.26) |
3 | 12 | 5.8481 (2.17) + | 5.8062 (1.63) + | 5.7916 (1.36) + | 5.9577 (1.47) | |
DTLZ5 | 2 | 11 | 4.1053 (3.52) = | 4.1058 (3.48) = | 4.1101 (2.91) = | 4.1107 (2.65) |
3 | 12 | 4.3433 (2.32) = | 4.3389 (1.90) = | 4.3671 (2.53) = | 4.3665 (1.69) | |
DTLZ6 | 2 | 11 | 4.0799 (3.35) + | 4.0871 (2.94) + | 4.0828 (3.18) + | 4.1140 (3.03) |
3 | 12 | 4.1752 (4.29) = | 4.1549 (3.64) + | 4.1770 (4.24) = | 4.1788 (5.83) | |
DTLZ7 | 2 | 21 | 4.4963 (4.94) = | 4.4795 (5.82) = | 4.4983 (5.59) = | 4.5057 (5.13) |
3 | 22 | 5.8313 (8.07) + | 5.8443 (1.06) + | 5.8670 (1.23) = | 5.8941 (6.68) | |
WFG1 | 2 | 11 | 3.7226 (8.60) = | 4.5902 (8.82) - | 4.3078 (5.81) - | 3.8033 (1.19) |
3 | 12 | 1.2694 (1.05) - | 1.2971 (9.35) - | 1.3041 (1.05) - | 8.5394 (1.43) | |
WFG2 | 2 | 11 | 2.1843 (3.60) = | 1.7349 (2.59) + | 2.1994 (3.63) = | 3.5635 (5.38) |
3 | 12 | 1.8193 (4.51) = | 1.8330 (1.89) = | 1.8331 (7.77) = | 1.9064 (3.08) | |
WFG3 | 2 | 11 | 1.2539 (3.20) = | 1.8201 (3.10) = | 1.8254 (3.08) + | 2.9280 (5.16) |
3 | 12 | 1.2889 (9.48) + | 1.3009 (1.47) + | 1.3413 (1.38) + | 1.3883 (6.04) | |
WFG4 | 2 | 11 | 2.4712 (8.76) = | 2.3005 (6.39) = | 2.7480 (8.18) - | 2.0532 (4.51) |
3 | 12 | 2.5300 (4.36) - | 2.5269 (5.29) - | 2.5231 (4.47) - | 2.4095 (8.39) | |
WFG5 | 2 | 11 | 6.5284 (2.41) - | 6.5157 (2.16) - | 6.6438 (2.55) - | 6.3608 (1.83) |
3 | 12 | 2.2939 (7.01) - | 2.3148 (6.98) - | 2.3074 (6.44) - | 2.2262 (3.68) | |
WFG6 | 2 | 11 | 2.2547 (2.02) = | 2.2547 (2.90) = | 2.2547 (3.34) = | 2.2547 (1.68) |
3 | 12 | 3.4413 (1.00) - | 3.4564 (1.06) - | 3.4362 (6.62) - | 3.3555 (1.77) | |
WFG7 | 2 | 11 | 1.2856 (1.60) - | 1.2914 (1.83) - | 1.2925 (1.68) - | 1.2639 (1.05) |
3 | 12 | 2.1524 (2.53) - | 2.1690 (2.85) - | 2.1856 (3.63) - | 2.1066 (1.88) | |
WFG8 | 2 | 11 | 1.1472 (2.69) + | 1.1336 (1.18) + | 1.1368 (2.55) + | 1.1660 (3.17) |
3 | 12 | 3.2575 (7.52) - | 3.2585 (6.85) - | 3.2562 (8.46) - | 3.1606 (9.77) | |
WFG9 | 2 | 11 | 2.2603 (1.26) + | 2.2263 (3.45) + | 2.2985 (3.06) - | 2.2676 (2.47) |
3 | 12 | 3.4966 (4.88) - | 3.4850 (3.19) - | 3.4840 (3.40) - | 3.4464 (3.88) | |
ZDT1 | 2 | 30 | 3.8759 (4.42) = | 3.8755 (3.30) = | 3.8648 (4.20) + | 3.8994 (4.98) |
ZDT2 | 2 | 30 | 3.8570 (2.88) + | 3.8829 (3.72) = | 3.8800 (4.25) = | 3.8933 (3.48) |
ZDT3 | 2 | 30 | 4.6941 (5.65) = | 4.6906 (7.38) = | 4.6678 (6.23) = | 4.6982 (7.19) |
ZDT4 | 2 | 10 | 1.0998 (1.03) + | 1.7827 (1.64) = | 1.4417 (1.35) = | 1.7501 (1.63) |
+/-/= | 8/10/18 | 8/11/17 | 6/13/17 |
Problem | M | D | CMOSCA 2 | CMOSCA 10 | CMOSCA 15 | CMOSCA 5 |
---|---|---|---|---|---|---|
DTLZ1 | 2 | 6 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) |
3 | 7 | 0.0000 (0.00) = | 0.0000 (0.00) = | 8.1450 (4.46) = | 0.0000 (0.00) | |
DTLZ2 | 2 | 11 | 3.4752 (4.20) + | 3.4736 (7.13) - | 3.4732 (7.84) - | 3.4743 (5.68) |
3 | 12 | 5.5109 (2.45) - | 5.5078 (1.82) - | 5.4892 (2.29) - | 5.5278 (1.94) | |
DTLZ3 | 2 | 11 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) |
3 | 12 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) | |
DTLZ4 | 2 | 11 | 3.4728 (1.31) = | 3.4725 (8.88) - | 3.4720 (7.92) - | 3.4733 (7.32) |
3 | 12 | 5.4209 (3.87) + | 5.4082 (4.38) = | 5.4194 (3.67) + | 5.3966 (3.31) | |
DTLZ5 | 2 | 11 | 3.4753 (4.47) + | 3.4736 (6.34) - | 3.4730 (6.47) - | 3.4744 (6.74) |
3 | 12 | 1.9949 (2.54) - | 1.9971 (1.72) = | 1.9971 (1.63) = | 1.9972 (1.87) | |
DTLZ6 | 2 | 11 | 3.4754 (4.62) = | 3.4752 (5.84) = | 3.4753 (4.14) = | 3.4753 (4.45) |
3 | 12 | 2.0018 (5.24) = | 2.0018 (2.72) = | 2.0017 (3.78) = | 2.0017 (3.98) | |
DTLZ7 | 2 | 21 | 2.4294 (9.08) = | 2.4294 (9.57) = | 2.4294 (1.21) = | 2.4294 (1.03) |
3 | 22 | 2.7867 (8.10) = | 2.7869 (7.01) = | 2.7870 (7.05) = | 2.7871 (5.17) | |
WFG1 | 2 | 11 | 4.7170 (5.12) - | 4.8977 (6.80) = | 5.1255 (3.70) = | 5.0330 (5.46) |
3 | 12 | 6.2541 (6.57) + | 4.4784 (6.09) - | 3.9320 (3.77) - | 5.6834 (5.89) | |
WFG2 | 2 | 11 | 6.1647 (2.97) - | 6.1919 (3.02) = | 6.2561 (2.23) = | 6.1720 (3.33) |
3 | 12 | 9.1747 (3.67) = | 9.1371 (3.63) - | 9.2543 (1.76) + | 9.1668 (3.63) | |
WFG3 | 2 | 11 | 5.3376 (5.01) - | 5.7511 (2.24) = | 5.7790 (1.61) = | 5.7214 (2.70) |
3 | 12 | 3.4594 (3.59) - | 3.7349 (7.44) = | 3.6804 (1.69) = | 3.6348 (3.13) | |
WFG4 | 2 | 11 | 3.3661 (4.56) - | 3.3898 (2.94) = | 3.3972 (3.14) = | 3.3972 (3.23) |
3 | 12 | 5.1155 (9.66) = | 4.9935 (5.02) - | 4.9652 (4.61) - | 5.0911 (8.68) | |
WFG5 | 2 | 11 | 3.1363 (1.93) = | 3.1304 (1.43) - | 3.1202 (1.98) - | 3.1363 (1.39) |
3 | 12 | 5.0575 (4.61) = | 5.0120 (5.25) - | 5.0072 (3.72) - | 5.0496 (3.75) | |
WFG6 | 2 | 11 | 2.2699 (5.14) = | 2.2697 (5.25) = | 2.2699 (4.78) = | 2.2697 (5.36) |
3 | 12 | 4.1675 (7.97) + | 4.1517 (2.78) = | 4.1348 (3.54) - | 4.1628 (8.87) | |
WFG7 | 2 | 11 | 3.4734 (9.62) + | 3.4688 (1.27) - | 3.4670 (1.31) - | 3.4719 (1.15) |
3 | 12 | 5.5486 (1.92) + | 5.4486 (2.45) - | 5.4097 (3.47) - | 5.5302 (2.17) | |
WFG8 | 2 | 11 | 2.8421 (3.93) = | 2.8558 (1.94) = | 2.8630 (1.36) + | 2.8525 (1.69) |
3 | 12 | 4.4568 (6.95) + | 4.3986 (5.26) = | 4.3361 (6.77) - | 4.4087 (6.67) | |
WFG9 | 2 | 11 | 2.3244 (1.93) + | 2.3192 (2.41) + | 2.2874 (1.65) + | 2.2643 (1.04) |
3 | 12 | 4.0653 (2.88) = | 4.0391 (3.56) - | 4.0433 (2.39) - | 4.0623 (2.68) | |
ZDT1 | 2 | 30 | 7.2054 (2.95) + | 7.2050 (6.05) = | 7.2048 (6.05) = | 7.2049 (5.25) |
ZDT2 | 2 | 30 | 4.4509 (3.58) = | 4.4510 (2.96) = | 4.4507 (3.64) - | 4.4510 (4.02) |
ZDT3 | 2 | 30 | 5.9981 (1.98) + | 5.9979 (2.13) = | 5.9979 (2.38) = | 5.9979 (2.39) |
ZDT4 | 2 | 10 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) |
+/-/= | 11/7/18 | 1/12/23 | 4/14/18 | |||
Problem | M | D | CMOSCA 2 | CMOSCA 10 | CMOSCA 15 | CMOSCA 5 |
DTLZ1 | 2 | 6 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) |
3 | 7 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) | |
DTLZ2 | 2 | 11 | 3.4729 (8.35) - | 3.4728 (7.07) - | 3.4727 (8.73) - | 3.4743 (5.68) |
3 | 12 | 5.4915 (1.81) - | 5.4899 (2.12) - | 5.4782 (2.21) - | 5.5278 (1.94) | |
DTLZ3 | 2 | 11 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) |
3 | 12 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) | |
DTLZ4 | 2 | 11 | 3.4719 (1.08) - | 3.4718 (1.25) - | 3.4719 (9.34) - | 3.4733 (7.32) |
3 | 12 | 5.4133 (4.38) + | 5.4152 (3.51) + | 5.4120 (3.08) = | 5.3966 (3.31) | |
DTLZ5 | 2 | 11 | 3.4731 (7.37) - | 3.4727 (7.93) - | 3.4724 (7.99) - | 3.4744 (6.74) |
3 | 12 | 1.9967 (1.92) = | 1.9968 (1.78) = | 1.9963 (2.07) = | 1.9972 (1.87) | |
DTLZ6 | 2 | 11 | 3.4754 (4.09) = | 3.4754 (4.31) = | 3.4753 (4.83) = | 3.4753 (4.45) |
3 | 12 | 2.0018 (4.17) = | 2.0016 (3.80) = | 2.0019 (3.24) = | 2.0017 (3.98) | |
DTLZ7 | 2 | 21 | 2.4294 (1.09) = | 2.4295 (1.23) = | 2.4295 (1.08) = | 2.4294 (1.03) |
3 | 22 | 2.7868 (7.45) = | 2.7842 (8.96) = | 2.7850 (5.86) = | 2.7871 (5.17) | |
WFG1 | 2 | 11 | 4.9539 (4.76) = | 4.4960 (4.55) - | 4.6903 (2.90) - | 5.0330 (5.46) |
3 | 12 | 3.7740 (3.59) - | 3.6193 (3.29) - | 3.5814 (3.51) - | 5.6834 (5.89) | |
WFG2 | 2 | 11 | 6.2556 (2.23) = | 6.2816 (1.60) + | 6.2541 (2.24) = | 6.1720 (3.33) |
3 | 12 | 9.2445 (2.07) + | 9.2069 (1.90) + | 9.2197 (2.12) + | 9.1668 (3.63) | |
WFG3 | 2 | 11 | 5.8079 (3.54) = | 5.7781 (1.62) = | 5.7776 (1.61) + | 5.7214 (2.70) |
3 | 12 | 3.6678 (6.44) + | 3.6538 (7.94) + | 3.6401 (7.27) + | 3.6348 (3.13) | |
WFG4 | 2 | 11 | 3.3771 (4.69) = | 3.3886 (3.29) = | 3.3634 (4.43) - | 3.3972 (3.23) |
3 | 12 | 4.9573 (3.69) - | 4.9622 (4.49) - | 4.9613 (3.74) - | 5.0911 (8.68) | |
WFG5 | 2 | 11 | 3.1203 (2.09) - | 3.1198 (1.94) - | 3.1099 (2.19) - | 3.1363 (1.39) |
3 | 12 | 4.9873 (6.00) - | 4.9789 (5.59) - | 4.9782 (6.11) - | 5.0496 (3.75) | |
WFG6 | 2 | 11 | 2.2697 (4.73) = | 2.2699 (4.88) + | 2.2698 (4.77) = | 2.2697 (5.36) |
3 | 12 | 4.1189 (5.26) - | 4.1146 (6.09) - | 4.1248 (3.92) - | 4.1628 (8.87) | |
WFG7 | 2 | 11 | 3.4662 (1.46) - | 3.4660 (1.60) - | 3.4657 (1.79) - | 3.4719 (1.15) |
3 | 12 | 5.3768 (3.58) - | 5.3586 (2.44) - | 5.3436 (3.19) - | 5.5302 (2.17) | |
WFG8 | 2 | 11 | 2.8623 (1.22) + | 2.8674 (5.45) + | 2.8665 (1.19) + | 2.8525 (1.69) |
3 | 12 | 4.3398 (4.56) - | 4.3449 (4.51) - | 4.3398 (6.53) - | 4.4087 (6.67) | |
WFG9 | 2 | 11 | 2.2721 (8.25) + | 2.2889 (1.86) + | 2.2512 (1.20) - | 2.2643 (1.04) |
3 | 12 | 4.0290 (2.87) - | 4.0390 (2.62) - | 4.0374 (2.82) - | 4.0623 (2.68) | |
ZDT1 | 2 | 30 | 7.2048 (7.51) = | 7.2049 (4.55) = | 7.2047 (4.25) = | 7.2049 (5.25) |
ZDT2 | 2 | 30 | 4.4509 (3.48) = | 4.4507 (4.90) - | 4.4507 (4.96) - | 4.4510 (4.02) |
ZDT3 | 2 | 30 | 5.9979 (2.23) = | 5.9979 (2.81) = | 5.9980 (2.39) = | 5.9979 (2.39) |
ZDT4 | 2 | 10 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) |
+/-/= | 5/13/18 | 7/15/14 | 4/17/15 |
Problem | M | D | CMOSCAA | CMOSCAD | CMOSCA |
---|---|---|---|---|---|
DTLZ1 | 2 | 6 | 1.8997 (6.26) = | 1.8496 (6.55) = | 1.8233 (6.02) |
3 | 7 | 1.1280 (4.33) = | 1.0678 (4.45) = | 1.1081 (4.81) | |
DTLZ2 | 2 | 11 | 4.1038 (3.45) = | 4.1125 (3.84) = | 4.1149 (3.78) |
3 | 12 | 5.3713 (5.98) - | 5.2984 (5.50) = | 5.3243 (4.56) | |
DTLZ3 | 2 | 11 | 1.6913 (1.87) - | 1.7087 (1.80) - | 1.5902 (1.94) |
3 | 12 | 1.5527 (1.72) = | 1.6192 (1.65) = | 1.6203 (1.60) | |
DTLZ4 | 2 | 11 | 4.1188 (3.66) = | 4.1171 (3.60) = | 4.1119 (3.26) |
3 | 12 | 5.9014 (1.80) = | 5.7189 (1.96) + | 5.9577 (1.47) | |
DTLZ5 | 2 | 11 | 4.1033 (4.02) = | 4.1142 (2.93) = | 4.1107 (2.65) |
3 | 12 | 5.1442 (5.49) - | 4.2607 (1.03) + | 4.3665 (1.69) | |
DTLZ6 | 2 | 11 | 4.0768 (2.82) + | 4.0938 (2.60) + | 4.1140 (3.03) |
3 | 12 | 4.1680 (5.58) = | 4.1686 (4.40) = | 4.1788 (5.83) | |
DTLZ7 | 2 | 21 | 4.4714 (5.49) + | 4.5119 (7.67) = | 4.5057 (5.13) |
3 | 22 | 5.8436 (1.33) + | 5.8680 (1.23) = | 5.8941 (6.68) | |
WFG1 | 2 | 11 | 3.6703 (1.09) = | 5.7172 (1.42) - | 3.8033 (1.19) |
3 | 12 | 1.1237 (1.18) - | 1.3241 (1.15) - | 8.5394 (1.43) | |
WFG2 | 2 | 11 | 4.5567 (6.09) = | 7.4616 (7.14) - | 3.5635 (5.38) |
3 | 12 | 1.8933 (2.77) = | 2.1603 (4.28) - | 1.9064 (3.08) | |
WFG3 | 2 | 11 | 2.9572 (5.16) - | 4.0745 (6.41) - | 2.9280 (5.16) |
3 | 12 | 1.4767 (2.29) - | 1.6052 (6.33) - | 1.3883 (6.04) | |
WFG4 | 2 | 11 | 2.4884 (7.53) - | 2.5662 (9.48) - | 2.0532 (4.51) |
3 | 12 | 2.5274 (4.80) - | 2.4420 (8.85) = | 2.4095 (8.39) | |
WFG5 | 2 | 11 | 6.4533 (1.39) - | 6.3745 (1.06) = | 6.3608 (1.83) |
3 | 12 | 2.2664 (6.26) - | 2.2360 (4.37) = | 2.2262 (3.68) | |
WFG6 | 2 | 11 | 2.2547 (5.73) - | 2.2547 (2.02) = | 2.2547 (1.68) |
3 | 12 | 3.3692 (5.75) = | 3.3754 (4.19) - | 3.3555 (1.77) | |
WFG7 | 2 | 11 | 1.2834 (1.42) - | 1.2805 (1.88) - | 1.2639 (1.05) |
3 | 12 | 2.1510 (4.05) - | 2.1444 (3.11) - | 2.1066 (1.88) | |
WFG8 | 2 | 11 | 1.1509 (3.53) + | 1.1843 (4.11) - | 1.1660 (3.17) |
3 | 12 | 3.2616 (8.27) - | 3.2911 (1.08) - | 3.1606 (9.77) | |
WFG9 | 2 | 11 | 2.2322 (2.19) + | 2.2021 (3.29) = | 2.2676 (2.47) |
3 | 12 | 3.4681 (4.54) = | 3.4470 (3.49) = | 3.4464 (3.88) | |
ZDT1 | 2 | 30 | 3.8606 (4.58) + | 3.8777 (3.78) = | 3.8994 (4.98) |
ZDT2 | 2 | 30 | 3.8505 (2.87) + | 3.8635 (2.90) + | 3.8933 (3.48) |
ZDT3 | 2 | 30 | 4.6639 (5.03) = | 4.6779 (4.28) = | 4.6982 (7.19) |
ZDT4 | 2 | 10 | 2.1828 (1.56) = | 2.2784 (1.82) = | 1.7501 (1.63) |
+/-/= | 7/14/15 | 4/13/19 |
Problem | M | D | CMOSCAA | CMOSCAD | CMOSCA |
---|---|---|---|---|---|
DTLZ1 | 2 | 6 | 4.9801 (2.73) = | 0.0000 (0.00) = | 0.0000 (0.00) |
3 | 7 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) | |
DTLZ2 | 2 | 11 | 3.4724 (9.67) - | 3.4750 (5.17) + | 3.4743 (5.68) |
3 | 12 | 5.5033 (2.21) - | 5.5478 (1.42) + | 5.5278 (1.94) | |
DTLZ3 | 2 | 11 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) |
3 | 12 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) | |
DTLZ4 | 2 | 11 | 3.4714 (7.74) - | 3.4743 (5.31) + | 3.4733 (7.32) |
3 | 12 | 5.4179 (3.26) + | 5.4538 (4.14) + | 5.3966 (3.31) | |
DTLZ5 | 2 | 11 | 3.4720 (8.66) - | 3.4750 (4.72) + | 3.4744 (6.74) |
3 | 12 | 1.9911 (3.17) - | 1.9987 (1.15) + | 1.9972 (1.87) | |
DTLZ6 | 2 | 11 | 3.4753 (4.55) = | 3.4752 (4.51) = | 3.4753 (4.45) |
3 | 12 | 2.0018 (4.58) = | 2.0016 (2.65) = | 2.0017 (3.98) | |
DTLZ7 | 2 | 21 | 2.4295 (9.49) + | 2.4294 (1.57) = | 2.4294 (1.03) |
3 | 22 | 2.7884 (7.48) = | 2.7891 (7.43) = | 2.7871 (5.17) | |
WFG1 | 2 | 11 | 5.1069 (4.98) = | 3.9481 (6.46) - | 5.0330 (5.46) |
3 | 12 | 4.6057 (5.11) - | 3.6556 (5.26) - | 5.6834 (5.89) | |
WFG2 | 2 | 11 | 6.1075 (3.76) = | 5.9275 (4.40) - | 6.1720 (3.33) |
3 | 12 | 9.1862 (3.17) + | 8.8812 (5.24) - | 9.1668 (3.63) | |
WFG3 | 2 | 11 | 5.7178 (2.69) - | 5.6606 (3.36) - | 5.7214 (2.70) |
3 | 12 | 3.5253 (1.39) - | 3.5365 (3.06) - | 3.6348 (3.13) | |
WFG4 | 2 | 11 | 3.3711 (4.72) - | 3.3624 (5.95) - | 3.3972 (3.23) |
3 | 12 | 4.9800 (4.03) - | 5.0639 (8.82) = | 5.0911 (8.68) | |
WFG5 | 2 | 11 | 3.1259 (1.39) - | 3.1344 (9.88) = | 3.1363 (1.39) |
3 | 12 | 5.0278 (4.50) - | 5.0607 (4.39) = | 5.0496 (3.75) | |
WFG6 | 2 | 11 | 2.2696 (5.03) = | 2.2697 (6.21) = | 2.2697 (5.36) |
3 | 12 | 4.1606 (3.21) = | 4.1608 (2.25) = | 4.1628 (8.87) | |
WFG7 | 2 | 11 | 3.4660 (1.39) - | 3.4695 (1.13) - | 3.4719 (1.15) |
3 | 12 | 5.4076 (4.01) - | 5.4761 (3.09) - | 5.5302 (2.17) | |
WFG8 | 2 | 11 | 2.8598 (1.86) + | 2.8431 (2.18) = | 2.8525 (1.69) |
3 | 12 | 4.3333 (6.61) - | 4.3261 (7.31) - | 4.4087 (6.67) | |
WFG9 | 2 | 11 | 2.2865 (1.23) + | 2.2982 (1.74) = | 2.2643 (1.04) |
3 | 12 | 4.0447 (2.41) - | 4.0602 (2.33) = | 4.0623 (2.68) | |
ZDT1 | 2 | 30 | 7.2055 (3.46) + | 7.2051 (4.45) = | 7.2049 (5.25) |
ZDT2 | 2 | 30 | 4.4511 (2.69) = | 4.4508 (3.60) - | 4.4510 (4.02) |
ZDT3 | 2 | 30 | 5.9980 (2.09) = | 5.9980 (1.98) = | 5.9979 (2.39) |
ZDT4 | 2 | 10 | 0.0000 (0.00) = | 0.0000 (0.00) = | 0.0000 (0.00) |
+/-/= | 6/16/14 | 6/11/19 |
Problem | M | D | EMOSO | CMOPSO | MOEAD | CMOSCA |
---|---|---|---|---|---|---|
Four bar truss design | 2 | 4 | 5.9810 (1.24) - | 5.9810 (1.09) - | 5.9810 (8.25) - | 5.9810 (9.02) |
Hatch cover design | 2 | 2 | 8.8750 (5.76) = | 8.8750 (5.49) = | 8.7980 (5.37) - | 8.8750 (5.81) |
Two bar truss design | 3 | 3 | 9.8210 (6.34) = | 9.8187 (8.00) = | 9.8748 (2.99) = | 9.8546 (7.64) |
Welded beam design | 3 | 4 | 7.8936 (4.04) = | 7.5242 (4.25) = | 9.9990 (1.55) + | 6.0661 (4.60) |
Vehicle crashworthiness design | 3 | 5 | 2.4398 (3.03) - | 2.4397 (3.54) - | 2.4390 (4.64) - | 2.4399 (1.53) |
+/-/= | 0/2/3 | 0/2/3 | 1/3/1 | |||
Problem | M | D | NSGAII | MOEADDE | MMOPSO | CMOSCA |
Four bar truss design | 2 | 4 | 5.9810 (2.61) - | 5.9810 (1.06) - | 5.9810 (2.68) - | 5.9810 (9.02) |
Hatch cover design | 2 | 2 | 8.8747 (1.28) - | 8.8665 (4.11) - | 8.8746 (1.98) - | 8.8750 (5.81) |
Two bar truss design | 3 | 3 | 9.7451 (1.50) - | 9.9176 (6.66) = | 9.7852 (1.02) - | 9.8546 (7.64) |
Welded beam design | 3 | 4 | 8.9927 (3.05) + | 9.9991 (2.13) + | 9.9874 (9.26) + | 6.0661 (4.60) |
Vehicle crashworthiness design | 3 | 5 | 2.4399 (4.79) - | 2.4399 (1.60) - | 2.4395 (4.47) - | 2.4399 (1.53) |
+/-/= | 1/4/0 | 1/3/1 | 1/4/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Pan, J.-S.; Liu, G.; Fu, M.; Kong, Y.; Hu, P. A Multi-Objective Sine Cosine Algorithm Based on a Competitive Mechanism and Its Application in Engineering Design Problems. Biomimetics 2024, 9, 115. https://doi.org/10.3390/biomimetics9020115
Liu N, Pan J-S, Liu G, Fu M, Kong Y, Hu P. A Multi-Objective Sine Cosine Algorithm Based on a Competitive Mechanism and Its Application in Engineering Design Problems. Biomimetics. 2024; 9(2):115. https://doi.org/10.3390/biomimetics9020115
Chicago/Turabian StyleLiu, Nengxian, Jeng-Shyang Pan, Genggeng Liu, Mingjian Fu, Yanyan Kong, and Pei Hu. 2024. "A Multi-Objective Sine Cosine Algorithm Based on a Competitive Mechanism and Its Application in Engineering Design Problems" Biomimetics 9, no. 2: 115. https://doi.org/10.3390/biomimetics9020115
APA StyleLiu, N., Pan, J. -S., Liu, G., Fu, M., Kong, Y., & Hu, P. (2024). A Multi-Objective Sine Cosine Algorithm Based on a Competitive Mechanism and Its Application in Engineering Design Problems. Biomimetics, 9(2), 115. https://doi.org/10.3390/biomimetics9020115