Botox Optimization Algorithm: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems
Abstract
:1. Introduction
- Introducing the BOA involves emulating the Botox injection process, drawing inspiration from enhancing facial beauty by addressing defects in specific facial areas.
- BOA theory is described and then mathematically modeled.
- The BOA’s performance is rigorously assessed using the CEC 2017 test suite, showcasing its efficacy in solving optimization problems.
- The algorithm’s robustness is further tested in handling real-world applications, particularly in optimizing twenty-two constrained problems from the CEC 2011 test suite.
- The BOA’s performance is objectively compared with twelve established metaheuristic algorithms, establishing its competitive edge and effectiveness.
2. Literature Review
3. Botox Optimization Algorithm
3.1. Inspiration of BOA
3.2. Algorithm Initialization
3.3. Mathematical Modeling of BOA
3.4. Repetition Process, Pseudocode, and Flowchart of the BOA
Algorithm 1. Pseudocode of the BOA. | |
Start the BOA. | |
1. | Input problem information: variables, objective function, and constraints. |
2. | Set the BOA population size N and the total number of iterations . |
3. | Generate the initial population matrix at random using Equation (2). |
4. | Evaluate the objective function. |
5. | Determine the best candidate solution . |
6. | For to T |
7. | Update number of decision variables for Botox injections using Equation (4). |
8. | For to |
9. | Determine the variables that are considered for Botox injection using Equation (5). |
10. | Calculate the amount of Botox injection using Equation (6). |
11. | For to |
12. | Calculate the new position of the th BOA member using Equation (7). |
13. | End |
14. | Evaluate the objective function based on . |
15. | Update the th BOA member using Equation (8). |
16. | End |
17. | Save the best candidate solution obtained so far. |
18. | End |
19. | Output the best quasi-optimal solution obtained with the BOA. |
End the BOA. |
3.5. Computational Complexity of the BOA
3.6. Population Diversity, Exploration, and Exploitation Analysis
4. Simulation Studies and Results
4.1. Performance Comparison
4.2. Evaluation of the CEC 2017 Test Suite
4.3. Statistical Analysis
4.4. Discussion
5. BOA for Real-World Applications
5.1. Evaluation of CEC 2011 Test Suite
5.2. Pressure Vessel Design Problem
5.3. Speed Reducer Design Problem
5.4. Welded Beam Design
5.5. Tension/Compression Spring Design Problem
6. Conclusions and Future Works
- Binary BOA: The real version of the BOA is detailed and explained thoroughly in this paper. Nonetheless, many scientific optimization issues, like feature selection, require the use of binary versions of metaheuristic algorithms for efficient optimization. Consequently, developing the binary version of the BOA (BBOA) is a notable focus of this research.
- Multi-objective BOA: Optimization problems are classified based on the number of objective functions, which are either single-objective or multi-objective. To find an optimal solution, many problems require the consideration of multiple objective functions simultaneously. Hence, exploring the potential of developing a multi-objective version of the BOA (MOBOA) to address multi-objective optimization dilemmas is another area of research highlighted in this paper.
- Hybrid BOA: Researchers have always been intrigued by the idea of merging multiple metaheuristic algorithms to leverage the strengths of each and establish a more efficient hybrid strategy. Hence, a potential future research endeavor includes crafting hybrid versions of the BOA.
- Tackle new domains: Exploring opportunities for employing the BOA in tackling practical applications and optimizing problems within various scientific fields, like robotics, renewable energy, chemical engineering, and image processing, is a focus for future research proposals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-kenawy, E.-S.M.; Khodadadi, N.; Mirjalili, S.; Abdelhamid, A.A.; Eid, M.M.; Ibrahim, A. Greylag Goose Optimization: Nature-inspired optimization algorithm. Expert Syst. Appl. 2024, 238, 122147. [Google Scholar] [CrossRef]
- Singh, N.; Cao, X.; Diggavi, S.; Başar, T. Decentralized multi-task stochastic optimization with compressed communications. Automatica 2024, 159, 111363. [Google Scholar] [CrossRef]
- Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005, 12, 263–285. [Google Scholar] [CrossRef]
- Koc, I.; Atay, Y.; Babaoglu, I. Discrete tree seed algorithm for urban land readjustment. Eng. Appl. Artif. Intell. 2022, 112, 104783. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 149. [Google Scholar] [CrossRef]
- Kashan, A.H. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 2014, 16, 171–200. [Google Scholar] [CrossRef]
- De Armas, J.; Lalla-Ruiz, E.; Tilahun, S.L.; Voß, S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput. 2022, 21, 265–287. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Dehghani, A.; Malik, O.P.; Morales-Menendez, R.; Dhiman, G.; Nouri, N.; Ehsanifar, A.; Guerrero, J.M.; Ramirez-Mendoza, R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021, 11, 1286. [Google Scholar] [CrossRef]
- Yang, X.-S.; Koziel, S.; Leifsson, L. Computational Optimization, Modelling and Simulation: Smart Algorithms and Better Models. Procedia Comput. Sci. 2012, 9, 852–856. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Perth, WA, Australia, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Karaboga, D.; Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In International Fuzzy Systems Association World Congress; Springer: Berlin/Heidelberg, Germany, 2007; pp. 789–798. [Google Scholar]
- Yang, X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010, 2, 78–84. [Google Scholar] [CrossRef]
- Al-Baik, O.; Alomari, S.; Alssayed, O.; Gochhait, S.; Leonova, I.; Dutta, U.; Malik, O.P.; Montazeri, Z.; Dehghani, M. Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2024, 9, 65. [Google Scholar] [CrossRef]
- Chopra, N.; Ansari, M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovský, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Braik, M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl. 2021, 174, 114685. [Google Scholar] [CrossRef]
- Ghasemi, M.; Rahimnejad, A.; Hemmati, R.; Akbari, E.; Gadsden, S.A. Wild Geese Algorithm: A novel algorithm for large scale optimization based on the natural life and death of wild geese. Array 2021, 11, 100074. [Google Scholar] [CrossRef]
- Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022, 243, 108457. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Zidan, M.; Jameel, M.; Abouhawwash, M. Mantis Search Algorithm: A novel bio-inspired algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng. 2023, 415, 116200. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022, 188, 116026. [Google Scholar] [CrossRef]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Bektemyssova, G.; Malik, O.P.; Dhiman, G.; Ahmed, A.E.M. Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 470. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- De Castro, L.N.; Timmis, J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003, 7, 526–544. [Google Scholar] [CrossRef]
- Koza, J.R.; Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; Volume 1. [Google Scholar]
- Reynolds, R.G. An introduction to cultural algorithms. In Proceedings of the Third Annual Conference on Evolutionary Programming, San Diego, CA, USA, 24–26 February 1994; World Scientific Publishing: Singapore, 1994; pp. 131–139. [Google Scholar]
- Beyer, H.-G.; Schwefel, H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Samet, H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020, 2, 1720. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020, 10, 6173. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Cuevas, E.; Oliva, D.; Zaldivar, D.; Pérez-Cisneros, M.; Sossa, H. Circle detection using electro-magnetism optimization. Inf. Sci. 2012, 182, 40–55. [Google Scholar] [CrossRef]
- Pereira, J.L.J.; Francisco, M.B.; Diniz, C.A.; Oliver, G.A.; Cunha, S.S., Jr.; Gomes, G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021, 170, 114522. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, C.; Wang, X.; Han, T.; Li, Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access 2019, 7, 66084–66109. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Wei, Z.; Ke, P.; Shigang, L.; Yagang, W. Special Forces Algorithm: A novel meta-heuristic method for global optimization. Math. Comput. Simul. 2023, 213, 394–417. [Google Scholar]
- Askari, Q.; Younas, I.; Saeed, M. Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl.-Based Syst. 2020, 195, 105709. [Google Scholar] [CrossRef]
- Trojovská, E.; Dehghani, M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022, 12, 14861. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Abu Doush, I. Coronavirus herd immunity optimizer (CHIO). Neural Comput. Appl. 2021, 33, 5011–5042. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.P.; Ramirez-Mendoza, R.A.; Matas, J.; Vasquez, J.C.; Parra-Arroyo, L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020, 10, 5791. [Google Scholar] [CrossRef]
- Ayyarao, T.L.; RamaKrishna, N.; Elavarasam, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Khan, B.; Alatas, B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access 2022, 10, 25073–25105. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 2022, 8, e976. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Malik, O. FOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems. J. Oper. Autom. Power Eng. 2020, 8, 57–64. [Google Scholar]
- Dehghani, M.; Trojovská, E.; Zuščák, T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 2022, 12, 17387. [Google Scholar] [CrossRef] [PubMed]
- Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022, 34, 409–455. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.; Kumar, V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020, 13, 514–523. [Google Scholar] [CrossRef]
- Moghdani, R.; Salimifard, K. Volleyball premier league algorithm. Appl. Soft Comput. 2018, 64, 161–185. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Saremi, S.; Dehghani, A.; Malik, O.P.; Al-Haddad, K.; Guerrero, J.M. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020, 13, 216–225. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Givi, H.; Guerrero, J.M.; Dhiman, G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 2020, 13, 286–294. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Malik, O.P.; Ehsanifar, A.; Dehghani, A. OSA: Orientation search algorithm. International Journal of Industrial Electronics. Control. Optim. 2019, 2, 99–112. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Malik, O.P. DGO: Dice game optimizer. Gazi Univ. J. Sci. 2019, 32, 871–882. [Google Scholar] [CrossRef]
- Doumari, S.A.; Givi, H.; Dehghani, M.; Malik, O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021, 14, 545–554. [Google Scholar] [CrossRef]
- Zeidabadi, F.A.; Dehghani, M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst. 2022, 15, 273–281. [Google Scholar]
- Yao, L.; Yuan, P.; Tsai, C.-Y.; Zhang, T.; Lu, Y.; Ding, S. ESO: An enhanced snake optimizer for real-world engineering problems. Expert Syst. Appl. 2023, 230, 120594. [Google Scholar] [CrossRef]
- Hong, J.; Shen, B.; Xue, J.; Pan, A. A vector-encirclement-model-based sparrow search algorithm for engineering optimization and numerical optimization problems. Appl. Soft Comput. 2022, 131, 109777. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, Y.; Li, J. Multi-strategy-based adaptive sine cosine algorithm for engineering optimization problems. Expert Syst. Appl. 2024, 248, 123444. [Google Scholar] [CrossRef]
- Dressler, D.; Benecke, R. Pharmacology of therapeutic botulinum toxin preparations. Disabil. Rehabil. 2007, 29, 1761–1768. [Google Scholar] [CrossRef]
- Blasi, J.; Chapman, E.R.; Link, E.; Binz, T.; Yamasaki, S.; Camilli, P.D.; Südhof, T.C.; Niemann, H.; Jahn, R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 1993, 365, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Small, R. Botulinum toxin injection for facial wrinkles. Am. Fam. Physician 2014, 90, 168–175. [Google Scholar] [PubMed]
- Pant, M.; Radha, T.; Singh, V.P. A simple diversity guided particle swarm optimization. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 3294–3299. [Google Scholar]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar]
- Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep. 2016. [Google Scholar]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196–202. [Google Scholar]
- Das, S.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems; Jadavpur University: Kolkata, India; Nanyang Technological University: Singapore, 2010; pp. 341–359. [Google Scholar]
- Kannan, B.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.-S. Benchmark problems in structural optimization. In Computational Optimization, Methods and Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 259–281. [Google Scholar]
- Mezura-Montes, E.; Coello, C.A.C. Useful infeasible solutions in engineering optimization with evolutionary algorithms. In Proceedings of the Mexican International Conference on Artificial Intelligence, Monterrey, Mexico, 14–18 November 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 652–662. [Google Scholar]
Function Name | Exploration | Exploitation | Diversity | |
---|---|---|---|---|
First Iteration | Last Iteration | |||
F1 | 0 | 1 | 140.5903 | 0 |
F2 | 0 | 1 | 10.94242 | 0 |
F3 | 0 | 1 | 252.3905 | 0 |
F4 | 0 | 1 | 128.8175 | 0 |
F5 | 0 | 1 | 44.92006 | 0 |
F6 | 0.012744 | 0.987256 | 114.0171 | 1.453073 |
F7 | 0.049372 | 0.950628 | 1.518403 | 0.074966 |
F8 | 5.84E-10 | 1 | 1230.61 | 1.19E-06 |
F9 | 4.76E-10 | 1 | 9.555822 | 4.55E-09 |
F10 | 1.8E-17 | 1 | 50.32814 | 9.04E-16 |
F11 | 3.7E-11 | 1 | 885.0467 | 3.27E-08 |
F12 | 0 | 1 | 61.45876 | 0 |
F13 | 0 | 1 | 77.58755 | 0 |
F14 | 2.02E-08 | 1 | 23.65722 | 4.77E-07 |
F15 | 5.93E-11 | 1 | 4.048837 | 2.4E-10 |
F16 | 0.082221 | 0.917779 | 1.61018 | 0.13239 |
F17 | 6.68E-10 | 1 | 4.961695 | 3.31E-09 |
F18 | 0.068118 | 0.931882 | 0.757968 | 0.051631 |
F19 | 0.245007 | 0.754993 | 0.378584 | 0.118559 |
F20 | 0.054777 | 0.945223 | 0.441119 | 0.024163 |
F21 | 1.95E-10 | 1 | 3.149125 | 7.25E-10 |
F22 | 1.36E-10 | 1 | 3.505294 | 6.63E-10 |
F23 | 9.32E-11 | 1 | 4.347473 | 4.27E-10 |
Algorithm | Parameter | Value |
---|---|---|
GA | ||
Type | Real coded | |
Selection | Roulette wheel (proportionate) | |
Crossover | Whole arithmetic (, ) | |
Mutation | Gaussian () | |
PSO | ||
Topology | Fully connected | |
Cognitive and social constant | () | |
Inertia weight | Linear reduction from 0.9 to 0.1 | |
Velocity limit | 10% of dimension range | |
GSA | ||
Alpha, , , | 20, 100, 2, 1 | |
TLBO | ||
: Teaching factor | ||
Random number | rand is a random number from | |
GWO | ||
Convergence parameter () | : Linear reduction from 2 to 0. | |
MVO | ||
Wormhole Existence Probability (WEP) | and . | |
Exploitation accuracy over the iterations () | . | |
WOA | ||
Convergence parameter () | : Linear reduction from 2 to 0. | |
r is a random vector in ; | ||
l is a random number in | ||
TSA | ||
1, 4 | ||
Random numbers lie in the interval | ||
MPA | ||
Constant number | ||
Random vector | R is a vector of uniform random numbers in | |
Fish Aggregating Devices (FADs) | ||
Binary vector | or 1 | |
RSA | ||
Sensitive parameter | ||
Sensitive parameter | ||
Evolutionary Sense (ES) | ES: Randomly decreasing values between 2 and −2 | |
AVOA | ||
0.8, 0.2 | ||
2.5 | ||
0.6, 0.4, 0.6 | ||
WSO | ||
0.07, 0.75 | ||
, | 4.125, 6.25, 100, 0.0005 |
BOA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | Mean | 100 | 5.46E+09 | 3848.625 | 1.02E+10 | 35,331,826 | 1.74E+09 | 6,458,531 | 7530.831 | 88,328,653 | 1.47E+08 | 747.4345 | 3148.604 | 11,867,816 |
Best | 100 | 4.59E+09 | 115.6391 | 8.84E+09 | 11,218.07 | 3.73E+08 | 4,702,752 | 4790.099 | 27,833.68 | 65,653,192 | 100.0193 | 345.9935 | 6,145,607 | |
Worst | 100 | 6.85E+09 | 11,928.77 | 1.22E+10 | 1.28E+08 | 3.8E+09 | 8,503,451 | 11,096.78 | 3.21E+08 | 3.56E+08 | 1792.381 | 9323.402 | 17,037,274 | |
Std | 0 | 1.07E+09 | 6005.345 | 1.64E+09 | 67,796,179 | 1.66E+09 | 1,750,529 | 3215.353 | 1.69E+08 | 1.52E+08 | 796.8781 | 4524.035 | 4,954,471 | |
Median | 100 | 5.21E+09 | 1675.046 | 9.94E+09 | 6,476,105 | 1.4E+09 | 6,313,960 | 7118.225 | 16,188,754 | 84,181,901 | 548.6691 | 1462.51 | 12,144,191 | |
Rank | 1 | 12 | 4 | 13 | 8 | 11 | 6 | 5 | 9 | 10 | 2 | 3 | 7 | |
C17-F3 | Mean | 300 | 7591.42 | 301.8957 | 9658.226 | 1408.746 | 11,214.42 | 1731.412 | 300.0547 | 3071.866 | 726.7343 | 10,268.87 | 300 | 14,789.2 |
Best | 300 | 4113.783 | 300 | 5207.518 | 791.8459 | 4270.307 | 619.6359 | 300.0127 | 1529.615 | 471.4213 | 6461.812 | 300 | 4354.021 | |
Worst | 300 | 10,174.7 | 304.0548 | 12,922.2 | 2537.378 | 15,855.2 | 3333.866 | 300.1245 | 5893.445 | 893.5147 | 13,957.47 | 300 | 23,376.32 | |
Std | 0 | 2896.121 | 2.393662 | 3838.968 | 876.4573 | 5353.91 | 1391.667 | 0.05345 | 2191.143 | 201.3742 | 3364.571 | 5.05E-14 | 10,814.33 | |
Median | 300 | 8038.595 | 301.764 | 10,251.59 | 1152.881 | 12,366.08 | 1486.072 | 300.0407 | 2432.202 | 771.0005 | 10,328.09 | 300 | 15,713.23 | |
Rank | 1 | 9 | 4 | 10 | 6 | 12 | 7 | 3 | 8 | 5 | 11 | 2 | 13 | |
C17-F4 | Mean | 400 | 919.2957 | 404.7605 | 1352.77 | 406.7394 | 576.7582 | 425.1975 | 403.341 | 411.7605 | 409.1884 | 404.5619 | 420.3519 | 414.7475 |
Best | 400 | 672.5461 | 401.2436 | 845.7611 | 402.4511 | 477.9916 | 406.4543 | 401.5971 | 406.1014 | 408.4021 | 403.5684 | 400.1059 | 411.7011 | |
Worst | 400 | 1142.743 | 406.5393 | 1849.389 | 411.4014 | 692.0754 | 473.6998 | 404.9048 | 428.4155 | 409.6849 | 406.0879 | 470.5109 | 418.4747 | |
Std | 0 | 229.2926 | 2.715361 | 466.2296 | 4.804772 | 114.2038 | 35.29756 | 1.871726 | 12.08414 | 0.598616 | 1.257481 | 36.76729 | 3.226255 | |
Median | 400 | 930.9465 | 405.6296 | 1357.964 | 406.5525 | 568.4828 | 410.3179 | 403.431 | 406.2626 | 409.3334 | 404.2956 | 405.3954 | 414.407 | |
Rank | 1 | 12 | 4 | 13 | 5 | 11 | 10 | 2 | 7 | 6 | 3 | 9 | 8 | |
C17-F5 | Mean | 501.2464 | 562.2888 | 544.5598 | 573.6638 | 513.037 | 565.1128 | 541.4479 | 523.9769 | 513.1801 | 534.4525 | 554.4872 | 528.2287 | 528.3418 |
Best | 500.9951 | 547.4308 | 527.1499 | 558.8475 | 508.4371 | 543.7341 | 523.7238 | 510.3406 | 508.6157 | 528.9014 | 549.5681 | 511.27 | 523.5807 | |
Worst | 501.9917 | 572.2487 | 563.5795 | 588.8477 | 518.2122 | 597.5197 | 577.7367 | 538.4222 | 520.5555 | 538.0275 | 566.3814 | 552.3704 | 534.175 | |
Std | 0.540776 | 12.11165 | 20.81022 | 18.12589 | 5.591417 | 25.96825 | 27.5346 | 12.761 | 5.604703 | 4.364766 | 8.746105 | 20.64316 | 5.206467 | |
Median | 500.9993 | 564.7379 | 543.7549 | 573.48 | 512.7494 | 559.5987 | 532.1655 | 523.5724 | 511.7746 | 535.4404 | 550.9996 | 524.6372 | 527.8058 | |
Rank | 1 | 11 | 9 | 13 | 2 | 12 | 8 | 4 | 3 | 7 | 10 | 5 | 6 | |
C17-F6 | Mean | 600 | 632.7824 | 617.595 | 641.3535 | 601.2128 | 625.225 | 623.5356 | 602.184 | 601.1449 | 606.9718 | 617.4791 | 607.548 | 610.4234 |
Best | 600 | 628.194 | 616.5747 | 638.0899 | 600.7222 | 615.3143 | 607.646 | 600.4796 | 600.6055 | 604.8344 | 602.9627 | 601.3762 | 607.0149 | |
Worst | 600 | 637.5379 | 620.1871 | 645.6746 | 602.4363 | 641.0634 | 645.9187 | 604.3818 | 601.7463 | 610.3045 | 636.7176 | 619.5657 | 614.7356 | |
Std | 0 | 4.413003 | 1.88613 | 3.709445 | 0.889975 | 12.08883 | 17.5391 | 1.908475 | 0.513952 | 2.714097 | 16.99487 | 8.979175 | 3.72455 | |
Median | 600 | 632.699 | 616.8091 | 640.8248 | 600.8464 | 622.2611 | 620.2889 | 601.9373 | 601.1139 | 606.3741 | 615.1181 | 604.6251 | 609.9715 | |
Rank | 1 | 12 | 9 | 13 | 3 | 11 | 10 | 4 | 2 | 5 | 8 | 6 | 7 | |
C17-F7 | Mean | 711.1267 | 797.8688 | 766.4303 | 805.8543 | 724.8556 | 830.358 | 762.9002 | 731.196 | 726.2532 | 752.71 | 717.2159 | 733.0903 | 737.2869 |
Best | 710.6726 | 780.6589 | 744.4304 | 792.4154 | 720.5783 | 789.6269 | 751.7383 | 717.2818 | 717.5639 | 748.1129 | 714.8806 | 725.8012 | 726.7599 | |
Worst | 711.7995 | 809.4588 | 794.6393 | 818.7295 | 729.351 | 872.5061 | 792.8006 | 750.7791 | 744.0606 | 760.9719 | 721.0193 | 744.8461 | 741.9507 | |
Std | 0.557384 | 13.284 | 25.13695 | 13.44422 | 4.022787 | 39.18582 | 21.75715 | 15.33828 | 13.2473 | 6.2627 | 2.892038 | 9.451487 | 7.758608 | |
Median | 711.0174 | 800.6788 | 763.3257 | 806.1362 | 724.7466 | 829.6494 | 753.531 | 728.3615 | 721.6942 | 750.8777 | 716.4818 | 730.8569 | 740.2185 | |
Rank | 1 | 11 | 10 | 12 | 3 | 13 | 9 | 5 | 4 | 8 | 2 | 6 | 7 | |
C17-F8 | Mean | 801.4928 | 848.1769 | 831.617 | 854.5622 | 812.8571 | 849.0636 | 836.9437 | 812.0059 | 816.0909 | 838.313 | 820.1744 | 823.1267 | 817.0493 |
Best | 800.995 | 842.8959 | 820.611 | 843.1502 | 808.9812 | 832.594 | 818.8766 | 807.536 | 810.6855 | 831.2975 | 812.2041 | 815.9405 | 813.0058 | |
Worst | 801.9912 | 854.7381 | 847.6997 | 859.9005 | 815.0312 | 868.6915 | 849.3401 | 816.8821 | 821.1703 | 846.4472 | 828.0838 | 829.679 | 824.9831 | |
Std | 0.625636 | 6.701009 | 12.45098 | 8.409374 | 3.041009 | 17.47606 | 14.23885 | 4.180792 | 4.773722 | 8.432783 | 7.354204 | 7.407172 | 5.86208 | |
Median | 801.4926 | 847.5368 | 829.0787 | 857.599 | 813.708 | 847.4845 | 839.779 | 811.8029 | 816.2538 | 837.7536 | 820.2048 | 823.4438 | 815.1042 | |
Rank | 1 | 11 | 8 | 13 | 3 | 12 | 9 | 2 | 4 | 10 | 6 | 7 | 5 | |
C17-F9 | Mean | 900 | 1430.961 | 1192.849 | 1476.617 | 905.2837 | 1388.608 | 1383.102 | 900.8146 | 912.1313 | 912.0221 | 900 | 904.3122 | 905.1958 |
Best | 900 | 1276.126 | 954.6109 | 1379.243 | 900.3329 | 1172.43 | 1076.987 | 900.0011 | 900.5827 | 907.3517 | 900 | 900.9142 | 902.8443 | |
Worst | 900 | 1573.852 | 1673.688 | 1616.361 | 913.5628 | 1681.601 | 1668.813 | 903.166 | 933.6785 | 920.3352 | 900 | 912.5228 | 909.2282 | |
Std | 0 | 140.1941 | 362.6238 | 109.8787 | 6.480782 | 239.779 | 271.1443 | 1.706569 | 16.89776 | 6.209908 | 0 | 6.03293 | 3.14228 | |
Median | 900 | 1436.932 | 1071.549 | 1455.432 | 903.6196 | 1350.2 | 1393.304 | 900.0457 | 907.1319 | 910.2007 | 900 | 901.9059 | 904.3554 | |
Rank | 1 | 11 | 8 | 12 | 5 | 10 | 9 | 2 | 7 | 6 | 1 | 3 | 4 | |
C17-F10 | Mean | 1006.179 | 2311.834 | 1782.706 | 2588.899 | 1519.782 | 2039.361 | 2031.708 | 1785.695 | 1729.938 | 2179.736 | 2286.565 | 1951.968 | 1720.13 |
Best | 1000.284 | 2010.815 | 1486.512 | 2416.757 | 1393.592 | 1762.237 | 1452.075 | 1458.762 | 1542.197 | 1786.243 | 2004.951 | 1563.92 | 1417.123 | |
Worst | 1012.668 | 2456.623 | 2423.148 | 2951.232 | 1595.402 | 2293.271 | 2559.74 | 2290.911 | 1998.556 | 2469.964 | 2393.264 | 2360.873 | 2118.219 | |
Std | 7.244311 | 225.7849 | 478.7803 | 270.7973 | 103.4757 | 304.9995 | 582.7437 | 438.7957 | 211.0887 | 316.3582 | 204.7244 | 356.2546 | 327.1839 | |
Median | 1005.882 | 2389.949 | 1610.583 | 2493.804 | 1545.066 | 2050.967 | 2057.508 | 1696.554 | 1689.498 | 2231.369 | 2374.023 | 1941.539 | 1672.588 | |
Rank | 1 | 12 | 5 | 13 | 2 | 9 | 8 | 6 | 4 | 10 | 11 | 7 | 3 | |
C17-F11 | Mean | 1100 | 3442.37 | 1148.775 | 4000.383 | 1127.198 | 5484.031 | 1151.243 | 1127.661 | 1155.582 | 1151.197 | 1139.413 | 1143.772 | 2389.968 |
Best | 1100 | 2188.762 | 1117.145 | 1460.621 | 1113.275 | 5334.971 | 1113.032 | 1105.577 | 1121.743 | 1138.044 | 1119.755 | 1132.432 | 1115.129 | |
Worst | 1100 | 4665.813 | 1202.357 | 6508.91 | 1159.111 | 5565.816 | 1173.513 | 1149.188 | 1229.094 | 1172.713 | 1169 | 1165.388 | 6006.61 | |
Std | 0 | 1210.189 | 40.81842 | 2469.216 | 23.5556 | 111.6604 | 30.39483 | 23.71355 | 54.46268 | 16.28689 | 22.87379 | 16.15173 | 2624.636 | |
Median | 1100 | 3457.454 | 1137.8 | 4016 | 1118.203 | 5517.668 | 1159.213 | 1127.94 | 1135.746 | 1147.016 | 1134.448 | 1138.634 | 1219.067 | |
Rank | 1 | 11 | 6 | 12 | 2 | 13 | 8 | 3 | 9 | 7 | 4 | 5 | 10 | |
C17-F12 | Mean | 1352.959 | 3.57E+08 | 1,109,704 | 7.11E+08 | 572,257.8 | 1,048,288 | 2,373,547 | 1,037,633 | 1,427,055 | 5,094,522 | 1,028,834 | 8145.64 | 610,018.9 |
Best | 1318.646 | 80,192,749 | 358,948.9 | 1.58E+08 | 20,015.65 | 543,606.5 | 173,159.8 | 8892.711 | 45,801.15 | 1,363,349 | 478,453.6 | 2528.033 | 176,684.6 | |
Worst | 1438.176 | 6.23E+08 | 2,012,446 | 1.24E+09 | 895,571.3 | 1,286,990 | 3,937,641 | 3,259,364 | 2,233,764 | 9,018,848 | 1,739,931 | 14,021.19 | 1,076,854 | |
Std | 62.35801 | 2.98E+08 | 841,688.2 | 5.98E+08 | 419,783.3 | 381,500.6 | 1,904,475 | 1,634,093 | 1,049,512 | 4,413,129 | 581,137.5 | 5698.792 | 402,260.9 | |
Median | 1327.506 | 3.62E+08 | 1,033,710 | 7.22E+08 | 686,722.1 | 1,181,277 | 2,691,694 | 441,138.1 | 1,714,326 | 4,997,944 | 948,475.7 | 8016.671 | 593,268.4 | |
Rank | 1 | 12 | 8 | 13 | 3 | 7 | 10 | 6 | 9 | 11 | 5 | 2 | 4 | |
C17-F13 | Mean | 1305.324 | 17,335,628 | 18,471.94 | 34,661,545 | 5468.243 | 12,831.35 | 7630.328 | 6772.94 | 10,372.78 | 16,852.54 | 10,143.18 | 6664.754 | 54,887.32 |
Best | 1303.114 | 1,445,254 | 2734.676 | 2,877,682 | 3740.627 | 7639.26 | 3297.206 | 1386.726 | 6550.028 | 15,912.77 | 5078.007 | 2387.751 | 8603.051 | |
Worst | 1308.508 | 57,542,238 | 31,658.65 | 1.15E+08 | 6689.907 | 20,335.57 | 15,267.01 | 12,470.28 | 14,494.81 | 19,148.28 | 14,291.03 | 16,841.17 | 181,516.7 | |
Std | 2.473462 | 29,234,423 | 16,273.34 | 58,465,686 | 1530.879 | 5963.582 | 5938.403 | 6247.984 | 3543.419 | 1681.501 | 4237.976 | 7465.241 | 91,927.81 | |
Median | 1304.837 | 5,177,510 | 19,747.21 | 10,349,214 | 5721.218 | 11,675.29 | 5978.549 | 6617.376 | 10,223.15 | 16,174.55 | 10,601.85 | 3715.048 | 14,714.78 | |
Rank | 1 | 12 | 10 | 13 | 2 | 8 | 5 | 4 | 7 | 9 | 6 | 3 | 11 | |
C17-F14 | Mean | 1400.746 | 3828.915 | 2027.645 | 5383.694 | 1945.167 | 3405.109 | 1520.154 | 1573.519 | 2355.252 | 1592.631 | 5604.306 | 3010.581 | 13,069.42 |
Best | 1400 | 3170.6 | 1681.663 | 4711.086 | 1435.363 | 1488.751 | 1482.596 | 1423.322 | 1462.902 | 1517.224 | 4631.803 | 1432.831 | 3748.476 | |
Worst | 1400.995 | 5066.928 | 2841.448 | 6948.68 | 2917.489 | 5622.496 | 1560.295 | 1999.133 | 4996.706 | 1623.198 | 7611.074 | 6894.737 | 26,056.87 | |
Std | 0.541408 | 945.4187 | 594.8446 | 1143.911 | 756.5397 | 2393.086 | 43.20222 | 308.8712 | 1916.5 | 54.97335 | 1519.18 | 2840.855 | 10,284.68 | |
Median | 1400.995 | 3539.066 | 1793.735 | 4937.505 | 1713.908 | 3254.594 | 1518.862 | 1435.81 | 1480.701 | 1615.05 | 5087.174 | 1857.377 | 11,236.18 | |
Rank | 1 | 10 | 6 | 11 | 5 | 9 | 2 | 3 | 7 | 4 | 12 | 8 | 13 | |
C17-F15 | Mean | 1500.331 | 10,283.95 | 5333.31 | 13,989.15 | 3998.841 | 7053.662 | 6262.146 | 1542.234 | 5854.355 | 1711.148 | 24,088.27 | 9066.744 | 4578.338 |
Best | 1500.001 | 3259.43 | 2077.801 | 2745.559 | 3239.281 | 2327.191 | 2019.265 | 1526.157 | 3589.383 | 1584.901 | 11,316.55 | 2884.332 | 1894.197 | |
Worst | 1500.5 | 17,559.48 | 12,730.21 | 30,627 | 4923.526 | 12,648.29 | 13,558.05 | 1554.385 | 6950.016 | 1801.652 | 36,159.61 | 14,917.69 | 8074.57 | |
Std | 0.256213 | 6701.944 | 5408.362 | 13,248.87 | 760.3969 | 4827.04 | 5473.801 | 13.4196 | 1680.534 | 115.7645 | 12,916.31 | 5473.312 | 3344.03 | |
Median | 1500.413 | 10,158.45 | 3262.612 | 11,292.03 | 3916.279 | 6619.585 | 4735.634 | 1544.197 | 6439.01 | 1729.02 | 24,438.46 | 9232.477 | 4172.293 | |
Rank | 1 | 11 | 6 | 12 | 4 | 9 | 8 | 2 | 7 | 3 | 13 | 10 | 5 | |
C17-F16 | Mean | 1600.76 | 2006.472 | 1811.471 | 2020.201 | 1684.989 | 2051.36 | 1953.664 | 1818.204 | 1729.658 | 1677.592 | 2077.466 | 1926.579 | 1804.186 |
Best | 1600.356 | 1936.677 | 1642.633 | 1821.325 | 1642.119 | 1864.782 | 1766.603 | 1727.666 | 1615.96 | 1651.389 | 1950.251 | 1824.477 | 1719.79 | |
Worst | 1601.12 | 2125.766 | 1929.19 | 2296.53 | 1715.87 | 2237.602 | 2083.047 | 1880.447 | 1827.504 | 1732.365 | 2274.078 | 2087.786 | 1835.532 | |
Std | 0.343807 | 91.7687 | 131.3759 | 218.4156 | 34.5268 | 184.0946 | 163.6931 | 70.32367 | 94.99226 | 41.07563 | 160.2418 | 132.7396 | 61.28572 | |
Median | 1600.781 | 1981.722 | 1837.031 | 1981.476 | 1690.984 | 2051.528 | 1982.503 | 1832.352 | 1737.585 | 1663.306 | 2042.768 | 1897.026 | 1830.712 | |
Rank | 1 | 10 | 6 | 11 | 3 | 12 | 9 | 7 | 4 | 2 | 13 | 8 | 5 | |
C17-F17 | Mean | 1700.099 | 1823.352 | 1751.466 | 1819.495 | 1736.079 | 1803.161 | 1843.24 | 1844.13 | 1769.181 | 1758.941 | 1848.159 | 1752.864 | 1756.518 |
Best | 1700.02 | 1806.066 | 1734.73 | 1802.424 | 1722.121 | 1787.826 | 1774.309 | 1779.25 | 1724.691 | 1748.708 | 1748.396 | 1746.15 | 1753.36 | |
Worst | 1700.332 | 1830.672 | 1795.908 | 1828.806 | 1775.629 | 1814.158 | 1891.142 | 1952.846 | 1873.227 | 1768.986 | 1975.689 | 1759.617 | 1758.979 | |
Std | 0.168864 | 12.61303 | 32.32876 | 12.76453 | 28.70898 | 12.30981 | 55.23119 | 89.45313 | 75.87461 | 10.92649 | 126.1415 | 6.267908 | 2.763929 | |
Median | 1700.022 | 1828.335 | 1737.613 | 1823.375 | 1723.282 | 1805.33 | 1853.755 | 1822.211 | 1739.404 | 1759.036 | 1834.276 | 1752.844 | 1756.867 | |
Rank | 1 | 10 | 3 | 9 | 2 | 8 | 11 | 12 | 7 | 6 | 13 | 4 | 5 | |
C17-F18 | Mean | 1805.36 | 2,877,257 | 11,923.85 | 5,735,592 | 11,111.67 | 12,127.7 | 23,449.89 | 21,073.62 | 20,025.71 | 29,687.97 | 9765.664 | 22,009.06 | 12,887.9 |
Best | 1800.003 | 148,282.3 | 4864.976 | 283,924 | 4174.747 | 7503.888 | 6480.271 | 8747.673 | 6354.336 | 24,138.12 | 6424.12 | 2888.071 | 3447.217 | |
Worst | 1820.451 | 8,337,684 | 15,688.36 | 16,650,123 | 16,616.76 | 16,384.43 | 36,839.48 | 33,922.95 | 33,800.34 | 37,134.83 | 11,923.34 | 40,997.79 | 18,593.6 | |
Std | 10.95197 | 4,127,821 | 5281.26 | 8,252,643 | 6158.261 | 4019.381 | 15,920.68 | 12,898.77 | 15,147.08 | 6506.053 | 2554.342 | 21,410.87 | 7199.978 | |
Median | 1800.492 | 1,511,530 | 13,571.04 | 3,004,161 | 11,827.6 | 12,311.24 | 25,239.9 | 20,811.92 | 19,974.07 | 28,739.47 | 10,357.6 | 22,075.19 | 14,755.39 | |
Rank | 1 | 12 | 4 | 13 | 3 | 5 | 10 | 8 | 7 | 11 | 2 | 9 | 6 | |
C17-F19 | Mean | 1900.445 | 390,051.5 | 6740.448 | 708,553.5 | 5623.033 | 126,338 | 35,023.84 | 1914.851 | 5407.081 | 4715.34 | 40,679.05 | 25,099.05 | 6211.208 |
Best | 1900.039 | 25,762.01 | 2178.665 | 46,105.64 | 2320.659 | 1949.556 | 7697.99 | 1909.484 | 1944.955 | 2044.21 | 11,164.51 | 2629.429 | 2215.362 | |
Worst | 1901.559 | 821,920.8 | 13,319.27 | 1,522,124 | 9466.148 | 252,369.2 | 64,127.87 | 1924.471 | 13,887.85 | 12,559.69 | 59,008.83 | 77,380.53 | 9935.635 | |
Std | 0.810364 | 378,831.5 | 5895.722 | 724,659.8 | 3963.615 | 156,290.3 | 25,211.41 | 7.70358 | 6217.733 | 5691.553 | 23,319.35 | 38,358.7 | 3466.525 | |
Median | 1900.09 | 356,261.6 | 5731.927 | 632,992.2 | 5352.663 | 125,516.6 | 34,134.74 | 1912.724 | 2897.759 | 2128.73 | 46,271.42 | 10,193.12 | 6346.918 | |
Rank | 1 | 12 | 7 | 13 | 5 | 11 | 9 | 2 | 4 | 3 | 10 | 8 | 6 | |
C17-F20 | Mean | 2000.312 | 2216.383 | 2171.683 | 2224.494 | 2092.931 | 2208.745 | 2207.956 | 2140.477 | 2171.033 | 2072.475 | 2255.372 | 2170.09 | 2050.542 |
Best | 2000.312 | 2165.24 | 2031.536 | 2165.608 | 2073.228 | 2107.405 | 2098.976 | 2047.247 | 2131.776 | 2061.375 | 2189.014 | 2145.806 | 2036.046 | |
Worst | 2000.312 | 2283.827 | 2296.441 | 2280.283 | 2123.641 | 2323.021 | 2289.781 | 2249.067 | 2247.625 | 2082.964 | 2349.088 | 2202.147 | 2058.359 | |
Std | 0 | 53.77105 | 129.6972 | 61.41781 | 23.50952 | 99.40453 | 99.264 | 90.18592 | 56.83593 | 9.850576 | 84.75517 | 30.47507 | 11.19601 | |
Median | 2000.312 | 2208.232 | 2179.377 | 2226.043 | 2087.428 | 2202.278 | 2221.533 | 2132.797 | 2152.365 | 2072.78 | 2241.692 | 2166.204 | 2053.882 | |
Rank | 1 | 11 | 8 | 12 | 4 | 10 | 9 | 5 | 7 | 3 | 13 | 6 | 2 | |
C17-F21 | Mean | 2200 | 2292.224 | 2213.908 | 2267.615 | 2257.617 | 2326.087 | 2310.663 | 2253.534 | 2314.124 | 2300.419 | 2369.547 | 2319.669 | 2298.888 |
Best | 2200 | 2245.786 | 2204.158 | 2224.131 | 2255.109 | 2221.386 | 2218.528 | 2200.008 | 2309.885 | 2203.746 | 2351.941 | 2311.549 | 2226.752 | |
Worst | 2200 | 2321.323 | 2239.299 | 2292.339 | 2260.172 | 2373.39 | 2355.179 | 2308.4 | 2319.13 | 2339.391 | 2387.001 | 2327.277 | 2333.787 | |
Std | 0 | 37.4424 | 18.47872 | 32.82983 | 2.33168 | 77.27499 | 67.69154 | 67.27446 | 4.137785 | 70.64276 | 15.94573 | 8.418841 | 53.00527 | |
Median | 2200 | 2300.893 | 2206.088 | 2276.995 | 2257.593 | 2354.786 | 2334.472 | 2252.863 | 2313.74 | 2329.27 | 2369.622 | 2319.925 | 2317.506 | |
Rank | 1 | 6 | 2 | 5 | 4 | 12 | 9 | 3 | 10 | 8 | 13 | 11 | 7 | |
C17-F22 | Mean | 2300.073 | 2701.027 | 2309.054 | 2920.786 | 2305.044 | 2717.182 | 2323.99 | 2285.662 | 2308.669 | 2319.729 | 2300.004 | 2313.376 | 2318.072 |
Best | 2300 | 2581.071 | 2304.399 | 2710.209 | 2300.951 | 2450.338 | 2319.288 | 2228.873 | 2301.277 | 2313.416 | 2300 | 2300.643 | 2315.149 | |
Worst | 2300.29 | 2820.282 | 2311.236 | 3075.328 | 2309.437 | 2926.716 | 2331.697 | 2305.332 | 2322.59 | 2331.562 | 2300.018 | 2345.833 | 2322.574 | |
Std | 0.157893 | 114.9318 | 3.421932 | 167.3244 | 3.892406 | 231.3835 | 6.033524 | 41.21509 | 10.66841 | 9.036157 | 0.009658 | 23.59913 | 3.452639 | |
Median | 2300 | 2701.377 | 2310.292 | 2948.804 | 2304.894 | 2745.837 | 2322.488 | 2304.221 | 2305.405 | 2316.97 | 2300 | 2303.514 | 2317.282 | |
Rank | 3 | 11 | 6 | 13 | 4 | 12 | 10 | 1 | 5 | 9 | 2 | 7 | 8 | |
C17-F23 | Mean | 2600.919 | 2690.499 | 2642.521 | 2701.598 | 2614.457 | 2724.652 | 2649.231 | 2620.453 | 2613.868 | 2643 | 2793.704 | 2644.76 | 2656.735 |
Best | 2600.003 | 2655.377 | 2630.851 | 2672.314 | 2611.98 | 2634.724 | 2631.18 | 2607.24 | 2607.853 | 2632.022 | 2728.026 | 2637.475 | 2636.591 | |
Worst | 2602.87 | 2710.595 | 2660.461 | 2742.593 | 2617.187 | 2769.526 | 2669.602 | 2632.143 | 2620.651 | 2652.382 | 2933.47 | 2656.811 | 2665.174 | |
Std | 1.436922 | 28.38289 | 15.1817 | 35.76758 | 2.682389 | 66.28428 | 22.5696 | 11.80644 | 7.173201 | 9.830174 | 105.0806 | 9.521171 | 14.8412 | |
Median | 2600.403 | 2698.012 | 2639.385 | 2695.743 | 2614.331 | 2747.18 | 2648.071 | 2621.215 | 2613.483 | 2643.799 | 2756.66 | 2642.376 | 2662.587 | |
Rank | 1 | 10 | 5 | 11 | 3 | 12 | 8 | 4 | 2 | 6 | 13 | 7 | 9 | |
C17-F24 | Mean | 2630.488 | 2788.317 | 2768.95 | 2852.038 | 2630.654 | 2668.659 | 2761.886 | 2683.834 | 2749.937 | 2757.061 | 2748.612 | 2766.885 | 2724.025 |
Best | 2516.677 | 2745.688 | 2736.941 | 2825.654 | 2617.619 | 2523.669 | 2736.445 | 2501.19 | 2726.533 | 2745.923 | 2502.655 | 2755.88 | 2536.059 | |
Worst | 2732.32 | 2856.987 | 2792.846 | 2913.462 | 2636.807 | 2812.827 | 2792.301 | 2759.842 | 2766.303 | 2767.028 | 2899.211 | 2786.936 | 2811.901 | |
Std | 126.7883 | 57.95513 | 27.89637 | 44.82121 | 9.562201 | 168.3131 | 25.02914 | 133.1237 | 19.19886 | 10.60604 | 186.1525 | 15.09998 | 137.7502 | |
Median | 2636.477 | 2775.296 | 2773.006 | 2834.518 | 2634.095 | 2669.069 | 2759.399 | 2737.151 | 2753.457 | 2757.647 | 2796.292 | 2762.363 | 2774.07 | |
Rank | 1 | 12 | 11 | 13 | 2 | 3 | 9 | 4 | 7 | 8 | 6 | 10 | 5 | |
C17-F25 | Mean | 2932.639 | 3139.215 | 2913.317 | 3279.873 | 2917.765 | 3135.421 | 2907.315 | 2922.007 | 2938.751 | 2933.537 | 2922.179 | 2923.252 | 2952.419 |
Best | 2898.047 | 3067.756 | 2899.104 | 3210.527 | 2913.428 | 2905.513 | 2763.108 | 2900.572 | 2921.074 | 2915.907 | 2902.261 | 2898.673 | 2938.562 | |
Worst | 2945.793 | 3299.244 | 2949.092 | 3356.883 | 2923.18 | 3664.488 | 2959.682 | 2943.722 | 2945.915 | 2952.388 | 2943.394 | 2946.56 | 2962.947 | |
Std | 25.12878 | 118.4951 | 26.01647 | 65.88501 | 4.450199 | 388.1053 | 104.7267 | 26.80868 | 12.86286 | 21.96492 | 24.96584 | 28.66542 | 11.32013 | |
Median | 2943.359 | 3094.931 | 2902.537 | 3276.041 | 2917.225 | 2985.842 | 2953.235 | 2921.867 | 2944.007 | 2932.927 | 2921.531 | 2923.888 | 2954.084 | |
Rank | 7 | 12 | 2 | 13 | 3 | 11 | 1 | 4 | 9 | 8 | 5 | 6 | 10 | |
C17-F26 | Mean | 2900 | 3563.475 | 2980.612 | 3764.465 | 3012.721 | 3627.651 | 3185.71 | 2900.149 | 3268.794 | 3209.548 | 3870.812 | 2904.098 | 2897.19 |
Best | 2900 | 3234.392 | 2806.117 | 3437.518 | 2892.04 | 3146.539 | 2927.473 | 2900.114 | 2969.885 | 2912.169 | 2806.117 | 2806.117 | 2705.581 | |
Worst | 2900 | 3783.253 | 3159.257 | 4104.73 | 3297.318 | 4282.661 | 3600.731 | 2900.195 | 3916.767 | 3885.046 | 4362.862 | 3010.276 | 3111.603 | |
Std | 4.04E-13 | 264.6671 | 219.3124 | 313.0895 | 207.4462 | 604.6037 | 320.3471 | 0.039308 | 474.4582 | 493.3205 | 785.0288 | 90.85344 | 223.8032 | |
Median | 2900 | 3618.128 | 2978.537 | 3757.805 | 2930.763 | 3540.701 | 3107.318 | 2900.144 | 3094.262 | 3020.488 | 4157.136 | 2900 | 2885.789 | |
Rank | 2 | 10 | 5 | 12 | 6 | 11 | 7 | 3 | 9 | 8 | 13 | 4 | 1 | |
C17-F27 | Mean | 3089.518 | 3211.093 | 3120.294 | 3232.474 | 3104.836 | 3180.387 | 3195.929 | 3091.648 | 3116.364 | 3115.336 | 3227.33 | 3136.519 | 3160.678 |
Best | 3089.518 | 3162.744 | 3095.362 | 3127.574 | 3092.27 | 3102.552 | 3179.884 | 3089.712 | 3094.484 | 3095.441 | 3215.052 | 3097.168 | 3119.628 | |
Worst | 3089.518 | 3293.2 | 3181.796 | 3426.382 | 3134.233 | 3223.046 | 3207.804 | 3095.016 | 3177.613 | 3172.045 | 3249.089 | 3184.29 | 3220.171 | |
Std | 2.86E-13 | 61.76378 | 44.75181 | 144.0715 | 21.48364 | 59.41073 | 12.68162 | 2.715154 | 44.48251 | 41.1546 | 16.48412 | 39.87289 | 46.26169 | |
Median | 3089.518 | 3194.214 | 3102.009 | 3187.971 | 3096.421 | 3197.974 | 3198.014 | 3090.932 | 3096.68 | 3096.929 | 3222.589 | 3132.309 | 3151.456 | |
Rank | 1 | 11 | 6 | 13 | 3 | 9 | 10 | 2 | 5 | 4 | 12 | 7 | 8 | |
C17-F28 | Mean | 3100 | 3597.002 | 3237.24 | 3784.862 | 3219.529 | 3590.319 | 3288.358 | 3239.881 | 3346.978 | 3326.958 | 3453.664 | 3307.374 | 3247.568 |
Best | 3100 | 3551.344 | 3100 | 3701.869 | 3167.488 | 3415.098 | 3153.13 | 3100.125 | 3195.479 | 3214.92 | 3440.292 | 3177.754 | 3145.253 | |
Worst | 3100 | 3629.166 | 3392.748 | 3844.77 | 3244.627 | 3801.261 | 3393.263 | 3392.749 | 3414.627 | 3392.992 | 3472.246 | 3392.965 | 3516.826 | |
Std | 0 | 37.84994 | 140.9244 | 72.18444 | 38.85546 | 217.9689 | 134.3096 | 175.9315 | 110.7805 | 92.50073 | 16.11354 | 106.1885 | 196.1013 | |
Median | 3100 | 3603.75 | 3228.106 | 3796.405 | 3232.999 | 3572.459 | 3303.518 | 3233.325 | 3388.902 | 3349.961 | 3451.059 | 3329.389 | 3164.097 | |
Rank | 1 | 12 | 3 | 13 | 2 | 11 | 6 | 4 | 9 | 8 | 10 | 7 | 5 | |
C17-F29 | Mean | 3132.241 | 3341.543 | 3286.029 | 3377.573 | 3203.813 | 3237.271 | 3351.007 | 3203.391 | 3266.497 | 3213.443 | 3347.969 | 3267.377 | 3238.278 |
Best | 3130.076 | 3320.37 | 3211.196 | 3305.533 | 3166.325 | 3166.435 | 3236.743 | 3142.631 | 3190.458 | 3166.015 | 3234.677 | 3168.273 | 3189.013 | |
Worst | 3134.841 | 3357.583 | 3367.588 | 3445.427 | 3245.657 | 3308.027 | 3499.364 | 3288.015 | 3381.802 | 3236.348 | 3639.853 | 3351.013 | 3287.876 | |
Std | 2.701544 | 16.93059 | 87.65176 | 78.4692 | 38.01024 | 63.06594 | 119.873 | 67.0027 | 99.05148 | 35.89995 | 212.6507 | 90.30554 | 45.26891 | |
Median | 3132.023 | 3344.109 | 3282.666 | 3379.666 | 3201.635 | 3237.31 | 3333.962 | 3191.459 | 3246.864 | 3225.705 | 3258.672 | 3275.111 | 3238.111 | |
Rank | 1 | 10 | 9 | 13 | 3 | 5 | 12 | 2 | 7 | 4 | 11 | 8 | 6 | |
C17-F30 | Mean | 3418.734 | 2,270,202 | 296,246.2 | 3,694,956 | 416,890.8 | 617,692.3 | 997,284.6 | 304,439.1 | 940,663.9 | 60,930.4 | 786,751.4 | 389,254.4 | 1,535,217 |
Best | 3394.682 | 1,673,245 | 105,205.9 | 831,886.7 | 15,996.07 | 112,875.5 | 4471.247 | 7460.759 | 33,746.81 | 29,426.72 | 604,858.7 | 6409.895 | 528,520.6 | |
Worst | 3442.907 | 3,240,778 | 771,775.4 | 5,836,135 | 615,301.1 | 1,306,089 | 3,764,900 | 1,160,773 | 1,361,385 | 102,270.8 | 1,004,710 | 771,812.2 | 3,497,487 | |
Std | 30.22288 | 740,116 | 345,952.7 | 2,280,306 | 296,209 | 551,800.6 | 2,010,505 | 621,503.5 | 678,871.6 | 38,719.09 | 180,833.5 | 480,108.6 | 1,523,052 | |
Median | 3418.673 | 2,083,393 | 154,001.9 | 4,055,902 | 518,132.9 | 525,902.3 | 109,883.7 | 24,761.28 | 1,183,762 | 56,012.05 | 768,718.5 | 389,397.8 | 1,057,430 | |
Rank | 1 | 12 | 3 | 13 | 6 | 7 | 10 | 4 | 9 | 2 | 8 | 5 | 11 | |
Sum rank | 38 | 318 | 177 | 350 | 106 | 286 | 239 | 116 | 188 | 191 | 238 | 183 | 197 | |
Mean rank | 1.310345 | 10.96552 | 6.103448 | 12.06897 | 3.655172 | 9.862069 | 8.241379 | 4 | 6.482759 | 6.586207 | 8.206897 | 6.310345 | 6.793103 | |
Total rank | 1 | 12 | 4 | 13 | 2 | 11 | 10 | 3 | 6 | 7 | 9 | 5 | 8 |
Compared Algorithm | Objective Function Type |
---|---|
CEC 2017 | |
BOA vs. WSO | 1.97E-21 |
BOA vs. AVOA | 3.77E-19 |
BOA vs. RSA | 1.97E-21 |
BOA vs. MPA | 2.00E-18 |
BOA vs. TSA | 9.50E-21 |
BOA vs. WOA | 9.50E-21 |
BOA vs. MVO | 9.03E-19 |
BOA vs. GWO | 5.23E-21 |
BOA vs. TLBO | 3.69E-21 |
BOA vs. GSA | 1.60E-18 |
BOA vs. PSO | 1.54E-19 |
BOA vs. GA | 2.71E-19 |
BOA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C11-F1 | Mean | 5.920103 | 18.3658 | 13.36522 | 22.89003 | 7.662645 | 19.13919 | 13.67372 | 14.47026 | 11.14773 | 19.17297 | 22.59503 | 18.65142 | 24.38586 |
Best | 2E-10 | 16.19408 | 9.345854 | 21.25619 | 0.392096 | 18.18294 | 8.678559 | 11.68925 | 1.176288 | 17.33253 | 20.70269 | 11.03757 | 23.48431 | |
Worst | 12.30606 | 21.05886 | 17.2206 | 25.24276 | 12.70674 | 20.36399 | 17.69423 | 16.92367 | 18.35369 | 21.06058 | 23.95826 | 24.97436 | 26.34835 | |
Std | 7.196379 | 2.475039 | 4.55974 | 1.997624 | 5.912131 | 1.046045 | 4.319552 | 2.53189 | 7.606047 | 1.629171 | 1.471501 | 6.959545 | 1.418008 | |
Median | 5.687176 | 18.10514 | 13.44722 | 22.53059 | 8.775874 | 19.00491 | 14.16104 | 14.63406 | 12.53047 | 19.14939 | 22.85957 | 19.29688 | 23.85539 | |
Rank | 1 | 7 | 4 | 12 | 2 | 9 | 5 | 6 | 3 | 10 | 11 | 8 | 13 | |
C11-F2 | Mean | −26.3179 | −13.8385 | −20.8022 | −10.8912 | −25.0347 | −10.5975 | −18.2689 | −7.99707 | −22.4684 | −10.1862 | −15.0459 | −22.5196 | −12.3132 |
Best | −27.0676 | −15.2725 | −21.3417 | −11.3546 | −25.6818 | −14.5354 | −21.8709 | −10.1042 | −24.6938 | −11.4086 | −20.3083 | −23.9159 | −14.7797 | |
Worst | −25.4328 | −12.5692 | −20.0389 | −10.403 | −23.6635 | −8.29419 | −14.0672 | −6.404 | −18.7253 | −9.11933 | −10.7963 | −20.0088 | −10.5245 | |
Std | 0.738935 | 1.450672 | 0.613406 | 0.51655 | 0.987822 | 3.104455 | 4.221461 | 1.682368 | 2.761006 | 0.998848 | 4.557654 | 1.808243 | 2.093573 | |
Median | −26.3856 | −13.7562 | −20.914 | −10.9036 | −25.3968 | −9.78013 | −18.5688 | −7.74007 | −23.2272 | −10.1085 | −14.5394 | −23.0768 | −11.9743 | |
Rank | 1 | 8 | 5 | 10 | 2 | 11 | 6 | 13 | 4 | 12 | 7 | 3 | 9 | |
C11-F4 | Mean | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 |
Best | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | |
Worst | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | |
Std | 2E-19 | 2.29E-11 | 2.63E-09 | 5.16E-11 | 1.28E-15 | 2.46E-14 | 6.39E-19 | 1.03E-12 | 3.85E-15 | 8.1E-14 | 2.07E-19 | 6.03E-20 | 2.85E-18 | |
Median | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | 1.15E-05 | |
Rank | 1 | 11 | 13 | 12 | 6 | 8 | 4 | 10 | 7 | 9 | 3 | 2 | 5 | |
C11-F4 | Mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Worst | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Median | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
C11-F5 | Mean | −34.1274 | −24.4632 | −27.8918 | −19.4252 | −33.246 | −26.8779 | −27.396 | −26.7327 | −31.4832 | −9.86988 | −27.1031 | −7.61915 | −8.51327 |
Best | −34.7494 | −25.646 | −28.9861 | −21.6476 | −33.8296 | −31.4861 | −27.5536 | −31.6474 | −34.2023 | −12.1106 | −31.4408 | −11.318 | −10.0071 | |
Worst | −33.3862 | −23.4985 | −27.4102 | −16.9763 | −31.872 | −21.3206 | −27.0038 | −24.211 | −27.3029 | −8.15331 | −23.8495 | −5.81752 | −6.75594 | |
Std | 0.589989 | 0.989457 | 0.779829 | 2.589014 | 0.96747 | 4.401075 | 0.27604 | 3.659252 | 3.096495 | 1.770206 | 3.496342 | 2.723063 | 1.505232 | |
Median | −34.1871 | −24.3541 | −27.5855 | −19.5384 | −33.6412 | −27.3525 | −27.5132 | −25.5362 | −32.2137 | −9.60779 | −26.561 | −6.67054 | −8.64499 | |
Rank | 1 | 9 | 4 | 10 | 2 | 7 | 5 | 8 | 3 | 11 | 6 | 13 | 12 | |
C11-F6 | Mean | −24.1119 | −13.6555 | −18.847 | −12.6221 | −22.5646 | −6.92131 | −19.8051 | −8.96998 | −19.4699 | −1.47492 | −21.8112 | −2.37518 | −3.31781 |
Best | −27.4298 | −14.2972 | −20.1867 | −13.3562 | −25.6947 | −16.2979 | −22.9894 | −17.2225 | −22.2246 | −1.67787 | −26.7438 | −5.2789 | −8.77883 | |
Worst | −23.0059 | −13.3329 | −17.0321 | −11.6073 | −21.2709 | −3.56713 | −12.5777 | −1.40727 | −17.8008 | −1.40727 | −17.4414 | −1.40727 | −1.40727 | |
Std | 2.324951 | 0.457816 | 1.549487 | 0.868125 | 2.224729 | 6.579278 | 5.181926 | 9.043209 | 2.229771 | 0.142217 | 4.201888 | 2.034739 | 3.829068 | |
Median | −23.0059 | −13.496 | −19.0847 | −12.7624 | −21.6463 | −3.9101 | −21.8266 | −8.62506 | −18.9272 | −1.40727 | −21.5297 | −1.40727 | −1.54257 | |
Rank | 1 | 7 | 6 | 8 | 2 | 10 | 4 | 9 | 5 | 13 | 3 | 12 | 11 | |
C11-F7 | Mean | 0.860699 | 1.630336 | 1.297839 | 1.954375 | 0.931882 | 1.316263 | 1.772373 | 0.881731 | 1.074249 | 1.746626 | 1.086692 | 1.132047 | 1.769103 |
Best | 0.582266 | 1.576312 | 1.151917 | 1.700334 | 0.76299 | 1.146539 | 1.652665 | 0.811995 | 0.807742 | 1.544826 | 0.894221 | 0.827051 | 1.374402 | |
Worst | 1.025027 | 1.738867 | 1.439848 | 2.140834 | 1.012213 | 1.688543 | 1.946221 | 0.958962 | 1.308118 | 1.888265 | 1.294407 | 1.382585 | 1.976253 | |
Std | 0.211503 | 0.078973 | 0.161247 | 0.194066 | 0.121385 | 0.263306 | 0.131457 | 0.078602 | 0.217578 | 0.157566 | 0.191475 | 0.30478 | 0.286366 | |
Median | 0.91775 | 1.603082 | 1.299796 | 1.988165 | 0.976163 | 1.214985 | 1.745302 | 0.877984 | 1.090569 | 1.776707 | 1.079071 | 1.159275 | 1.862878 | |
Rank | 1 | 9 | 7 | 13 | 3 | 8 | 12 | 2 | 4 | 10 | 5 | 6 | 11 | |
C11-F8 | Mean | 220 | 287.3329 | 241.2176 | 329.2094 | 222.5348 | 258.6563 | 267.7395 | 224.2247 | 227.6045 | 224.2247 | 247.3067 | 478.5826 | 222.5818 |
Best | 220 | 259.8815 | 223.7553 | 286.7508 | 220 | 220 | 246.1934 | 220 | 220 | 220 | 220 | 249.1037 | 220 | |
Worst | 220 | 323.3464 | 258.6798 | 375.4703 | 225.0697 | 359.4163 | 315.479 | 236.8989 | 235.209 | 236.8989 | 296.0452 | 582.7551 | 230.3271 | |
Std | 0 | 29.20661 | 15.7971 | 38.25039 | 3.076552 | 71.0069 | 33.71364 | 8.881242 | 9.229657 | 8.881242 | 37.90414 | 165.984 | 5.427425 | |
Median | 220 | 283.0518 | 241.2176 | 327.3083 | 222.5348 | 227.6045 | 254.6428 | 220 | 227.6045 | 220 | 236.5908 | 541.2357 | 220 | |
Rank | 1 | 10 | 6 | 11 | 2 | 8 | 9 | 4 | 5 | 4 | 7 | 12 | 3 | |
C11-F9 | Mean | 8789.286 | 577,676.6 | 392,136.4 | 1,101,221 | 20,625 | 68,367.45 | 388,333.6 | 138,018.7 | 44,296.44 | 423,556.8 | 853,670.6 | 1,122,447 | 2,014,720 |
Best | 5457.674 | 385,879.1 | 346,854.4 | 718,850 | 11,156.31 | 49,109.4 | 214,821.2 | 78,052.73 | 18,844.04 | 350,374.3 | 730,315.2 | 900,965.2 | 1,930,602 | |
Worst | 14,042.29 | 663,904.2 | 422,189.5 | 1,292,119 | 29,564.96 | 86,903.2 | 658,126.8 | 208,994.3 | 77,779.54 | 543,358.7 | 919,076.4 | 1,374,733 | 2,132,738 | |
Std | 3889.181 | 137,784.3 | 34,745.74 | 273,210.9 | 8526.786 | 16,900.77 | 212,512.5 | 56,771.19 | 26,179.21 | 89,242.55 | 88,329.7 | 266,242.6 | 104,535.7 | |
Median | 7828.591 | 630,461.6 | 399,750.8 | 1,196,958 | 20,889.37 | 68,728.59 | 340,193.1 | 132,513.8 | 40,281.09 | 400,247.2 | 882,645.4 | 1,107,045 | 1,997,771 | |
Rank | 1 | 9 | 7 | 11 | 2 | 4 | 6 | 5 | 3 | 8 | 10 | 12 | 13 | |
C11-F10 | Mean | −21.4889 | −13.701 | −16.7579 | −11.948 | −18.9391 | −14.1356 | −12.564 | −14.4587 | −13.8394 | −10.9206 | −12.8545 | −11.024 | −10.7178 |
Best | −21.8299 | −14.9479 | −16.9487 | −12.3376 | −19.3304 | −18.7599 | −13.2827 | −21.164 | −14.3313 | −11.0122 | −13.3834 | −11.0692 | −10.7552 | |
Worst | −20.7878 | −13.0631 | −16.3898 | −11.6609 | −18.554 | −11.6783 | −12.0574 | −11.0939 | −12.6316 | −10.8456 | −12.0435 | −11.0025 | −10.6622 | |
Std | 0.498616 | 0.900402 | 0.26946 | 0.303776 | 0.42259 | 3.348581 | 0.542185 | 4.773199 | 0.85429 | 0.076044 | 0.682286 | 0.032754 | 0.042033 | |
Median | −21.669 | −13.3964 | −16.8466 | −11.8967 | −18.936 | −13.0521 | −12.4579 | −12.7884 | −14.1973 | −10.9123 | −12.9956 | −11.0121 | −10.7269 | |
Rank | 1 | 7 | 3 | 10 | 2 | 5 | 9 | 4 | 6 | 12 | 8 | 11 | 13 | |
C11-F11 | Mean | 571,712.3 | 5,990,542 | 1,005,937 | 9,157,615 | 1,697,924 | 6,138,051 | 1,238,362 | 1,334,588 | 3,950,347 | 5,376,638 | 1,441,156 | 5,388,114 | 6,322,408 |
Best | 260,837.9 | 5,713,697 | 790,621.8 | 8,861,897 | 1,582,223 | 5,108,653 | 1,126,726 | 609,492 | 3,753,138 | 5,357,622 | 1,292,303 | 5,372,054 | 6,288,702 | |
Worst | 828,560.9 | 6,367,119 | 1,183,769 | 9,345,099 | 1,828,453 | 7,420,263 | 1,396,911 | 2,812,910 | 4,332,212 | 5,392,350 | 1,619,216 | 5,407,480 | 6,399,460 | |
Std | 260,922.1 | 315,719.1 | 180,244.7 | 217,528.6 | 122,969.1 | 1,003,762 | 119,865 | 1,050,363 | 273,781 | 15,960.55 | 141,558.1 | 16,144.36 | 55,013.89 | |
Median | 598,725.2 | 5,940,676 | 1,024,678 | 9,211,733 | 1,690,509 | 6,011,644 | 1,214,905 | 957,974.7 | 3,858,018 | 5,378,291 | 1,426,551 | 5,386,462 | 6,300,734 | |
Rank | 1 | 10 | 2 | 13 | 6 | 11 | 3 | 4 | 7 | 8 | 5 | 9 | 12 | |
C11-F12 | Mean | 1,199,805 | 8,648,465 | 3,453,394 | 13,667,035 | 1,277,229 | 5,166,688 | 5,980,120 | 1,332,009 | 1,432,076 | 14,799,181 | 5,954,053 | 2,353,727 | 14,965,863 |
Best | 1,155,937 | 8,290,445 | 3,348,644 | 12,692,541 | 1,199,938 | 4,885,754 | 5,545,813 | 1,174,160 | 1,263,209 | 13,925,728 | 5,653,564 | 2,175,729 | 14,835,162 | |
Worst | 1,249,353 | 8,965,661 | 3,521,972 | 14,523,280 | 1,357,501 | 5,316,545 | 6,197,392 | 1,482,783 | 1,573,795 | 15,476,182 | 6,170,450 | 2,571,333 | 15,100,976 | |
Std | 47,157.58 | 294,829.2 | 79,624.52 | 789,278.6 | 72,305.18 | 210,271.9 | 315,606 | 132,531.8 | 135,346.5 | 683,800.8 | 234,270.3 | 171,464.7 | 114,159.5 | |
Median | 1,196,965 | 8,668,878 | 3,471,481 | 13,726,159 | 1,275,738 | 5,232,227 | 6,088,637 | 1,335,547 | 1,445,649 | 14,897,407 | 5,996,098 | 2,333,922 | 14,963,658 | |
Rank | 1 | 10 | 6 | 11 | 2 | 7 | 9 | 3 | 4 | 12 | 8 | 5 | 13 | |
C11-F13 | Mean | 15,444.2 | 15,872.72 | 15,448.13 | 16,341.93 | 15,463.86 | 15,491.87 | 15,538.8 | 15,510.22 | 15,503.18 | 15,951.03 | 132,457.9 | 15,492.53 | 30,533.99 |
Best | 15,444.19 | 15,680.46 | 15,447.1 | 15,910.59 | 15,461.47 | 15,481.59 | 15,493.51 | 15,489.25 | 15,496 | 15,634.2 | 95,600.27 | 15,474.67 | 15,461.05 | |
Worst | 15,444.21 | 16,338.51 | 15,449.28 | 17,413.55 | 15,468 | 15,504.94 | 15,599.85 | 15,550.13 | 15,515.6 | 16,534.68 | 182,449.7 | 15,530.38 | 75,388.3 | |
Std | 0.009091 | 329.5679 | 0.965292 | 757.1036 | 3.04201 | 12.13496 | 52.00076 | 29.66598 | 9.128434 | 428.3972 | 41,099.67 | 26.81114 | 31,431.06 | |
Median | 15,444.2 | 15,735.95 | 15,448.08 | 16,021.78 | 15,462.99 | 15,490.47 | 15,530.92 | 15,500.75 | 15,500.56 | 15,817.61 | 125,890.8 | 15,482.53 | 15,643.31 | |
Rank | 1 | 9 | 2 | 11 | 3 | 4 | 8 | 7 | 6 | 10 | 13 | 5 | 12 | |
C11-F14 | Mean | 18,295.35 | 115,938.6 | 18,527.59 | 236,838 | 18,619.25 | 19,576.66 | 19,259.86 | 19,460.62 | 19,267.06 | 321,549.6 | 19,121.96 | 19,155.72 | 19,142.49 |
Best | 18,241.58 | 88,038.86 | 18,409.22 | 174,242.1 | 18,533.36 | 19,310.27 | 19,102.02 | 19,357.41 | 19,116.91 | 30,687.52 | 18,822.08 | 18,985.66 | 18,847.36 | |
Worst | 18,388.08 | 162,435.6 | 18,626.34 | 341,619.3 | 18,694.96 | 20,146.79 | 19,385.69 | 19,546.24 | 19,460.5 | 621,276.2 | 19,341.44 | 19,304.28 | 19,454.19 | |
Std | 71.59938 | 34,977.03 | 107.5807 | 78,804.57 | 73.40623 | 403.5767 | 136.4873 | 83.23058 | 159.3053 | 298,019.5 | 235.5233 | 137.423 | 260.6657 | |
Median | 18,275.87 | 106,639.9 | 18,537.4 | 215,745.3 | 18,624.35 | 19,424.79 | 19,275.87 | 19,469.41 | 19,245.42 | 317,117.3 | 19,162.17 | 19,166.47 | 19,134.21 | |
Rank | 1 | 11 | 2 | 12 | 3 | 10 | 7 | 9 | 8 | 13 | 4 | 6 | 5 | |
C11-F15 | Mean | 32,883.58 | 940,841.1 | 110,645.3 | 1,985,231 | 32,950.76 | 55,363.33 | 225,557.8 | 33,108.08 | 33,085.12 | 15,996,211 | 309,756.9 | 33,303.15 | 8,231,969 |
Best | 32,782.17 | 387,070.3 | 43,553.37 | 829,509.7 | 32,873.13 | 33,051.11 | 33,017.86 | 33,024.19 | 33,048.03 | 3,350,790 | 274,007.7 | 33,293.78 | 3,746,244 | |
Worst | 32,956.46 | 2,367,653 | 185,709.1 | 5,184,170 | 33,020.99 | 121,996.9 | 323,378.9 | 33,169.01 | 33,150.04 | 23,854,606 | 334,233.8 | 33,312.43 | 14,108,888 | |
Std | 76.94696 | 1,003,433 | 80,304.62 | 2,245,091 | 63.64504 | 46,692.58 | 137,782.2 | 67.04471 | 48.92391 | 9,799,500 | 29,448.29 | 8.071454 | 4,994,206 | |
Median | 32,897.86 | 504,320.5 | 106,659.4 | 963,621.3 | 32,954.47 | 33,202.65 | 272,917.2 | 33,119.57 | 33,071.21 | 18,389,724 | 315,393.1 | 33,303.19 | 7,536,372 | |
Rank | 1 | 10 | 7 | 11 | 2 | 6 | 8 | 4 | 3 | 13 | 9 | 5 | 12 | |
C11-F16 | Mean | 133,550 | 975,518.1 | 135,237.7 | 2,017,200 | 137,810.6 | 145,558 | 142,484.5 | 142,115.8 | 146,331.8 | 92,220,903 | 19,417,718 | 82,541,543 | 79,253,422 |
Best | 131,374.2 | 294,692.9 | 133,737.1 | 486,424.7 | 135,730.3 | 142,830.3 | 136,399.6 | 133,165.5 | 143,684 | 89,866,744 | 9,860,015 | 68,276,866 | 64,052,715 | |
Worst | 136,310.8 | 2,311,282 | 135,911.9 | 5,020,540 | 141,530.1 | 147,640.7 | 147,906.6 | 151,316.2 | 151,968.7 | 94,876,220 | 35,135,215 | 98,635,651 | 1.01E+08 | |
Std | 2392.2 | 953,315.1 | 1067.526 | 2,143,364 | 2722.974 | 2482.867 | 5054.284 | 8022.252 | 4005.458 | 2,206,781 | 11,487,547 | 13,754,292 | 16,662,950 | |
Median | 133,257.5 | 648,048.9 | 135,650.9 | 1,280,917 | 136,991 | 145,880.4 | 142,816 | 141,990.7 | 144,837.2 | 92,070,325 | 16,337,822 | 81,626,828 | 75,794,234 | |
Rank | 1 | 8 | 2 | 9 | 3 | 6 | 5 | 4 | 7 | 13 | 10 | 12 | 11 | |
C11-F17 | Mean | 1,926,615 | 9.3E+09 | 2.4E+09 | 1.61E+10 | 2,304,570 | 1.33E+09 | 1.01E+10 | 3,156,432 | 3,060,480 | 2.31E+10 | 1.16E+10 | 2.16E+10 | 2.27E+10 |
Best | 1,916,953 | 7.92E+09 | 2.18E+09 | 1.16E+10 | 1,958,863 | 1.1E+09 | 7.18E+09 | 2,310,026 | 2,042,683 | 2.23E+10 | 1.02E+10 | 1.91E+10 | 2.12E+10 | |
Worst | 1,942,685 | 1.03E+10 | 2.63E+09 | 1.97E+10 | 2,944,065 | 1.52E+09 | 1.34E+10 | 3,810,703 | 4,991,555 | 2.42E+10 | 1.23E+10 | 2.5E+10 | 2.56E+10 | |
Std | 12,003.53 | 1.11E+09 | 2.07E+08 | 3.66E+09 | 464,536.3 | 2.29E+08 | 2.74E+09 | 728,055.4 | 1,396,444 | 8.21E+08 | 9.97E+08 | 2.8E+09 | 2.11E+09 | |
Median | 1,923,412 | 9.48E+09 | 2.4E+09 | 1.66E+10 | 2,157,676 | 1.35E+09 | 9.84E+09 | 3,252,498 | 2,603,840 | 2.31E+10 | 1.2E+10 | 2.12E+10 | 2.2E+10 | |
Rank | 1 | 7 | 6 | 10 | 2 | 5 | 8 | 4 | 3 | 13 | 9 | 11 | 12 | |
C11-F18 | Mean | 942,057.5 | 57,009,339 | 6,765,597 | 1.23E+08 | 972,857.5 | 2,091,646 | 9,903,113 | 989,837.6 | 1,034,458 | 32,127,447 | 11,509,537 | 1.4E+08 | 1.19E+08 |
Best | 938,416.2 | 39,198,119 | 4,054,026 | 84,796,562 | 950,200.1 | 1,824,897 | 4,240,455 | 964,629.7 | 967,922.6 | 25,456,959 | 8,580,056 | 1.17E+08 | 1.14E+08 | |
Worst | 944,706.9 | 64,852,362 | 11,629,143 | 1.4E+08 | 1,033,181 | 2,447,367 | 17,411,962 | 1,001,598 | 1,210,129 | 34,756,120 | 14,528,317 | 1.55E+08 | 1.23E+08 | |
Std | 2774.139 | 12,627,720 | 3,707,867 | 27,267,025 | 42,401.09 | 315,442.7 | 5,845,999 | 17,904.23 | 123,353.4 | 4,693,486 | 2,793,344 | 17,827,026 | 3,754,354 | |
Median | 942,553.5 | 61,993,438 | 5,689,610 | 1.33E+08 | 954,024.6 | 2,047,161 | 8,980,017 | 996,561.4 | 979,889.4 | 34,148,355 | 11,464,888 | 1.43E+08 | 1.19E+08 | |
Rank | 1 | 10 | 6 | 12 | 2 | 5 | 7 | 3 | 4 | 9 | 8 | 13 | 11 | |
C11-F19 | Mean | 1,025,341 | 56,112,190 | 6,867,491 | 1.2E+08 | 1,142,037 | 2,517,276 | 10,562,701 | 1,493,568 | 1,375,430 | 36,886,795 | 6,463,721 | 1.79E+08 | 1.19E+08 |
Best | 967,927.7 | 47,875,067 | 6,260,767 | 1.04E+08 | 1,070,955 | 2,270,154 | 2,100,547 | 1,134,176 | 1,241,437 | 25,821,500 | 2,432,836 | 1.63E+08 | 1.16E+08 | |
Worst | 1,167,142 | 71,354,860 | 8,329,100 | 1.51E+08 | 1,297,605 | 2,980,670 | 19,167,084 | 1,996,238 | 1,558,531 | 46,022,778 | 8,501,596 | 2.07E+08 | 1.23E+08 | |
Std | 99,675.04 | 11,137,193 | 1,031,447 | 23,175,948 | 110,088.2 | 333,115.4 | 8,443,038 | 380,000.6 | 139,424 | 9,198,239 | 2,895,913 | 20,333,979 | 2,808,423 | |
Median | 983,146.6 | 52,609,416 | 6,440,048 | 1.13E+08 | 1,099,794 | 2,409,140 | 10,491,585 | 1,421,928 | 1,350,877 | 37,851,450 | 7,460,226 | 1.73E+08 | 1.19E+08 | |
Rank | 1 | 10 | 7 | 12 | 2 | 5 | 8 | 4 | 3 | 9 | 6 | 13 | 11 | |
C11-F20 | Mean | 941,250.4 | 59,668,611 | 6,078,019 | 1.3E+08 | 961,061.9 | 1,859,713 | 7,518,662 | 973,995.9 | 1,000,685 | 35,832,144 | 14,770,447 | 1.65E+08 | 1.2E+08 |
Best | 936,143.2 | 52,493,138 | 5,354,905 | 1.14E+08 | 957,468.7 | 1,668,863 | 7,081,933 | 963,584.3 | 978,672.9 | 35,045,378 | 9,799,344 | 1.51E+08 | 1.14E+08 | |
Worst | 946,866.6 | 70,665,769 | 6,851,445 | 1.55E+08 | 963,379.7 | 2,176,763 | 8,101,614 | 985,820.9 | 1,017,853 | 36,682,873 | 22,883,459 | 1.79E+08 | 1.24E+08 | |
Std | 5013.552 | 8,139,325 | 652,894.4 | 18,267,776 | 2670.851 | 253,461.5 | 458,251.8 | 10,320.56 | 17,752.81 | 715,894.6 | 6,010,182 | 16,641,832 | 4,510,598 | |
Median | 940,995.9 | 57,757,768 | 6,052,862 | 1.26E+08 | 961,699.6 | 1,796,612 | 7,445,551 | 973,289.1 | 1,003,107 | 35,800,163 | 13,199,493 | 1.65E+08 | 1.2E+08 | |
Rank | 1 | 10 | 6 | 12 | 2 | 5 | 7 | 3 | 4 | 9 | 8 | 13 | 11 | |
C11-F21 | Mean | 12.71443 | 51.66477 | 21.98088 | 78.87305 | 16.0572 | 30.47192 | 39.77733 | 28.09829 | 22.74275 | 104.0164 | 41.7608 | 109.2417 | 105.994 |
Best | 9.974206 | 42.34744 | 20.68456 | 58.47624 | 13.90111 | 27.01848 | 36.26677 | 24.84148 | 20.91572 | 49.63025 | 36.61142 | 94.29664 | 60.45563 | |
Worst | 14.97499 | 61.65781 | 23.79304 | 99.26551 | 18.3479 | 32.19298 | 44.13805 | 31.18011 | 25.09372 | 153.4827 | 44.73996 | 121.6858 | 129.6288 | |
Std | 2.412667 | 8.750969 | 1.396524 | 18.93558 | 2.173182 | 2.482172 | 3.658371 | 3.733097 | 1.924417 | 44.71405 | 3.837542 | 14.11278 | 33.81205 | |
Median | 12.95425 | 51.32692 | 21.72295 | 78.87522 | 15.98989 | 31.33811 | 39.35224 | 28.18579 | 22.48077 | 106.4764 | 42.84591 | 110.4922 | 116.9458 | |
Rank | 1 | 9 | 3 | 10 | 2 | 6 | 7 | 5 | 4 | 11 | 8 | 13 | 12 | |
C11-F22 | Mean | 16.12513 | 47.98 | 27.87551 | 65.28358 | 19.19349 | 32.74598 | 47.48138 | 32.90803 | 25.33021 | 105.8946 | 47.85216 | 110.0809 | 95.48389 |
Best | 11.50133 | 41.46275 | 22.5794 | 46.99819 | 16.36546 | 28.71428 | 41.10402 | 25.17317 | 24.09788 | 68.38003 | 39.74339 | 92.35913 | 94.65695 | |
Worst | 19.55286 | 53.63684 | 33.24577 | 75.15155 | 21.32566 | 35.26266 | 52.30679 | 38.08284 | 26.25798 | 125.4222 | 57.19442 | 121.509 | 97.01353 | |
Std | 4.197797 | 5.483258 | 5.290419 | 13.16113 | 2.482115 | 2.995329 | 5.301012 | 6.106807 | 1.080977 | 26.96416 | 7.537477 | 13.85053 | 1.132853 | |
Median | 16.72317 | 48.41021 | 27.83842 | 69.4923 | 19.54142 | 33.50349 | 48.25735 | 34.18806 | 25.48249 | 114.8881 | 47.23541 | 113.2277 | 95.13255 | |
Rank | 1 | 9 | 4 | 10 | 2 | 5 | 7 | 6 | 3 | 12 | 8 | 13 | 11 | |
Sum rank | 22 | 191 | 109 | 231 | 55 | 146 | 145 | 118 | 97 | 222 | 157 | 198 | 224 | |
Mean rank | 1 | 8.681818 | 4.954545 | 10.5 | 2.5 | 6.636364 | 6.590909 | 5.363636 | 4.409091 | 10.09091 | 7.136364 | 9 | 10.18182 | |
Total rank | 1 | 9 | 4 | 13 | 2 | 7 | 6 | 5 | 3 | 11 | 8 | 10 | 12 | |
Wilcoxon: p-value | 4.38E-12 | 7.75E-15 | 1.56E-15 | 0.001746142 | 4.89E-15 | 5.25E-15 | 1.60E-11 | 1.92E-12 | 3.34E-15 | 8.03E-15 | 1.56E-15 | 2.28E-15 |
Algorithm | Optimal Variables | Optimal Cost | |||
---|---|---|---|---|---|
R | L | ||||
BOA | 0.7781685 | 0.3846492 | 40.319615 | 200 | 5885.3263 |
WSO | 0.7781685 | 0.3846492 | 40.319615 | 200 | 5885.3322 |
AVOA | 0.7781902 | 0.3846599 | 40.320737 | 199.98436 | 5885.3693 |
RSA | 0.8538832 | 0.4168324 | 40.384824 | 200 | 6547.2433 |
MPA | 0.7781685 | 0.3846492 | 40.319615 | 200 | 5885.3322 |
TSA | 0.7797576 | 0.3858656 | 40.396539 | 200 | 5913.0266 |
WOA | 0.8128457 | 0.5410128 | 40.396424 | 198.93351 | 6581.148 |
MVO | 0.8182022 | 0.4061992 | 42.352706 | 173.53515 | 5968.7271 |
GWO | 0.7784539 | 0.3856252 | 40.32716 | 199.94288 | 5890.2366 |
TLBO | 1.1978845 | 1.2639942 | 61.056149 | 91.741579 | 14,709.571 |
GSA | 0.957018 | 0.4737273 | 49.581732 | 144.99985 | 7674.4943 |
PSO | 1.276768 | 2.3221525 | 50.647017 | 110.15343 | 17,231.342 |
GA | 1.1434315 | 0.7799385 | 54.784767 | 96.514991 | 9745.9413 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
BOA | 5885.3263 | 5885.3263 | 5885.3263 | 2.32E-08 | 5885.3263 | 1 |
WSO | 5907.011 | 5885.3322 | 6094.606 | 53.104713 | 5885.3322 | 3 |
AVOA | 6417.9542 | 5885.3693 | 7301.8987 | 485.20827 | 6249.9206 | 5 |
RSA | 12,102.458 | 6547.2433 | 20,969.982 | 3923.6076 | 11,268.435 | 9 |
MPA | 5885.3322 | 5885.3322 | 5885.3322 | 3.91E-06 | 5885.3322 | 2 |
TSA | 6259.4568 | 5913.0266 | 7323.2568 | 391.18418 | 6101.1237 | 6 |
WOA | 7978.5279 | 6581.148 | 12,433.242 | 1390.3395 | 7795.4774 | 8 |
MVO | 6576.3819 | 5968.7271 | 7273.5044 | 448.12807 | 6572.6459 | 7 |
GWO | 5945.5243 | 5890.2366 | 6636.6942 | 163.66397 | 5901.7573 | 4 |
TLBO | 39,032.934 | 14,709.571 | 69,674.574 | 15,506.903 | 38,454.338 | 12 |
GSA | 24,592.049 | 7674.4943 | 39,531.957 | 8743.4829 | 26,413.075 | 10 |
PSO | 41,176.997 | 17,231.342 | 89,983.875 | 18,842.417 | 38,677.472 | 13 |
GA | 29,575.451 | 9745.9413 | 60,485.672 | 14,026.27 | 26,621.057 | 11 |
Algorithm | Optimal Variables | Optimal Cost | ||||||
---|---|---|---|---|---|---|---|---|
BOA | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.3502147 | 5.2866832 | 2996.3482 |
WSO | 3.5000005 | 0.7 | 17 | 7.3000099 | 7.8000004 | 3.3502148 | 5.2866833 | 2996.3483 |
AVOA | 3.5 | 0.7 | 17 | 7.3000007 | 7.8 | 3.3502147 | 5.2866832 | 2996.3482 |
RSA | 3.5922092 | 0.7 | 17 | 8.222092 | 8.261046 | 3.3556658 | 5.4833809 | 3182.9113 |
MPA | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.3502147 | 5.2866832 | 2996.3482 |
TSA | 3.5129039 | 0.7 | 17 | 7.3 | 8.261046 | 3.3505407 | 5.2902177 | 3013.8833 |
WOA | 3.587509 | 0.7 | 17 | 7.3 | 8.0094193 | 3.3616163 | 5.2867558 | 3038.2679 |
MVO | 3.5022528 | 0.7 | 17 | 7.3 | 8.069157 | 3.3696027 | 5.2868819 | 3008.2394 |
GWO | 3.5006415 | 0.7 | 17 | 7.3051454 | 7.8 | 3.3639533 | 5.2888109 | 3001.5161 |
TLBO | 3.556121 | 0.703999 | 26.327655 | 8.1017162 | 8.1453492 | 3.6635667 | 5.3393802 | 5271.2441 |
GSA | 3.5229197 | 0.7027544 | 17.369301 | 7.8207543 | 7.8896487 | 3.4088005 | 5.3859782 | 3169.7986 |
PSO | 3.5081873 | 0.700072 | 18.096129 | 7.3990809 | 7.8680597 | 3.5955569 | 5.3440486 | 3302.6701 |
GA | 3.5780478 | 0.7055678 | 17.814174 | 7.742773 | 7.8558683 | 3.7017132 | 5.3463595 | 3.35E+03 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
BOA | 2996.3482 | 2996.3482 | 2996.3482 | 9.33E-13 | 2996.3482 | 1 |
WSO | 2996.6318 | 2996.3483 | 2998.8003 | 0.5851051 | 2996.3644 | 3 |
AVOA | 3000.8579 | 2996.3482 | 3011.0816 | 3.9697349 | 3000.7583 | 4 |
RSA | 3276.9058 | 3182.9113 | 3335.2402 | 57.540902 | 3291.7902 | 9 |
MPA | 2996.3482 | 2996.3482 | 2996.3482 | 3.19E-06 | 2996.3482 | 2 |
TSA | 3032.1482 | 3013.8833 | 3045.8852 | 10.144159 | 3033.9369 | 7 |
WOA | 3150.1207 | 3038.2679 | 3445.3098 | 106.34463 | 3116.768 | 8 |
MVO | 3029.8375 | 3008.2394 | 3070.2104 | 13.263239 | 3030.2775 | 6 |
GWO | 3004.6252 | 3001.5161 | 3010.5926 | 2.5083807 | 3004.107 | 5 |
TLBO | 6.958E+13 | 5271.2441 | 5.037E+14 | 1.158E+14 | 2.725E+13 | 12 |
GSA | 3454.8489 | 3169.7986 | 4076.1493 | 262.31973 | 3325.1431 | 10 |
PSO | 1.027E+14 | 3302.6701 | 5.202E+14 | 1.24E+14 | 7.345E+13 | 13 |
GA | 4.944E+13 | 3347.0081 | 3.191E+14 | 7.789E+13 | 1.981E+13 | 11 |
Algorithm | Optimal Variables | Optimal Cost | |||
---|---|---|---|---|---|
h | l | t | b | ||
BOA | 0.2057296 | 3.4704887 | 9.0366239 | 0.2057296 | 1.7246798 |
WSO | 0.2057296 | 3.4704887 | 9.0366239 | 0.2057296 | 1.7248523 |
AVOA | 0.2049647 | 3.4870781 | 9.0365172 | 0.2057345 | 1.7259197 |
RSA | 0.1966937 | 3.534683 | 9.9249453 | 0.2177987 | 1.9754653 |
MPA | 0.2057296 | 3.4704887 | 9.0366239 | 0.2057296 | 1.7248523 |
TSA | 0.2041956 | 3.4953797 | 9.0641911 | 0.2061564 | 1.7338449 |
WOA | 0.2137287 | 3.3297286 | 8.9738153 | 0.2209982 | 1.8213232 |
MVO | 0.2059931 | 3.46481 | 9.044686 | 0.2060556 | 1.7283648 |
GWO | 0.205592 | 3.4736454 | 9.0362401 | 0.2057988 | 1.7255236 |
TLBO | 0.315253 | 4.4215666 | 6.7977001 | 0.4250886 | 3.0235653 |
GSA | 0.2938352 | 2.7217307 | 7.4212433 | 0.3079408 | 2.0844573 |
PSO | 0.3725304 | 3.4246823 | 7.3446854 | 0.5739303 | 4.0226813 |
GA | 0.224308 | 6.9143503 | 7.7634846 | 0.304362 | 2.7608802 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
BOA | 1.7246798 | 1.7246798 | 1.7246798 | 2.28E-16 | 1.7246798 | 1 |
WSO | 1.7248526 | 1.7248523 | 1.7248578 | 1.25E-06 | 1.7248523 | 3 |
AVOA | 1.7612095 | 1.7259197 | 1.8426669 | 0.0364639 | 1.7473196 | 7 |
RSA | 2.1815628 | 1.9754653 | 2.5291486 | 0.1441236 | 2.1565285 | 8 |
MPA | 1.7248523 | 1.7248523 | 1.7248523 | 3.35E-09 | 1.7248523 | 2 |
TSA | 1.7431468 | 1.7338449 | 1.7523381 | 0.005605 | 1.743243 | 6 |
WOA | 2.3106389 | 1.8213232 | 4.0458397 | 0.6416317 | 2.0857253 | 9 |
MVO | 1.7412206 | 1.7283648 | 1.775042 | 0.0137552 | 1.7371509 | 5 |
GWO | 1.7272522 | 1.7255236 | 1.7312956 | 0.0013626 | 1.727007 | 4 |
TLBO | 3.326E+13 | 3.0235653 | 3.209E+14 | 8.111E+13 | 5.6909484 | 12 |
GSA | 2.4436073 | 2.0844573 | 2.7521417 | 0.1914907 | 2.4731468 | 10 |
PSO | 4.586E+13 | 4.0226813 | 2.776E+14 | 8.759E+13 | 6.7293081 | 13 |
GA | 1.126E+13 | 2.7608802 | 1.218E+14 | 3.456E+13 | 5.6575496 | 11 |
Algorithm | Optimal Variables | Optimal Cost | ||
---|---|---|---|---|
d | D | P | ||
BOA | 0.0516891 | 0.3567177 | 11.288966 | 0.0126019 |
WSO | 0.0516871 | 0.3566701 | 11.291759 | 0.0126652 |
AVOA | 0.0511918 | 0.3448817 | 12.021301 | 0.0126702 |
RSA | 0.0501316 | 0.314172 | 14.710881 | 0.0131579 |
MPA | 0.0516907 | 0.3567583 | 11.28659 | 0.0126652 |
TSA | 0.0509889 | 0.3401015 | 12.347641 | 0.012682 |
WOA | 0.0511663 | 0.3442823 | 12.06054 | 0.0126707 |
MVO | 0.0501316 | 0.3199667 | 13.884692 | 0.0127497 |
GWO | 0.0519561 | 0.3631596 | 10.925567 | 0.0126707 |
TLBO | 0.0677281 | 0.8916127 | 2.7236846 | 0.0174771 |
GSA | 0.0551098 | 0.4411042 | 7.8215101 | 0.0130734 |
PSO | 0.0676458 | 0.8885012 | 2.7236846 | 0.0173752 |
GA | 0.0681952 | 0.8994084 | 2.7236846 | 0.0178708 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
BOA | 0.0126019 | 0.0126019 | 0.0126019 | 6.88E-18 | 0.0126019 | 1 |
WSO | 0.0126763 | 0.0126652 | 0.0128239 | 3.537E-05 | 0.0126656 | 3 |
AVOA | 0.0133339 | 0.0126702 | 0.0141329 | 0.00055 | 0.0132665 | 8 |
RSA | 0.0132385 | 0.0131579 | 0.0133806 | 6.845E-05 | 0.0132178 | 6 |
MPA | 0.0126652 | 0.0126652 | 0.0126652 | 2.81E-09 | 0.0126652 | 2 |
TSA | 0.0129585 | 0.012682 | 0.0135147 | 0.0002383 | 0.0128858 | 5 |
WOA | 0.0132643 | 0.0126707 | 0.0144745 | 0.0005961 | 0.0130687 | 7 |
MVO | 0.0164236 | 0.0127497 | 0.0178419 | 0.0016251 | 0.0173272 | 9 |
GWO | 0.0127222 | 0.0126707 | 0.0129425 | 5.456E-05 | 0.0127197 | 4 |
TLBO | 0.0180015 | 0.0174771 | 0.0186004 | 0.0003532 | 0.0179579 | 10 |
GSA | 0.0193335 | 0.0130734 | 0.031807 | 0.0042027 | 0.0189131 | 11 |
PSO | 2.064E+13 | 0.0173752 | 3.663E+14 | 8.195E+13 | 0.0173752 | 13 |
GA | 1.612E+12 | 0.0178708 | 1.668E+13 | 4.815E+12 | 0.025383 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubálovská, M.; Hubálovský, Š.; Trojovský, P. Botox Optimization Algorithm: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2024, 9, 137. https://doi.org/10.3390/biomimetics9030137
Hubálovská M, Hubálovský Š, Trojovský P. Botox Optimization Algorithm: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2024; 9(3):137. https://doi.org/10.3390/biomimetics9030137
Chicago/Turabian StyleHubálovská, Marie, Štěpán Hubálovský, and Pavel Trojovský. 2024. "Botox Optimization Algorithm: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems" Biomimetics 9, no. 3: 137. https://doi.org/10.3390/biomimetics9030137
APA StyleHubálovská, M., Hubálovský, Š., & Trojovský, P. (2024). Botox Optimization Algorithm: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics, 9(3), 137. https://doi.org/10.3390/biomimetics9030137