Research on Microgrid Optimal Dispatching Based on a Multi-Strategy Optimization of Slime Mould Algorithm
Abstract
:1. Introduction
2. Problem Formulation and Microgrid Model
2.1. Diesel Generator Model
2.2. Wind Power Generation Model
2.3. Solar Power Model
2.4. Storage Battery Model
2.5. Micro Turbine Model
2.6. Fuel Cell Model
2.7. Main Grid
2.8. Objective
- (1)
- Controllable energy cost:
- (2)
- Uncontrollable energy cost:
- (3)
- Power purchase cost:
- (4)
- Environmental cost:
- (5)
- Startup and shut down cost:
2.9. Restrictions
- (1)
- Power balance constraints
- (2)
- Output power constraints of each generator set
- (3)
- Exchange power constraints of microgrid and main grid
- (4)
- Constraints of storage battery units
3. Algorithms Improvement
3.1. Standard SMA Algorithm
3.2. Standard Salp Swarm Algorithm
3.3. Multi-Strategy Fused Slime Mould Optimization Algorithm (MFSMA)
3.3.1. Refracted Opposition-Based Learning
3.3.2. New Adaptive Parameter
3.3.3. Follower Strategy
3.3.4. MFSMA for Solving Microgrid Optimal Dispatching Problem
Algorithm 1 |
Input: : Number of the units (dimension of the model) : The upper and lower limits of the output power of each unit, Load power, wind power generation and photovoltaic power generation by time period : The characteristic coefficient of each unit Output: Minimum total cost of microgrid power generation 1: Initialization parameter ; 2: Initialization the position of slime mould 3: Set the iteration counter it = 0 4: While , then 5: Calculate the fitness of all slime mould by Equation (14); 6: Update , 7: Calculate the by Equation (23); 8: For each search portion 9: Update ; 10: Update positions by Equation (20); 11: Generate refraction population by Equation (27); 12: if 13: ; 14: end if 15: End for 16: Sort ; 17: For i = 1: popsize 18: if 19: Updates position by Equation (26); 20: end if 21: end for 22: 23: End while 24: Return ; |
4. Comparison
4.1. MFSMA Qualitative Analysis
4.2. MFSMA Compared with Other Algorithms
5. Simulation
5.1. Grid-Connected Operation
5.2. Island Operation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majid, M.A. Renewable energy for sustainable development in India: Current status, future prospects, challenges, employment, and investment opportunities. Energy Sustain. Soc. 2020, 10, 1–36. [Google Scholar]
- Hanifi, S.; Liu, X.; Lin, Z.; Lotfian, S. A critical review of wind power forecasting methods—Past, present and future. Energies 2020, 13, 3764. [Google Scholar] [CrossRef]
- Ahmed, M.; Meegahapola, L.; Vahidnia, A.; Datta, M. Stability and control aspects of microgrid Architectures—A comprehensive review. IEEE Access 2020, 8, 144730–144766. [Google Scholar] [CrossRef]
- Sakthivel, V.P.; Thirumal, K.; Sathya, P.D. Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization. Renew. Energy 2022, 191, 459–492. [Google Scholar] [CrossRef]
- Jalilpoor, K.; Nikkhah, S.; Sepasian, M.S.; Aliabadi, M.G. Application of precautionary and corrective energy management strategies in improving networked microgrids resilience: A two-stage linear programming. Electr. Power Syst. Res. 2022, 204, 107704. [Google Scholar] [CrossRef]
- Li, B.; Roche, R. Real-Time Dispatching Performance Improvement of Multiple Multi-Energy Supply Microgrids Using Neural Network Based Approximate Dynamic Programming. Front. Electron. 2021, 2, 637736. [Google Scholar] [CrossRef]
- Ping, L.; Xiangrui, K.; Chen, F.; Zheng, Y. Novel distributed state estimation method for the AC-DC hybrid microgrid based on the Lagrangian relaxation method. J. Eng. 2019, 2019, 4932–4936. [Google Scholar] [CrossRef]
- Knueven, B.; Ostrowski, J.; Watson, J.P. On mixed-integer programming formulations for the unit commitment problem. INFORMS J. Comput. 2020, 32, 857–876. [Google Scholar] [CrossRef]
- Ning, C.; You, F. Data-driven adaptive robust unit commitment under wind power uncertainty: A Bayesian nonparametric approach. IEEE Trans. Power Syst. 2019, 34, 2409–2418. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, X.; Zhu, H.; Xu, Y. Application an improved swarming optimisation in attribute reduction. Int. J. Bio-Inspired Comput. 2020, 16, 213–219. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Saremi, S.; Mirjalili, S. Whale optimization algorithm: Theory, literature review, and application in designing photonic crystal filters. In Nature-Inspired Optimizers: Theories, Literature Reviews and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 219–238. [Google Scholar]
- Cui, Z.; Zhang, M.; Wang, H.; Cai, X.; Zhang, W. A hybrid many-objective cuckoo search algorithm. Soft Comput. 2019, 23, 10681–10697. [Google Scholar] [CrossRef]
- Dou, C.; Zhou, X.; Zhang, T.; Xu, S. Economic optimization dispatching strategy of microgrid for promoting photoelectric consumption considering cogeneration and demand response. J. Mod. Power Syst. Clean Energy 2020, 8, 557–563. [Google Scholar] [CrossRef]
- Abhilipsa, S.; Kumar, H.P. Impact of energy storage system and distributed energy resources on bidding strategy of micro-grid in deregulated environment. J. Energy Storage 2021, 43, 103230. [Google Scholar]
- Dai, X.; Lu, K.; Song, D.; Zhu, Z.; Zhang, Y. Optimal economic dispatch of microgrid based on chaos map adaptive annealing particle swarm optimization algorithm. J. Phys. Conf. Ser. 2021, 1871, 012004. [Google Scholar] [CrossRef]
- Cao, H.; Xu, J.; Ke, D.; Jin, C.; Deng, S.; Tang, C.; Cui, M.; Liu, J. Economic dispatch of micro-grid based on improved particle-swarm optimization algorithm. In Proceedings of the 2016 North American Power Symposium (NAPS), Denver, CO, USA, 18–20 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Wang, Z.; Dou, Z.; Dong, J.; Si, S.; Wang, C.; Liu, L. Optimal Dispatching of Regional Interconnection Multi-Microgrids Based on Multi-Strategy Improved Whale Optimization Algorithm. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 766–779. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Xiao, L.; Zhao, G. Research on economic optimal dispatching of microgrid cluster based on improved butterfly optimization algorithm. Int. Trans. Electr. Energy Syst. 2022, 2022, 7041778. [Google Scholar] [CrossRef]
- Wu, Z.; Gu, W.; Wang, R.; Yuan, X.; Liu, W. Economic optimal schedule of CHP microgrid system using chance constrained programming and particle swarm optimization. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–11. [Google Scholar]
- Marzband, M.; Yousefnejad, E.; Sumper, A.; Domínguez-García, J.L. Real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization. Int. J. Electr. Power Energy Syst. 2016, 75, 265–274. [Google Scholar] [CrossRef]
- Yeh, W.C.; He, M.F.; Huang, C.L.; Tan, S.Y.; Zhang, X.; Huang, Y.; Li, L. New genetic algorithm for economic dispatch of stand-alone three-modular microgrid in DongAo Island. Appl. Energy 2020, 263, 114508. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Kumar, C.; Raj, T.D.; Premkumar, M.; Raj, T.D. A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters. Optik 2020, 223, 165277. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Abdel-Fatah, L.; Eldrandaly, K.A.; Abdel-Aziz, N.M. Enhanced computational intelligence algorithm for coverage optimization of 6G Non-terrestrial networks in 3D space. IEEE Access 2021, 9, 70419–70429. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Abdulkareem, I.H.; Hashim, K.S.; Al-Bugharbee, H.; Ridha, H.M.; Gharghan, S.K.; Al-Khaddar, R. Hybridised artificial neural network model with slime mould algorithm: A novel methodology for prediction of urban stochastic water demand. Water 2020, 12, 2692. [Google Scholar] [CrossRef]
- Mostafa, M.; Rezk, H.; Aly, M.; Ahmed, E.M. A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel. Sustain. Energy Technol. Assess. 2020, 42, 100849. [Google Scholar] [CrossRef]
- Shuai, H.; Fang, J.; Ai, X.; Tang, Y.; Wen, J.; He, H. Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming. IEEE Trans. Smart Grid 2018, 10, 2440–2452. [Google Scholar] [CrossRef]
- Basu, M. Quasi-oppositional group search optimization for multi-area dynamic economic dispatch. Int. J. Electr. Power Energy Syst. 2016, 78, 356–367. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-turbine and wind-farm flows: A review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Mahela, O.P.; Gupta, N.; Khosravy, M.; Patel, N. Comprehensive overview of low voltage ride through methods of grid integrated wind generator. IEEE Access 2019, 7, 99299–99326. [Google Scholar] [CrossRef]
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, X.; Cai, J.; Xu, X.; Liu, H. Multi-time scale coordinated optimal dispatch of microgrid cluster based on MAS. Electr. Power Syst. Res. 2019, 177, 105976. [Google Scholar] [CrossRef]
- Nammouchi, A.; Aupke, P.; D’andreagiovanni, F.; Ghazzai, H.; Theocharis, A.; Kassler, A. Robust opportunistic optimal energy management of a mixed microgrid under asymmetrical uncertainties. Sustain. Energy Grids Netw. 2023, 36, 101184. [Google Scholar] [CrossRef]
- Patel, S.; Ghosh, A.; Ray, P.K. Optimum control of power flow management in PV, wind, and battery-integrated hybrid microgrid systems by implementing in real-time digital simulator-based platform. Soft Comput. 2023, 27, 10863–10891. [Google Scholar] [CrossRef]
- Muthukumar, M.; Rengarajan, N.; Velliyangiri, B.; Omprakas, M.A.; Rohit, C.B.; Raja, U.K. The development of fuel cell electric vehicles—A review. Mater. Today Proc. 2021, 45, 1181–1187. [Google Scholar] [CrossRef]
- Nagarajan, K.; Rajagopalan, A.; Angalaeswari, S.; Natrayan, L.; Mammo, W.D. Combined economic emission dispatch of microgrid with the incorporation of renewable energy sources using improved mayfly optimization algorithm. Comput. Intell. Neurosci. 2022, 2022, 6461690. [Google Scholar] [CrossRef] [PubMed]
- Idriss, A.I.; Ahmed, R.A.; Omar, A.I.; Said, R.K.; Akinci, T.C. Wind energy potential and micro-turbine performance analysis in Djibouti-city, Djibouti. Eng. Sci. Technol. Int. J. 2020, 23, 65–70. [Google Scholar] [CrossRef]
- Sazali, N.; Wan Salleh, W.N.; Jamaludin, A.S.; Mhd Razali, M.N. New perspectives on fuel cell technology: A brief review. Membranes 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Sarfi, V.; Livani, H. An economic-reliability security-constrained optimal dispatch for microgrids. IEEE Trans. Power Syst. 2018, 33, 6777–6786. [Google Scholar] [CrossRef]
- Fingersh, L.; Hand, M.; Laxson, A. Wind Turbine Design Cost and Scaling Model. No. NREL/TP-500-40566; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2006. [Google Scholar]
- Zhao, Z.-Y.; Chen, Y.-L.; Thomson, J.D. Levelized cost of energy modeling for concentrated solar power projects: A China study. Energy 2017, 120, 117–127. [Google Scholar] [CrossRef]
- Nwulu, N.I.; Xia, X. Optimal dispatch for a microgrid incorporating renewables and demand response. Renew. Energy 2017, 101, 16–28. [Google Scholar] [CrossRef]
- Castillo-Calzadilla, T.; Cuesta, M.A.; Olivares-Rodriguez, C.; Macarulla, A.M.; Legarda, J.; Borges, C.E. Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight. Renew. Sustain. Energy Rev. 2022, 161, 112198. [Google Scholar] [CrossRef]
- Yacoubi, S.; Manita, G.; Amdouni, H.; Mirjalili, S.; Korbaa, O. A modified multi-objective slime mould algorithm with orthogonal learning for numerical association rules mining. Neural Comput. Appl. 2023, 35, 6125–6151. [Google Scholar] [CrossRef]
- Liu, C.-H.; He, Q. Adaptive Artificial Bee Colony Slime Mould Algorithm with Improved Crossover Operator. J. Chin. Comput. Syst. 2023, 44, 263. [Google Scholar]
- Abdel-Basset, M.; Chang, V.; Mohamed, R. HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Appl. Soft Comput. 2020, 95, 106642. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, C.; Mafarja, M.; Heidari, A.A.; Chen, Y.; Cai, Z. Slime mould algorithm: A comprehensive review of recent variants and applications. Int. J. Syst. Sci. 2023, 54, 204–235. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H. Salp swarm algorithm: A comprehensive survey. Neural Comput. Appl. 2020, 32, 11195–11215. [Google Scholar] [CrossRef]
- Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput. 2018, 39, 1–23. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Ucan, A.; Ibrikci, T.; Arasteh, B.; Isik, G. Slime mould algorithm: A comprehensive survey of its variants and applications. Arch. Comput. Methods Eng. 2023, 30, 2683–2723. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Houssein, E.H.; Gad, A.G.; Wazery, Y.M. Jaya algorithm and applications: A comprehensive review. In Metaheuristics and Optimization in Computer and Electrical Engineering; Springer: Cham, Switzerland, 2021; pp. 3–24. [Google Scholar]
- Houssein, E.H.; Mahdy, M.A.; Blondin, M.J.; Shebl, D.; Mohamed, W.M. Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst. Appl. 2021, 174, 114689. [Google Scholar] [CrossRef]
- Bhadoria, A.; Marwaha, S. Chaotic Slime Mould Inspired Hybrid Optimizer Approach for Day Ahead Generation Scheduling Problem. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Kunya, A.B.; Abubakar, A.S.; Yusuf, S.S. Review of economic dispatch in multi-area power system: State-of-the-art and future prospective. Electr. Power Syst. Res. 2023, 217, 109089. [Google Scholar] [CrossRef]
- Hong, B.W.; Guo, L.; Wang, C.S.; Jiao, B.Q.; Liu, W.J. Model and method of dynamic multi-objective optimal dispatch for microgrid. Electr. Power Autom. Equip. 2013, 33, 100–107. [Google Scholar]
- Ding, M.; Zhang, Y.; Mao, M.; Liu, X.; Xu, N. Economic operation optimization for microgrids including Na/S battery storage. Proc. CSEE 2011, 31, 7–14. [Google Scholar]
Name | Function | Dim | Range | Fmin |
---|---|---|---|---|
F5 | 30 | [−30, 30] | 0 | |
F7 | 30 | [−1.28, 1.28] | 0 | |
F11 | 30 | [−600, 600] | 0 | |
F12 | 30 | [−50, 50] | 0 | |
F13 | 30 | [−50, 50] | 0 | |
F15 | 4 | [−5, 5] | 0.0003 | |
F21 | 4 | [0, 10] | −10.2 | |
F22 | 4 | [0, 10] | −10.4 | |
F23 | 4 | [0, 10] | −10.5 |
Function | Metric | MFSMA | SMA | JAYA | PSO | SSA | WOA | GWO | DBO |
---|---|---|---|---|---|---|---|---|---|
F5 | AVE STD | 0 0.028 | 72.769 121.883 | 4.856 × 10−5 2.280 × 10−5 | 9.391 × 10−3 7.540 × 10−3 | 6.616 × 10−6 6.280 × 10−6 | 28.640 0.180 | 27.638 0.872 | 27.025 0.5787 |
F7 | AVE STD | 2.036 × 10−4 1.728 × 10−4 | 0.062 0.037 | 0.791 0.397 | 0.709 0.287 | 4.519 2.0492 | 0.007 0.007 | 0.007 0.004 | 0.002 0.002 |
F11 | AVE STD | 0 0 | 0.944 0.544 | 12.1465 3.609 | 79.203 11.058 | 67.745 26.541 | 0.013 0.057 | 0.018 0.023 | 3.771 × 10−11 1.686 × 10−10 |
F12 | AVE STD | 4.004 × 10−5 4.391 × 10−5 | 0.069 0.132 | 8.541 × 10−4 2.013 × 10−5 | 4.860 2.245 | 9.064 × 10−6 1.119 × 10−7 | 0.093 0.100 | 0.079 0.047 | 0.003 0.003 |
F13 | AVE STD | 1.981 × 10−5 0.0038 | 0.720 1.412 | 5.166 × 10−5 4.656 × 10−5 | 35.670 34.638 | 2.698 × 10−7 4.050 × 10−7 | 0.935 0.417 | 1.072 9.707 × 10−4 | 1.294 0.584 |
F15 | AVE STD | 3.934 × 10−4 2.023 × 10−6 | 0.002 0.001 | 6.463 × 10−4 2.104 × 10−4 | 0.002 0.005 | 0.007 0.007 | 0.001 8.009 × 10−4 | 0.004 0.007 | 8.6686 × 10−4 4.529 × 10−4 |
F21 | AVE STD | −10.152 5.605 × 10−4 | −9.859 0.405 | −5.483 2.174 | −8.769 2.509 | −4.934 2.563 | −7.289 2.892 | −8.622 2.377 | −7.219 2.743 |
F22 | AVE STD | −10.396 7.164 × 10−4 | −9.872 0.748 | −7.234 3.039 | −8.278 3.367 | −5.724 3.365 | −6.576 2.738 | −10.390 0.008 | −6.662 3.276 |
F23 | AVE STD | −10.531 5.655 × 10−4 | −10.026 0.908 | −6.658 2.813 | −7.743 3.908 | −5.2683 3.365 | −5.510 3.415 | −10.523 0.009 | −7.852 3.467 |
DG1 | 0.26 | −0.3975 | 0.002176 | 0.02697 | −3.975 | 15 | 45.5 |
DG2 | −95.14 | 0.4846 | 0.00001176 | −0.05914 | 4.864 | 20 | 50 |
DG3 | −53.99 | 0.4462 | 0.0001498 | −0.05399 | 4.462 | 19 | 49 |
DG4 | −61.13 | 0.5084 | 0.0000416 | −0.06113 | 5.084 | 20 | 49 |
Pollutant | Cost ($/kg) | WT(PV) (g/kW·h) | MT (g/kW·h) | DG (g/kW·h) | FC (g/kW·h) | Grid (g/kW·h) |
---|---|---|---|---|---|---|
0.03 | 0 | 724 | 1488 | 489 | 889 | |
2.1468 | 0 | 0.0036 | 0.01388 | 0.003 | 1.8 | |
9.1074 | 0 | 0.2 | 0.3155 | 0.014 | 1.6 |
WT (kW) | FC (kW) | SB (kW) | Removable Load (kW) | |
---|---|---|---|---|
0 | 0 | −20 | 0 | |
65 | 50 | 20 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, Y. Research on Microgrid Optimal Dispatching Based on a Multi-Strategy Optimization of Slime Mould Algorithm. Biomimetics 2024, 9, 138. https://doi.org/10.3390/biomimetics9030138
Zhang Y, Zhou Y. Research on Microgrid Optimal Dispatching Based on a Multi-Strategy Optimization of Slime Mould Algorithm. Biomimetics. 2024; 9(3):138. https://doi.org/10.3390/biomimetics9030138
Chicago/Turabian StyleZhang, Yi, and Yangkun Zhou. 2024. "Research on Microgrid Optimal Dispatching Based on a Multi-Strategy Optimization of Slime Mould Algorithm" Biomimetics 9, no. 3: 138. https://doi.org/10.3390/biomimetics9030138
APA StyleZhang, Y., & Zhou, Y. (2024). Research on Microgrid Optimal Dispatching Based on a Multi-Strategy Optimization of Slime Mould Algorithm. Biomimetics, 9(3), 138. https://doi.org/10.3390/biomimetics9030138