A Bionic Walking Wheel for Enhanced Trafficability in Paddy Fields with Muddy Soil
Abstract
:1. Introduction
2. Bionic Design
2.1. Analysis of the Biological Prototype
2.2. Design of the Walking Wheel
2.3. Working Principle of the Walking Wheel
3. Modeling of Wheel–Soil Interactions
3.1. Modeling of Wheel–Soil Interactions
3.2. Dynamics Analysis of the Walking Wheel
4. Traction Trafficability Analysis
4.1. EDEM–ADAMS Coupling Simulation Analysis
4.2. Effect of Toe Gripping on Traction Performance
4.3. Wheel–Soil Interaction Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kurtay, T.; Reece, A.R. Plasticity theory and critical state soil mechanics. J. Terramechanics 1970, 7, 23–56. [Google Scholar] [CrossRef]
- Wong, J.Y. Theory of Ground Vehicles; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Reece, A.R. Principles of soil-vehicle mechanics. Proceedings of the Institution of Mechanical Engineers. Automob. Div. 1965, 180, 45–66. [Google Scholar]
- Zhang, T.T.; Peng, Z.; Zhou, D.; Lu, C. Research progress on habitat selection of Red-crowned Crane (Grus japonensis) in China. Chin. J. Zool. 2019, 54, 137–147. [Google Scholar]
- Lakhtakia, A.; Martín-Palma, R.J. Engineered Biomimicry; Newnes: London, UK, 2013. [Google Scholar]
- Zhao, Y.B.; Guo, L.; Li, L.H.; Zhang, M.H. Research of Semi-Step Walking Wheel Based on Vehicle-Terrzamechanics. Appl. Mech. Mater. 2013, 409, 1435–1440. [Google Scholar]
- Chen, D.X.; Chen, B.C.; Zhan, S.J. Principle of the Walking Wheel Mechanism. Trans. Chin. Soc. Agric. Eng. 1994, 10, 123–129. [Google Scholar]
- Chen, X.; Gao, F.; Wang, Z.; Yao, S.; Xu, G.; Yao, X. Mechanism principle and dynamics simulation on variable diameter walking wheel. In Proceedings of the 2011 Second International Conference on Digital Manufacturing, Zhangjiajie, China, 5–7 August 2011; pp. 723–727. [Google Scholar]
- Yang, L.; Cai, B.; Zhang, R.; Li, K.; Zhang, Z.; Lei, J.; Wang, R. Mechanical analysis and performance optimization for the lunar rover’s vane-telescopic walking wheel. Engineering 2020, 6, 936–943. [Google Scholar] [CrossRef]
- Wei, C.G.; Zou, M.; Zhao, Z.J.; Li, J.Q.; Zhou, G.F. Study on the tractive ability of lunar rover wheel by discrete element method. Appl. Mech. Mater. 2012, 215, 964–969. [Google Scholar]
- Pang, H.; Zhang, R.; Ge, P.; Liu, F.; Wang, C.; Dong, W.; Li, J. 3D DEM analysis on tractive trafficability of a lunar rover wheel with bionic wheel lugs. Rend. Lincei-Sci. Fis. Nat. 2021, 32, 377–387. [Google Scholar] [CrossRef]
- Zhang, R.; Pang, H.; Ji, Q.; Li, G.; Dong, W.; Wen, L.; Li, J. Structure design and traction trafficability analysis of multiposture wheel-legs bionic walking wheels for sand terrain. J. Terramechanics 2020, 91, 31–43. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, X.; Han, D.; Zhang, H.; Ma, J.; Wen, L.; Zou, M. A bionic mechanical foot with adaptive variable postures traveling on sand. J. Terramechanics 2023, 107, 61–74. [Google Scholar] [CrossRef]
- Elsheikh, M.A. Design of a special rigid wheel for traversing loose soil. Sci. Rep. 2023, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Qing, C.; Wenbo, M.; Qiuhua, R.; Ganxian, L. Optimization design of bionic grousers for the crawled mineral collector based on the deep-sea sediment. Mar. Georesources Geotechnol. 2020, 38, 48–56. [Google Scholar] [CrossRef]
- He, G.; Xu, J.; Jiang, J.; Cao, Z.; Zhu, D. Soil arching effect analysis and structure optimization of a robot foot sinking in soft soil. Adv. Mech. Eng. 2017, 9, 1687814017727940. [Google Scholar] [CrossRef]
- Tian, L.; Cao, C.; Qin, K.; Ge, J.; Fang, L. Design and experiment of self-propelled system for paddy field weeder based on the interaction mechanism of wheel-soil. Eng. Agrícola 2022, 42, e20210095. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, J.; Yang, X. A novel rigid wheel for agricultural machinery applicable to paddy field with muddy soil. J. Terramechanics 2020, 87, 21–27. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zuo, C.C.; Wang, Y.; Sun, S.M.; Ren, L.Q. Study of a Bionic paddy impeller inspired by buffalo hoof. J. Bionic Eng. 2008, 5, 79–86. [Google Scholar] [CrossRef]
- Hu, G.D.; He, C.L.; Li, H.Y.; Sun, L. Test on stress distribution of bionic C-leg wheel-soil interaction with its data processing. IOP Conf. Ser. Mater. Sci. Eng. 2018, 428, 012010. [Google Scholar] [CrossRef]
- Asano, F.; Tokuda, I. Indirectly controlled limit cycle walking of combined rimless wheel based on entrainment to active wobbling motion. Multibody Syst. Dyn. 2015, 34, 191–210. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Eltze, J.; Weidemann, H.J. Six-legged technical walking considering biological principles. Robot. Auton. Syst. 1995, 14, 223–232. [Google Scholar] [CrossRef]
- Jelinek, B.; Mason, G.; Peters, J.; Vahedifard, F.; Priddy, J. DEM Analysis of Contact Forces and Tractive Performance of Rigid Wheel in Granular Media. In Proceedings of the ISTVS 20th International and 9th Americas Conference, Online, 27–29 September 2021; p. 1. [Google Scholar]
- Hashimoto, K.; Hosobata, T.; Sugahara, Y.; Mikuriya, Y.; Sunazuka, H.; Kawase, M.; Takanishi, A. Realization by biped leg-wheeled robot of biped walking and wheel-driven locomotion. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 2970–2975. [Google Scholar]
- Baumel, J.J.; Club, N.O. Handbook of Avian Anatomy: Nomina Anatomica Avium; Nuttall Ornithological Club: Cambridge, MA, USA, 1993. [Google Scholar]
- Quinn, T.H.; Baumel, J.J. The digital tendon locking mechanism of the avian foot (Aves). Zoomorphology 1990, 109, 281–293. [Google Scholar] [CrossRef]
- Backus, S.B.; Sustaita, D.; Odhner, L.U.; Dollar, A.M. Mechanical analysis of avian feet: Multiarticular muscles in gras and perching. R. Soc. Open Sci. 2015, 2, 140350. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.-T.; Nguyen, T.V.T.; Tam, N.T.; Nguyen, Q.-M. Optimizing Magnification Ratio for the Flexible Hinge Displacement Amplifier Mechanism Design. In Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020), Nha Trang, Vietnam, 12–15 November 2020; Long, B.T., Kim, Y.-H., Ishizaki, K., Toan, N.D., Parinov, I.A., Vu, N.P., Eds.; Springer International Publishing: Cham, Switzerland; pp. 769–778. [Google Scholar]
- Tran, V.T.; Le, M.H.; Vo, M.T.; Le, Q.T.; Hoang, V.H.; Tran, N.-T.; Nguyen, V.-T.; Nguyen, T.-A.-T.; Nguyen, H.N.; Nguyen, V.T.T.; et al. Optimization design for die-sinking EDM process parameters employing effective intelligent method. Cogent Eng. 2023, 10, 2264060. [Google Scholar] [CrossRef]
- Yang, W.Z.; Chen, D.X.; Zhan, S.J.; Luo, Z. Principle and Method for Walking Wheel Design. Trans. Chin. Soc. Trans. Chin. Soc. Agric. Eng. 1994, 10, 142–146. [Google Scholar]
- Tamás, K.; Jóri, I.J.; Mouazen, A.M. Modeling soil-sweep interaction with discrete element method. Soil Tillage Res. 2013, 134, 223–231. [Google Scholar] [CrossRef]
- Wu, L.; Qi, S.; Song, Y.; Xin, M.; Liu, C.; Kong, A.; Ren, W. A DEM analysis on drag reduction characteristics of paddy field machinery surface with bionic microarchitectures. J. Shenyang Agric. Univ. 2017, 48, 55–62. [Google Scholar]
- Marco, L.; Daniele, S.; Diego, B.; Massimo, P. Calibration of Dem Simulation of Cohesive Particles. Chem. Eng. Trans. 2019, 74, 379–384. [Google Scholar]
- Nasato, D.S.; Goniva, C.; Pirker, S.; Kloss, C. Coarse Graining for Large-scale DEM Simulations of Particle Flow—An Investigation on Contact and Cohesion Models. Procedia Eng. 2015, 102, 1484–1490. [Google Scholar] [CrossRef]
- Ramírez-Aragón, C.; Ordieres-Meré, J.; Alba-Elías, F.; González-Marcos, A. Comparison of Cohesive Models in EDEM and LIGGGHTS for Simulating Powder Compaction. Materials 2018, 11, 2341. [Google Scholar] [CrossRef]
- Coetzee, C.J.; Scheffler, O.C. Review: The Calibration of DEM Parameters for the Bulk Modelling of Cohesive Materials. Processes 2022, 11, 5. [Google Scholar] [CrossRef]
- Sun, J.; Chen, H.; Wang, Z.; Ou, Z.; Yang, Z.; Liu, Z.; Duan, J. Study on plowing performance of EDEM low-resistance animal bionic device based on red soil. Soil Tillage Res. 2020, 196, 104336. [Google Scholar] [CrossRef]
- Zhang, L.; Zhai, Y.; Chen, J.; Zhang, Z.; Huang, S. Optimization design and performance study of a subsoiler underlying the tea garden subsoiling mechanism based on bionics and EDEM. Soil Tillage Res. 2022, 220, 105375. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Soil particle radius (mm) | 8 |
Soil density (kg/m3) | 2400 |
Soil shear modulus (Pa) | 1 × 107 |
Poisson’s ratio | 0.25 |
Surface energy (J/m2) | 0.15 |
Time step size (s) | 6 × 10−5 |
Coefficient of Restitution | Coefficient of Sliding Friction | Coefficient of Rolling Friction | |
---|---|---|---|
Wheel–Soil | 0.05 | 0.5 | 0.01 |
Soil–Soil | 0.05 | 0.9 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Xu, Y.; Song, Y.; Xin, M.; Wu, L.; Kong, A.; Wang, H.; Dai, P.; Yu, H. A Bionic Walking Wheel for Enhanced Trafficability in Paddy Fields with Muddy Soil. Biomimetics 2024, 9, 68. https://doi.org/10.3390/biomimetics9020068
Chen D, Xu Y, Song Y, Xin M, Wu L, Kong A, Wang H, Dai P, Yu H. A Bionic Walking Wheel for Enhanced Trafficability in Paddy Fields with Muddy Soil. Biomimetics. 2024; 9(2):68. https://doi.org/10.3390/biomimetics9020068
Chicago/Turabian StyleChen, Duo, Yan Xu, Yuqiu Song, Mingjin Xin, Liyan Wu, Aiju Kong, Huan Wang, Pengchao Dai, and Hongpeng Yu. 2024. "A Bionic Walking Wheel for Enhanced Trafficability in Paddy Fields with Muddy Soil" Biomimetics 9, no. 2: 68. https://doi.org/10.3390/biomimetics9020068
APA StyleChen, D., Xu, Y., Song, Y., Xin, M., Wu, L., Kong, A., Wang, H., Dai, P., & Yu, H. (2024). A Bionic Walking Wheel for Enhanced Trafficability in Paddy Fields with Muddy Soil. Biomimetics, 9(2), 68. https://doi.org/10.3390/biomimetics9020068