Development of a New Aggregation Method to Remove Nanoplastics from the Ocean: Proof of Concept Using Mussel Exposure Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ionic Liquids as Surface-Active Agents and Chitosan as Polyelectrolyte
2.2. Biological Model: Mediterranean Mytilus galloprovincialis
2.3. MNPs and Aggregation Method Characterization
2.3.1. Stock Solutions Preparation
2.3.2. Dynamic Light Scattering (DLS) and ζ-Potential
2.3.3. Scanning Electron Microscopy (SEM)
3. Results
3.1. Characterization of MP and NP Aggregation Method in Aquatic Systems
Microplastic and Nanoplastic Characterization
3.2. Biochemical Analyzes
3.2.1. Nanoplastics
Superoxide Dismutase (SOD)
Catalase (CAT)
Glutathione-S-Transferase (GST)
Total Antioxidant Capacity (TAC)
Glutathione Peroxidase Activity (GPx)
Lipoperoxidation (MDA Content)
Total Ubiquitin (Ub)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbols
ABTS | 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) |
ATP | Adenosine triphosphate |
BSA | Bovine Serum Albumin |
C | Celsius |
CAC | Critical aggregation concentration |
CAT | Catalase |
CCC | Critical coagulation concentration |
Chit | Chitosan |
DLS | Dynamic light scattering |
DLVO | Derjaguin−Landau−Verwey−Overbeek |
DNA | Deoxyribonucleic acid |
EDTA | Ethylenediaminetetraacetic acid |
ERC | Environmentally relevant concentration |
FIL | Fluorinated ionic liquid |
FMQ | Filtered Milli-Q water |
FSSW | Filtered synthetic seawater |
GPx | Glutathione peroxidase |
GSH | Reduced glutathione |
GST | Glutathione S-transferase |
GSSG | Oxidized disulfide glutathione |
LPO | Lipoperoxidase |
M | Million |
MDA | Malondialdehyde bis(dimethyl acetal) |
mg | Milligram |
min | Minute |
mL | Milliliter |
μL | Microliters |
MNP | Micro and Nanoplastics |
MP | Microplastics |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NBT | Nitroblue tetrazolium |
nm | Nanometer |
NOM | Natural organic matter |
NP | Microplastics |
PBS | Phosphate buffered saline |
PDI | Polydispersity index |
POP | Persistent organic pollutants |
PS | Polystyrene |
ROS | Reactive oxygen species |
sd | Standard deviation |
SDS | Sodium dodecyl sulphate |
SEM | Scanning electron microscopy |
SOD | Superoxide dismutase |
TAC | Total antioxidant capacity |
TBA | Thiobarbituric acid |
TCA | Trichloroacetic acid |
TEAC | Equivalent antioxidant capacity |
TRC | Toxicologically relevant concentration |
UV | Ultraviolet |
XOD | Xanthine-oxidase |
ζ | Zeta potential |
Appendix A
Appendix A.1. Experimental Design
Appendix A.1.1. Preparation of Micro- and Nanoplastic Test Solutions
Appendix A.1.2. Exposure Assay
Appendix A.1.3. Histological Analysis
Appendix A.2. Statistical Analysis
References
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of Microplastic Debris throughout the Marine Ecosystem. Nat. Ecol. Evol. 2017, 1, 0116. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, K. Plastics Based on Styrene. In Brydson’s Plastics Materials; Gilbert, M., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 311–328. ISBN 978-0-323-35824-8. [Google Scholar]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Chmela, Š.; Hrdlovič, P. The Inhibited Photo-Oxidation of Polystyrene and Styrene/HALS Copolymers. Polym. Degrad. Stab. 1985, 11, 339–348. [Google Scholar] [CrossRef]
- Andrady, A.L.; Neal, M.A. Applications and Societal Benefits of Plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Wünsch, J.R. Polystyrene: Synthesis, Production and Applications; Dolbey, R., Ed.; Rapra Technology Limited.: Shropshire, UK, 2000; ISBN 978-1-85957-191-0. [Google Scholar]
- NOAA. A Guide to Plastic in the Ocean. Available online: https://oceanservice.noaa.gov/hazards/marinedebris/plastics-in-the-ocean.html (accessed on 25 January 2024).
- Thompson, R.C.; Olson, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Merrell, T.R. Accumulation of Plastic Litter on Beaches of Amchitka Island, Alaska. Mar. Environ. Res. 1980, 3, 171–184. [Google Scholar] [CrossRef]
- Obbard, R.W.; Sadri, S.; Wong, Y.Q.; Khitun, A.A.; Baker, I.; Richard, C. Global Warming Releases Microplastic Legacy Frozen in Arctic Sea Ice. Earths Future 2014, 2, 315–320. [Google Scholar] [CrossRef]
- Kanhai, L.D.K.; Gårdfeldt, K.; Lyashevska, O.; Hassellöv, M.; Thompson, R.C.; Connor, I.O. Microplastics in Sub-Surface Waters of the Arctic Central Basin. Mar. Pollut. Bull. 2018, 130, 8–18. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and Wonderful? Microplastics Prevail in Snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef]
- Yariv, S.; Cross, H. Geochemistry of Colloid Systems: For Earth Scientists, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1979; ISBN 9783642670435. [Google Scholar]
- Innocenzi, P. A Sol and a Gel, What Are They? In The Sol-to-Gel Transition; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–6. ISBN 9783030200299. [Google Scholar]
- Landau, L.; Derjaguin, B. Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Prog. Surf. Sci. 1993, 43, 30–59. [Google Scholar]
- Verwey, E.; Overbeek, J. Theory of the Stability of Lyophobic Colloids; Elsevier, Ed.; Elsevier: New York, NY, USA, 1948. [Google Scholar]
- Adair, J.H.; Suvaci, E.; Sindel, J. Surface and Colloid Chemistry. In Encyclopedia of Materials: Scienceand Technology; Elsevier Ltd.: Amsterdam, The Netherlands, 2001; pp. 1–10. ISBN 0-08-0431526. [Google Scholar]
- Ohshima, H. Interaction of Colloidal Particles. In Colloid and Interface Science in Pharmaceutical Research and Development; Elsevier B.V.: Amsterdam, The Netherlands, 2014; pp. 1–28. ISBN 9780444626141. [Google Scholar]
- Hu, S.; Feng, B.; Tang, X.; Zhang, Y. Porous Alumina Ceramics Obtained by Particles Self-Assembly Combing Freeze Drying Method. Materials 2019, 12, 897. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Pugh, R.J.; Forssberg, E. Coagulation, Heterocoagulation Practical Coagulation. In Interfacial Separation of Particles; Lu, S., Pugh, R.J., Forssberg, E., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2005; pp. 290–353. [Google Scholar]
- Frens, G. On Coagulation in the Primary Minimum. Faraday Discuss. Chem. Soc. 1978, 65, 146–155. [Google Scholar] [CrossRef]
- Trefalt, G.; Szilágyi, I.; Borkovec, M. Schulze-Hardy Rule Revisited. Colloid Polym. Sci. 2020, 298, 961–967. [Google Scholar] [CrossRef]
- Oncsik, T.; Trefalt, G.; Csendes, Z.; Szilagyi, I.; Borkovec, M. Aggregation of Negatively Charged Colloidal Particles in the Presence of Multivalent Cations. Langmuir 2014, 30, 733–741. [Google Scholar] [CrossRef]
- Hüffer, T.; Praetorius, A.; Wagner, S.; Von Der Kammer, F.; Hofmann, T. Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles. Environ. Sci. Technol. 2017, 51, 2499–2507. [Google Scholar] [CrossRef]
- Gregory, J. Particles in Water: Properties and Processes; CRC Press: Boca Raton, FL, USA, 2006; Volume 53, ISBN 9788578110796. [Google Scholar]
- Oriekhova, O.; Stoll, S. Heteroaggregation of Nanoplastic Particles in the Presence of Inorganic Colloids and Natural Organic Matter. Environ. Sci. Nano 2018, 5, 792–799. [Google Scholar] [CrossRef]
- Wang, H.; Adeleye, A.S.; Huang, Y.; Li, F.; Keller, A.A. Heteroaggregation of Nanoparticles with Biocolloids and Geocolloids. Adv. Colloid. Interface Sci. 2015, 226, 24–36. [Google Scholar] [CrossRef]
- Ding, J.; Li, J.; Sun, C.; Jiang, F.; He, C.; Zhang, M.; Ju, P.; Ding, N.X. An Examination of the Occurrence and Potential Risks of Microplastics across Various Shellfish. Sci. Total Environ. 2020, 739, 139887. [Google Scholar] [CrossRef]
- Alomar, C.; Sureda, A.; Capó, X.; Guijarro, B.; Tejada, S.; Deudero, S. Microplastic Ingestion by Mullus Surmuletus Linnaeus, 1758 Fish and Its Potential for Causing Oxidative Stress. Environ. Res. 2017, 159, 135–142. [Google Scholar] [CrossRef]
- Bessa, F.; Barría, P.; Neto, J.M.; Frias, J.P.G.L.; Otero, V.; Sobral, P.; Marques, J.C. Occurrence of Microplastics in Commercial Fish from a Natural Estuarine Environment. Mar. Pollut. Bull. 2018, 128, 575–584. [Google Scholar] [CrossRef]
- Gabriel, L.; Barboza, A.; Vethaak, A.D.; Lavorante, B.R.B.O.; Lundebye, A.; Guilhermino, L. Marine Microplastic Debris: An Emerging Issue for Food Security, Food Safety and Human Health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef]
- Guzzetti, E.; Sureda, A.; Tejada, S.; Faggio, C. Microplastic in Marine Organism: Environmental and Toxicological Effects. Environ. Toxicol. Pharmacol. 2018, 64, 164–171. [Google Scholar] [CrossRef]
- Andrady, A.L. The Plastic in Microplastics: A Review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Ašmonaitė, G.; Almroth, B.C. Effects of Microplastics on Organisms and Impacts on the Environment: Balancing the Known and Unknown. NATUR VARDS VERKET 2019, 1–71. [Google Scholar] [CrossRef]
- Lehner, R.; Weder, C.; Petri-fink, A.; Rothen-rutishauser, B. Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environ. Sci. Technol. 2019, 53, 1748–1765. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Rong, J.; Guan, X.; Zha, S.; Shi, W.; Han, Y.; Du, X.; Wu, F.; Huang, W.; Liu, G. Immunotoxicity of Microplastics and Two Persistent Organic Pollutants Alone or in Combination to a Bivalve Species. Environ. Pollut. 2020, 258, 113845. [Google Scholar] [CrossRef]
- Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C. Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environ. Sci. Technol. 2008, 42, 5026–5031. [Google Scholar] [CrossRef] [PubMed]
- Besseling, E.; Foekema, E.M.; Van Franeker, J.A.; Leopold, M.F.; Kühn, S.; Bravo Rebolledo, E.L.; Heße, E.; Mielke, L.; IJzer, J.; Kamminga, P.; et al. Microplastic in a Macro Filter Feeder: Humpback Whale Megaptera Novaeangliae. Mar. Pollut. Bull. 2015, 95, 248–252. [Google Scholar] [CrossRef]
- Barbosa, F.; Adeyemi, J.A.; Bocato, M.Z.; Comas, A.; Campiglia, A. A Critical Viewpoint on Current Issues, Limitations, and Future Research Needs on Micro- and Nanoplastic Studies: From the Detection to the Toxicological Assessment. Environ. Res. 2020, 182, 109089. [Google Scholar] [CrossRef]
- Pico, Y.; Alfarhan, A.; Barcelo, D. Nano- and Microplastic Analysis: Focus on Their Occurrence in Freshwater Ecosystems and Remediation Technologies. TrAC Trends Anal. Chem. 2019, 113, 409–425. [Google Scholar] [CrossRef]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of Microplastics Using Raman Spectroscopy: Latest Developments and Future Prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Bauerlein, P.S.; Koelmans, A.A.; Dekker, S.C.; van Wezel, A.P. Closing the Gap between Small and Smaller: Towards a Framework to Analyse Nano- and Microplastics in Aqueous Environmental Samples. Environ. Sci. Nano 2018, 5, 1640–1649. [Google Scholar] [CrossRef]
- Lenz, R.; Labrenz, M. Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device. Water 2018, 10, 1055. [Google Scholar] [CrossRef]
- Mudalige, T.K.; Qu, H.; Van Haute, D.; Ansar, S.M.; Linder, S.W. Capillary Electrophoresis and Asymmetric Flow Field-Flow Fractionation for Size-Based Separation of Engineered Metallic Nanoparticles: A Critical Comparative Review. Trends Anal. Chem. 2018, 106, 202–212. [Google Scholar] [CrossRef]
- Schwaferts, C.; Niessner, R.; Elsner, M.; Ivleva, N.P. Methods for the Analysis of Submicrometer- and Nanoplastic Particles in the Environment. Trends Anal. Chem. 2019, 112, 52–65. [Google Scholar] [CrossRef]
- Rhein, F.; Scholl, F.; Nirschl, H. Magnetic Seeded Filtration for the Separation of Fine Polymer Particles from Dilute Suspensions: Microplastics. Chem. Eng. Sci. 2019, 207, 1278–1287. [Google Scholar] [CrossRef]
- Yuan, J.; Ma, J.; Sun, Y.; Zhou, T.; Zhao, Y.; Yu, F. Microbial Degradation and Other Environmental Aspects of Microplastics/Plastics. Sci. Total Environ. 2020, 715, 136968. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G. Plastic Degrading Microorganisms as a Tool for Bioremediation of Plastic Contamination in Aquatic Environments. Pollut. Eff. Control 2015, 3, 1000e112. [Google Scholar] [CrossRef]
- Chandra, P.; Singh, D.P. Microplastic Degradation by Bacteria in Aquatic Ecosystem. In Microorganisms for Sustainable Environment and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 431–468. ISBN 9780128190012. [Google Scholar]
- Bouchal, R. Surfactants, Ionic Liquids and Ionosilicas: Functional Ionic Systems for Supramolecular Chemistry and Elaboration of Materials by Design (Ion Exchange and Vectorization). Ph.D. Thesis, Université Montpellier, Montpellier, France, 2016. [Google Scholar]
- Nakama, Y. Surfactants. In Cosmetic Science and Technology: Theoretical Principles and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 231–244. ISBN 9780128020050. [Google Scholar]
- Blesic, M.; Marques, H.; Plechkova, N.V.; Seddon, K.R. Self-Aggregation of Ionic Liquids: Micelle Formation in Aqueous Solution. Green Chem. 2007, 9, 481–490. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic Liquids Synthesis and Applications: An Overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem. Rev. 2017, 117, 6984–7052. [Google Scholar] [CrossRef] [PubMed]
- Nikinmaa, M. Bioindicators and Biomarkers. In An Introduction to Aquatic Toxicology; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- de Sá, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L.; Futter, M.N. Studies of the Effects of Microplastics on Aquatic Organisms: What Do We Know and Where Should We Focus Our Efforts in the Future? Sci. Total Environ. 2018, 645, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Shi, H. Using the Asian Clam as an Indicator of Microplastic Pollution in Freshwater Ecosystems. Environ. Pollut. 2018, 234, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.E.; Zhao, S.; Holohan, B.A.; Mladinich, K.M.; Griffin, T.W.; Wozniak, J.; Shumway, S.E. Selective Ingestion and Egestion of Plastic Particles by the Blue Mussel (Mytilus edulis) and Eastern Oyster (Crassostrea virginica): Implications for Using Bivalves as Bioindicators of Microplastic Pollution. Environ Sci Technol 2019, 53, 8776–8784. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, C.C.; Nichols, S.J.; Spooner, D.E. Community and Foodweb Ecology of Freshwater Mussels. J. N. Am. Benthol. Soc. 2008, 27, 409–423. [Google Scholar] [CrossRef]
- Grant, W.S.; Cherry, M.I. Mytilus galloprovincialis Lmk. in Southern Africa. J. Exp. Mar. Biol. Ecol. 1985, 90, 179–191. [Google Scholar] [CrossRef]
- Li, J.; Lusher, A.L.; Rotchell, J.M.; Deudero, S.; Turra, A.; Bråte, I.L.N.; Sun, C.; Shahadat Hossain, M.; Li, Q.; Kolandhasamy, P.; et al. Using Mussel as a Global Bioindicator of Coastal Microplastic Pollution. Environ. Pollut. 2019, 244, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Brandts, I.; Teles, M.; Gonçalves, A.P.; Barreto, A.; Franco-Martinez, L.; Tvarijonaviciute, A.; Martins, M.A.; Soares, A.M.V.M.; Tort, L.; Oliveira, M. Effects of Nanoplastics on Mytilus galloprovincialis after Individual and Combined Exposure with Carbamazepine. Sci. Total Environ. 2018, 643, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Pereiro, A.B.; Teixeira, F.S.; Marrucho, I.M.; Pin, M.M.; Arau, M.M.; Rebelo, L.P.N. Aggregation Behavior and Total Miscibility of Fluorinated Ionic Liquids in Water. Langmuir 2015, 31, 1283–1295. [Google Scholar] [CrossRef]
- Stramski, D.; Sedlak, M. Application of Dynamic Light Scattering to the Study of Small Marine Particles. Appl. Opt. 1994, 33, 4825–4834. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic Light Scattering: A Practical Guide and Applications in Biomedical Sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Shnoudeh, A.J.; Z. Alkelany, H.I.; Abdo, R.W.; Qadumii, L.; Jaber, A.Y. DLS and Zeta Potential—What They Are and What They Are Not? In Biomaterials and Bionanotechnology; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 527–612. [Google Scholar]
- Pinto, A.M.F.R.; Oliveira, V.B.; Falcão, D.S. Experimental Methods of Characterization. In Direct Alcohol Fuel Cells for Portable Applications; Press, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–155. ISBN 9780128118498. [Google Scholar]
- Rist, S.; Hartmann, N.B. Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from Engineered Nanomaterials. Freshw. Microplastics Emerg. Environ. Contam. 2018, 58, 25–49. [Google Scholar] [CrossRef]
- Ekvall, M.T.; Lundqvist, M.; Kelpsiene, E.; Šileikis, E.; Gunnarsson, S.B.; Cedervall, T. Nanoplastics Formed during the Mechanical Breakdown of Daily-Use Polystyrene Products. Nanoscale Adv. 2019, 1, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Nurunnabi, M.; Revuri, V.; Huh, K.M.; Lee, Y. kyu Polysaccharide Based Nano/Microformulation: An Effective and Versatile Oral Drug Delivery System. In Nanostructures for Oral Medicine; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 409–433. ISBN 9780323477215. [Google Scholar]
- Wypych, G. CHI Chitosan. Handb. Polym. 2012, 1, 50–52. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, J.; Zhao, Y.; Qiu, Y.; Li, J. Room Temperature Ionic Liquid Based Polystyrene Nanofibers with Superhydrophobicity and Conductivity Produced by Electrospinning. Chem. Mater. 2008, 20, 3420–3424. [Google Scholar] [CrossRef]
- Oncsik, T.; Desert, A.; Trefalt, G.; Borkovec, M.; Szilagyi, I. Charging and Aggregation of Latex Particles in Aqueous Solutions of Ionic Liquids: Towards an Extended Hofmeister Series. Phys. Chem. Chem. Phys. 2016, 18, 7511–7520. [Google Scholar] [CrossRef] [PubMed]
- Canesi, L.; Ciacci, C.; Bergami, E.; Monopoli, M.P.; Dawson, K.A.; Papa, S.; Canonico, B.; Corsi, I. Evidence for Immunomodulation and Apoptotic Processes Induced by Cationic Polystyrene Nanoparticles in the Hemocytes of the Marine Bivalve Mytilus. Mar. Environ. Res. 2015, 111, 34–40. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta Potential Measurement. Methods Mol. Biol. 2011, 697, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Wegner, A.; Besseling, E.; Foekema, E.M.; Kamermans, P.; Koelmans, A.A. EFFECTS OF NANOPOLYSTYRENE ON THE FEEDING BEHAVIOR OF THE BLUE MUSSEL (Mytilus edulis L.). Environ. Toxicol. Chem. 2012, 31, 2490–2497. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhu, K.; Song, W.; Song, G.; Chen, D.; Hayat, T.; Alharbi, N.S.; Chen, C.; Sun, Y. Impact of Water Chemistry on Surface Charge and Aggregation of Polystyrene Microspheres Suspensions. Sci. Total Environ. 2018, 630, 951–959. [Google Scholar] [CrossRef]
- Jódar-Reyes, A.B.; Ortega-Vinuesa, J.L.; Martín-Rodríguez, A. Electrokinetic Behavior and Colloidal Stability of Polystyrene Latex Coated with Ionic Surfactants. J. Colloid Interface Sci. 2006, 297, 170–181. [Google Scholar] [CrossRef] [PubMed]
- González, F.G.; Vilchez, M.A.C.; Hidalgo-Alvarez, R. Adsorption of Anionic Surfactants on Positively Charged Polystyrene Particles 1) II. Colloid Polym. Sci. 1991, 411, 406–411. [Google Scholar] [CrossRef]
- Mattsson, K.; Jocic, S.; Doverbratt, I.; Hansson, L.A. Nanoplastics in the Aquatic Environment. In Microplastic Contamination in Aquatic Environments: An Emerging Matter of Environmental Urgency; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 379–399. ISBN 9780128137475. [Google Scholar] [CrossRef]
- Stapleton, P.A. Toxicological Considerations of Nano-Sized Plastics. AIMS Environ. Sci. 2019, 6, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Elias, S.D.; Rabiu, A.M.; Oluwaseun, O.; Seima, B. Adsorption characteristics of surfactants on different petroluem reservoir materials. Online J. Sci. Technol. 2016, 6, 6–16. [Google Scholar]
- Martins, M.; Sobral, P.; Costa, P.M.; Costa, M.H. An Assessment of the Ability to Ingest and Excrete Microplastics by Fi Lter-Feeders: A Case Study with the Mediterranean Mussel. Environ. Pollut. 2019, 245, 600–606. [Google Scholar] [CrossRef]
- Gonçalves, C.; Martins, M.; Costa, M.H.; Costa, P.M. Development of a Method for the Detection of Polystyrene Microplastics in Paraffin—Embedded Histological Sections. Histochem. Cell Biol. 2018, 149, 187–191. [Google Scholar] [CrossRef]
- Von Moos, N.; Burkhardt-Holm, P.; Köhler, A. Uptake and Effects of Microplastics on Cells and Tissue of the Blue Mussel Mytilus edulis L. after an Experimental Exposure. Environ. Sci. Technol. 2012, 46, 11327–11335. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Claessens, M.; Vandegehuchte, M.B.; Janssen, C.R. Microplastics Are Taken up by Mussels (Mytilus edulis) and Lugworms (Arenicola marina) Living in Natural Habitats. Environ. Pollut. 2015, 199, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Paul-Pont, I.; Lacroix, C.; González Fernández, C.; Hégaret, H.; Lambert, C.; Le Goïc, N.; Frère, L.; Cassone, A.L.; Sussarellu, R.; Fabioux, C.; et al. Exposure of Marine Mussels Mytilus Spp. to Polystyrene Microplastics: Toxicity and Influence on Fluoranthene Bioaccumulation. Environ. Pollut. 2016, 216, 724–737. [Google Scholar] [CrossRef]
- Lesser, M.P. Oxidative Stress in Marine Environments: Biochemistry and Physiological Ecology. Annu. Rev. Physiol. 2006, 68, 253–278. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scoullos, M. Molecular Biomarkers of Oxidative Stress in Aquatic Organisms in Relation to Toxic Environmental Pollutants. Ecotoxicol. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Cossu, C.; Doyotte, A.; Babut, M.; Exinger, A.; Vasseur, P. Antioxidant Biomarkers in Freshwater Bivalves, Unio Tumidus, in Response to Different Contamination Profiles of Aquatic Sediments. Ecotoxicol. Environ. Saf. 2000, 45, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Revel, M.; Lagarde, F.; Perrein-Ettajani, H.; Bruneau, M.; Akcha, F.; Sussarellu, R.; Rouxel, J.; Costil, K.; Decottignies, P.; Cognie, B.; et al. Tissue-Specific Biomarker Responses in the Blue Mussel Mytilus Spp. Exposed to a Mixture of Microplastics at Environmentally Relevant Concentrations. Front. Environ. Sci. 2019, 7, 33. [Google Scholar] [CrossRef]
- Li, Z.; Feng, C.; Wu, Y.; Guo, X. Impacts of Nanoplastics on Bivalve: Fluorescence Tracing of Organ Accumulation, Oxidative Stress and Damage. J. Hazard. Mater. 2020, 392, 122418. [Google Scholar] [CrossRef] [PubMed]
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of Structures and Properties among Catalases. Cell. Mol. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Liddle, C.; Consolandi, G.; Drago, C.; Hird, C.; Lindeque, P.K.; Galloway, T.S. Microplastics, Microfibres and Nanoplastics Cause Variable Sub-Lethal Responses in Mussels (Mytilus spp.). Mar. Pollut. Bull. 2020, 160, 111552. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Glutathione and Glutathione-S-Transferase in Detoxification Mechanisms. Gen. Appl. Toxicol. 2011. [Google Scholar] [CrossRef]
- Gertsch, J. Glutathione-S-Transferase. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–17. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-Transferases—The First Enzymatic Step in Mercapturic Acid Formation. J. Biol. Chem. Phys. 1974, 249, 7130–7140. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Milan, M.; Benedetti, M.; Fattorini, D.; D’Errico, G.; Pauletto, M.; Bargelloni, L.; Regoli, F. Pollutants Bioavailability and Toxicological Risk from Microplastics to Marine Mussels. Environ. Pollut. 2015, 198, 211–222. [Google Scholar] [CrossRef]
- Madkour, L.H. Function of Reactive Oxygen Species (ROS) Inside the Living Organisms and Sources of Oxidants. Pharm. Sci. Anal. Res. 2019, 2, 180023. [Google Scholar]
- McCay, P.B.; Gibson, D.D.; Fong, K.; Hornbrook, R.K. Effects of Glutathione Peroxidase Activity on Lipid Peroxidation in Biological Membranes. Biochim. Biophys. Acta 1951, 431, 459–468. [Google Scholar] [CrossRef]
- de Zwart, L.L.; Meerman, J.H.; Commandeur, J.N.; Vermeulen, N.P. Biomarkers of Free Radical Damage. Free. Radic. Biol. Med. 1999, 26, 202–226. [Google Scholar] [CrossRef] [PubMed]
- Shang, F.; Taylor, A. Ubiquitin—Proteasome Pathway and Cellular Responses to Oxidative Stress. Free Radic. Biol. Med. 2011, 51, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Pajares, M.; Jimenez-moreno, N.; Dias, H.K.; Debelec, B.; Vucetic, M.; Kari, E.; Basaga, H.; Ribaric, S.; Cuadrado, A.; Milisav, I.; et al. Redox Control of Protein Degradation. Redox Biol. 2015, 6, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Hollóczki, O.; Gehrke, S. Nanoplastics Can Change the Secondary Structure of Proteins. Sci. Rep. 2019, 9, 16013. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Oberley, L.W.; Li, Y. A Simple Method for Clinical Assay of Superoxide Dismutase. Clin. Chem. 1988, 34, 497–500. [Google Scholar] [CrossRef]
- Johansson, L.H.; Håkan Borg, L.A. A Spectrophotometric Method for Determination of Catalase Activity in Small Tissue Samples. Anal. Biochem. 1988, 174, 331–336. [Google Scholar] [CrossRef]
- Lawrence, A.; Burk, R.F. Glutathione Peroxidase Activity in Selenium-Deficient Rat Liver. Biochem. Biophys. Res. Commun. 1976, 71, 952–958. [Google Scholar] [CrossRef]
- Nutr, J.C.B.; Kambayashi, Y.; Binh, N.T.; Asakura, H.W.; Hibino, Y. Efficient Assay for Total Antioxidant Capacity in Human Plasma Using a 96-Well Microplate. J. Clin. Biochem. Nutr. 2009, 44, 46–51. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Madeira, D.; Costa, P.M.; Vinagre, C.; Diniz, M.S. When Warming Hits Harder: Survival, Cellular Stress and Thermal Limits of Sparus Aurata Larvae under Global Change. Mar. Biol. 2016, 163, 91. [Google Scholar] [CrossRef]
- Njemini, R.; Demanet, C.; Mets, T. Comparison of Two ELISAs for the Determination of Hsp70 in Serum. J. Immunol. Methods 2005, 306, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.; Trubenbach, K.; Pimentel, M.S.; Boavida-Portugal, J.; Faleiro, F.; Baptista, M.; Dionisio, G.; Calado, R.; Portner, H.O.; Repolho, T. Differential Impacts of Ocean Acidification and Warming on Winter and Summer Progeny of a Coastal Squid (Loligo Vulgaris). J. Exp. Biol. 2014, 217, 518–525. [Google Scholar] [CrossRef]
- Ribeiro, F.; Garcia, A.R.; Pereira, B.P.; Fonseca, M.; Mestre, N.C.; Fonseca, T.G.; Ilharco, L.M.; Bebianno, M.J. Microplastics Effects in Scrobicularia Plana. Mar. Pollut. Bull. 2017, 122, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Box, A.; Sureda, A.; Galgani, F.; Pons, A.; Deudero, S. Assessment of Environmental Pollution at Balearic Islands Applying Oxidative Stress Biomarkers in the Mussel Mytilus galloprovincialis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 146, 531–539. [Google Scholar] [CrossRef]
- Pittura, L.; Avio, C.G.; Giuliani, M.E.; d’Errico, G.; Keiter, S.H.; Cormier, B.; Gorbi, S.; Regoli, F. Microplastics as Vehicles of Environmental PAHs to Marine Organisms: Combined Chemical and Physical Hazards to the Mediterranean Mussels, Mytilus galloprovincialis. Front. Mar. Sci. 2018, 5, 103. [Google Scholar] [CrossRef]
- Green, D.S.; Colgan, T.J.; Thompson, R.C.; Carolan, J.C. Exposure to Microplastics Reduces Attachment Strength and Alters the Haemolymph Proteome of Blue Mussels (Mytilus edulis). Environ. Pollut. 2019, 246, 423–434. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Wang, S.; Fang, H.; Ye, N.; Wang, D. Ecotoxicological e Ff Ects on Scenedesmus Obliquus and Danio Rerio Co-Exposed to Polystyrene Nano-Plastic Particles and Natural Acidic Organic Polymer. Environ. Toxicol. Pharmacol. 2019, 67, 21–28. [Google Scholar] [CrossRef]
NPs (mg/mL) | FIL (mg/mL) | Chitosan (µg/mL) | Z-Average (nm) | PDI | ζ-Pot (mV) | E. M. (cm2/Vs) 1 |
---|---|---|---|---|---|---|
0.0200 | - | - | 276.44 ± 36.78 | 0.51 ± 0.17 | 0.10 ± 4.26 | 0.00000073 ± 0.000033 |
0.0182 | 132.15 | - | 1165.48 ± 85.76 | 0.69 ± 0.11 | −1.56 ± 2.70 | −0.0000123 ± 0.000021 |
0.0179 | 129.79 | 0.005 | 991.06 ± 138.43 | 0.57 ± 0.13 | −0.81 ± 2.79 | −0.0000064 ± 0.000022 |
0.0170 | 123.71 | 0.019 | 1595.27 ± 672.54 | 0.62 ± 0.15 | −0.42 ± 1.82 | −0.0000033 ± 0.000014 |
0.0167 | 121.13 | 0.025 | 1142.76 ± 169.72 | 0.59 ± 0.11 | −1.50 ± 2.04 | −0.0000117 ± 0.000016 |
NPs (mg/mL) | FIL (mg/mL) | Chitosan (µg/mL) | Z-Average (nm) | PDI | ζ-Pot (mV) | E. M. (cm2/Vs) 1 |
---|---|---|---|---|---|---|
0.02 | - | - | 63.66 ± 4.01 | 0.18 ± 0.11 | 27.42 ± 10.42 | 0.000213 ± 0.000081 |
0.019 | 69.22 | - | 3942.48 ± 241.95 | 0.68 ± 0.28 | −11.96 ± 3.03 | −0.000093 ± 0.000023 |
0.0182 | 132.15 | - | 4552.53 ± 613.68 | 0.81 ± 0.11 | −13.64 ± 1.22 | −0.000106 ± 0.000010 |
0.0196 | - | 0.006 | 73.29 ± 3.99 | 0.30 ± 0.08 | −13.76 ± 1.09 | −0.000107 ± 0.000009 |
0.0186 | - | 0.021 | 73.19 ± 3.44 | 0.30 ± 0.08 | 38.39 ± 6.80 | 0.000298 ± 0.000053 |
0.0182 | - | 0.027 | 76.51 ± 8.70 | 0.32 ± 0.14 | 17.81 ± 2.16 | 0.000138 ± 0.000017 |
0.0179 | 129.79 | 0.005 | 383.80 ± 97.87 | 0.45 ± 0.08 | −14.99 ± 1.51 | −0.000116 ± 0.000012 |
0.0170 | 123.71 | 0.019 | 8322.68 ± 2123.15 | 0.88 ± 0.06 | −7.27 ± 1.34 | −0.000057 ± 0.000010 |
0.0167 | 121.13 | 0.025 | 5658.27 ± 1336 | 0.79 ± 0.18 | −18.23 ± 9.82 | −0.000141 ± 0.000076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cid-Samamed, A.; Nunes, C.S.E.; Lomas Martínez, C.; Diniz, M.S. Development of a New Aggregation Method to Remove Nanoplastics from the Ocean: Proof of Concept Using Mussel Exposure Tests. Biomimetics 2024, 9, 303. https://doi.org/10.3390/biomimetics9050303
Cid-Samamed A, Nunes CSE, Lomas Martínez C, Diniz MS. Development of a New Aggregation Method to Remove Nanoplastics from the Ocean: Proof of Concept Using Mussel Exposure Tests. Biomimetics. 2024; 9(5):303. https://doi.org/10.3390/biomimetics9050303
Chicago/Turabian StyleCid-Samamed, Antonio, Catarina S. E. Nunes, Cristina Lomas Martínez, and Mário S. Diniz. 2024. "Development of a New Aggregation Method to Remove Nanoplastics from the Ocean: Proof of Concept Using Mussel Exposure Tests" Biomimetics 9, no. 5: 303. https://doi.org/10.3390/biomimetics9050303
APA StyleCid-Samamed, A., Nunes, C. S. E., Lomas Martínez, C., & Diniz, M. S. (2024). Development of a New Aggregation Method to Remove Nanoplastics from the Ocean: Proof of Concept Using Mussel Exposure Tests. Biomimetics, 9(5), 303. https://doi.org/10.3390/biomimetics9050303