Whale Optimization for Cloud–Edge-Offloading Decision-Making for Smart Grid Services
Abstract
:1. Introduction
- A DAG model for spatial and logical dependencies of computational nodes, data network links, smart grid energy assets, and an energy network organized in four layers to enable efficient edge-offloading decision-making in a smart grid.
- A whale optimization algorithm adaptation for edge offloading, using binary decision variables for mapping workload to computational resources and a fitness function based on RTT and distance between tasks and available resources.
- Enhancements, including a feedback mechanism, nonlinear convergence factor, and an inertia weight coefficient, to efficiently explore offloading strategies in the solution space and avoid premature convergence.
- Evaluation of a smart grid scenario considering the offloading of energy balancing service with energy and data network constraints, necessitating fast decision-making for optimization.
2. Related Work
3. Materials and Methods
3.1. Energy and Computational Networks Resources
3.2. WOA-Based Offloading Technique
Algorithm 1: WOA for computational offloading decision-making in a smart grid |
Inputs: —energy and computational nodes and links, population size , maximum number of iterations , WOA parameters ), —workload to be relocated Outputs: —Best offloading decision solution Begin 1. ) 2. Foreach determine the fitness value 3. Select 4. Set initial values for 5. 6. Foreach solution in , do 7. Encircling phase: 8. Calculate distance between and 9. Determine position ) using and in relations (6) and (7) 10. Exploitation phase: 11. Determine position ) using and in relations (8) and (9) 12. Random exploration phase: 13. Explore new solutions ) using relation (10) 14. Inertia-based exploration phase: 15. Explore new solutions ) using inertia weight in relations (12) and (13) 16. End Foreach 17. Foreach , determine the fitness value 18. Select = 19. If remains unchanged for several iterations do 20. Update exploitation / exploration parameters 21. t = t + 1 22. end while 23. Foreach , apply threshold mapping to convert continuous values to binary. 24. return End |
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Chen, Z.; Amani, A.M.; Yu, X.; Jalili, M. Control and Optimisation of Power Grids Using Smart Meter Data: A Review. Sensors 2023, 23, 2118. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Zhou, Y.; Guo, Q.; Tan, C.-W.; Song, J.; Wang, Y. Data sharing in energy systems. Adv. Appl. Energy 2023, 10, 100132. [Google Scholar] [CrossRef]
- Lin, L.; Liao, X.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1607. [Google Scholar] [CrossRef]
- Angel, N.A.; Ravindran, D.; Vincent, P.M.D.R.; Srinivasan, K.; Hu, Y.-C. Recent Advances in Evolving Computing Paradigms: Cloud, Edge, and Fog Technologies. Sensors 2022, 22, 196. [Google Scholar] [CrossRef]
- Arcas, G.I.; Cioara, T.; Anghel, I.; Lazea, D.; Hangan, A. Edge Offloading in Smart Grid. Smart Cities 2024, 7, 680–711. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, J.; Yang, J.; Li, Y.; Sha, D.; Xu, M.; Shams, I.; Yu, M.; Yang, C. Cloud, Edge, and Mobile Computing for Smart Cities. In Urban Informatics; Shi, W., Goodchild, M.F., Batty, M., Kwan, M.P., Zhang, A., Eds.; The Urban Book Series; Springer: Singapore, 2021. [Google Scholar]
- Yahuza, M.; Idris, M.Y.I.B.; Wahab, A.W.B.A.; Ho, A.T.; Khan, S.; Musa, S.N.B.; Taha, A.Z.B. Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities. IEEE Access 2020, 8, 76541–76567. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Y.; Chen, Q.; Ding, Y.; Strbac, G.; Kang, C. Smart grid encounters edge computing: Opportunities and pplications. Adv. Appl. Energy 2021, 1, 100006. [Google Scholar] [CrossRef]
- Akkara, S.; Selvakumar, I. Review on optimization techniques used for smart grid. Meas. Sens. 2023, 30, 100918. [Google Scholar] [CrossRef]
- Pop, C.B.; Cioara, T.; Anghel, I.; Antal, M.; Chifu, V.R.; Antal, C.; Salomie, I. Review of bio-inspired optimization applications in renewable-powered smart grids: Emerging population-based metaheuristic. Energy Rep. 2022, 8, 11769–11798. [Google Scholar] [CrossRef]
- Ullah, I.; Lim, H.K.; Seok, Y.J.; Han, Y.H. Optimizing task offloading and resource allocation in edge-cloud networks: A DRL approach. J. Cloud Comp. 2023, 12, 112. [Google Scholar] [CrossRef]
- Akter, A.; Zafir, E.I.; Dana, N.H.; Joysoyal, R.; Sarker, S.K.; Li, L.; Muyeen, S.M.; Das, S.K.; Kamwa, I. A review on microgrid optimization with meta-heuristic techniques: Scopes, trends and recommendation. Energy Strategy Rev. 2024, 51, 101298. [Google Scholar] [CrossRef]
- Zhou, S.; Jadoon, W.; Khan, I.A. Computing Offloading Strategy in Mobile Edge Computing Environment: A Comparison between Adopted Frameworks, Challenges, and Future Directions. Electronics 2023, 12, 2452. [Google Scholar] [CrossRef]
- Mangalampalli, S.; Swain, S.K.; Mangalampalli, V.K. Prioritized Energy Efficient Task Scheduling Algorithm in Cloud Computing Using Whale Optimization Algorithm. Wirel. Pers. Commun. 2022, 126, 2231–2247. [Google Scholar] [CrossRef]
- Chai, S.; Guo, L. Edge Computing with Fog-cloud for Heart Data Processing using Particle Swarm Optimized Deep Learning Technique. J. Grid Comput. 2024, 22, 3. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.; Zamani, H.; Asghari Varzaneh, Z.; Mirjalili, S. A Systematic Review of the Whale Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations. Arch. Comput. Methods Eng. 2023, 30, 4113–4159. [Google Scholar] [CrossRef]
- Tang, C.; Sun, W.; Wu, W.; Xue, M. A hybrid improved whale optimization algorithm. In Proceedings of the 2019 IEEE 15th International Conference on Control and Automation (ICCA), Edinburgh, UK, 16–19 July 2019; pp. 362–367. [Google Scholar] [CrossRef]
- Sing, R.; Bhoi, S.K.; Panigrahi, N.; Sahoo, K.S.; Jhanjhi, N.; AlZain, M.A. A Whale Optimization Algorithm Based Resource Allocation Scheme for Cloud-Fog Based IoT Applications. Electronics 2022, 11, 3207. [Google Scholar] [CrossRef]
- Goyal, S.; Bhushan, S.; Kumar, Y.; Rana, A.U.H.S.; Bhutta, M.R.; Ijaz, M.F.; Son, Y. An Optimized Framework for Energy-Resource Allocation in a Cloud Environment based on the Whale Optimization Algorithm. Sensors 2021, 21, 1583. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.-B.; Doaa, E.-S.; Kalyan, D.; Mohamed, A. Energy-aware whale optimization algorithm for real-time task scheduling in multiprocessor systems. Appl. Soft Comput. 2020, 93, 106349. [Google Scholar] [CrossRef]
- Yang, S.; Yu, R.; Jin, X. Whale Optimization Algorithm for Energy-Efficient Task Allocation in the Internet of Things. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2023, 14. [Google Scholar] [CrossRef]
- Yaser, R.; Mirsaeid, H.S.; Mehdi, G. Energy-aware and Reliable Service Placement of IoT applications on Fog Computing Platforms by Utilizing Whale Optimization Algorithm. J. Adv. Comput. Eng. Technol. 2021, 7, 67–80. [Google Scholar]
- Samoilenko, S. Whale Optimization-Based Task Offloading Technique in Integrated Cloud-Fog Environment; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Ghobaei-Arani, M.; Shahidinejad, A. A cost-efficient IoT service placement approach using whale optimization algorithm in fog computing environment. Expert Syst. Appl. 2022, 200, 117012. [Google Scholar] [CrossRef]
- Afaf, S.; Abdelmadjid, R. Hybrid algorithm for cloud-fog system based load balancing in smart grids. Bull. Electr. Eng. Inform. 2022, 11, 477–487. [Google Scholar] [CrossRef]
- Amit, C.; Sudip, S.; Nor, S.S.; Ali, M.; Hasmila, O. Energy-Aware Bag-Of-Tasks Scheduling in the Cloud Computing System Using Hybrid Oppositional Differential Evolution-Enabled Whale Optimization Algorithm. Energies 2022, 15, 4571. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, X.; Pu, B.; Wang, X.; Wang, H.; Xu, Y.; Wang, P. HWOA: An intelligent hybrid whale optimization algorithm for multi-objective task selection strategy in edge cloud computing system. World Wide Web 2022, 25, 2265–2295. [Google Scholar] [CrossRef]
- Huang, M.; Zhai, Q.; Chen, Y.; Feng, S.; Shu, F. Multi-Objective Whale Optimization Algorithm for Computation Offloading Optimization in Mobile Edge Computing. Sensers 2021, 21, 2628. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, S.; Chen, Y.; Zhai, Q.; Huang, M.; Shu, F. Optimizing computation offloading strategy in mobile edge computing based on swarm intelligence algorithms. EURASIP J. Adv. Signal Process. 2021, 2021, 36. [Google Scholar] [CrossRef]
- Anoop, V.; Bipin, P.R. Exploitation Whale Optimization-Based Optimal Offloading Approach and Topology Optimization in a Mobile Ad Hoc Cloud Environment. J. Ambient Intell. Humaniz. Comput. 2021, 13, 1053–1072. [Google Scholar] [CrossRef]
- Movahedi, Z.; Defude, B.; Hosseininia, A.M. An efficient population-based multi-objective task scheduling approach in fog computing systems. J. Cloud Comp. 2021, 10, 53. [Google Scholar] [CrossRef]
- Lin, Y.; Cheng, C.; Xiao, F.; Alsubhi, K.; Aljahdali, H.M.A. A DAG-based cloud-fog layer architecture for distributed energy management in smart power grids in the presence of PHEVs. Sustain. Cities Soc. 2021, 75, 103335. [Google Scholar] [CrossRef]
Microgrid ID | No. Energy Assets | Production Capacity Prosumers | Consumers | ||
---|---|---|---|---|---|
Low | Medium | High | |||
1 | 20 | 10 | 0 | 10 | 0 |
2 | 20 | 5 | 7 | 3 | 5 |
3 | 30 | 15 | 10 | 5 | 0 |
4 | 35 | 12 | 13 | 0 | 10 |
5 | 43 | 20 | 8 | 7 | 8 |
# Connected Prosumers | # Edge Nodes | Low-Capacity Nodes (35 GHz CPU, 2 GB RAM, and 10 GB Storage) | Medium-Capacity Nodes (45 GHz CPU, 4 GB RAM, and 25 GB Storage) | High-Capacity Nodes (50 GHz CPU, 8 GB RAM, and 32 GB Storage) |
---|---|---|---|---|
30 | 5 | 2 | 3 | 0 |
45 | 4 | 2 | 1 | 1 |
25 | 3 | 3 | 0 | 0 |
25 | 8 | 5 | 2 | 1 |
# Connected Edge Nodes | # Fog Nodes | Low-Capacity Nodes (40 GHz CPU, 4 GB RAM, and 16 GB Storage) | Medium-Capacity Nodes (48 GHz CPU, 8 GB RAM, and 28 GB Storage) | High-Capacity Nodes (50 GHz CPU, 16 GB RAM, and 32 GB Storage) |
---|---|---|---|---|
7 | 4 | 2 | 2 | 0 |
8 | 5 | 2 | 2 | 1 |
5 | 3 | 1 | 2 | 0 |
# Connected Fog Nodes | # Cloud Nodes | Low-Capacity Nodes (42 GHz CPU, 8 GB RAM, and 25 GB Storage) | Medium-Capacity Nodes (48 GHz CPU, 16 GB RAM, and 30 GB Storage) | High-Capacity Nodes (50 GHz CPU, 32 GB RAM, and 32 GB Storage) |
---|---|---|---|---|
2 | 2 | 2 | 0 | 0 |
7 | 3 | 1 | 2 | 0 |
3 | 5 | 1 | 2 | 2 |
Parameter Name | Specific Threshold |
---|---|
Euclidean distance | <10 |
Round-trip time (RTT) | <90 ms |
Number of epochs | <250 |
Population size | <20 |
Source Node ID | Target Node ID (Offloading) | Initial Distance | Initial RTT | Final Distance | Final RTT | RTT Reduction |
---|---|---|---|---|---|---|
Cloud_node_2 | Fog_node_5 | 12.01 | 93.03 ms | 6.07 | 89.71 ms | −3.32 Ms |
Cloud_node_8 | Fog_node_10 | 6.05 | 100.00 ms | 5.02 | 75.08 ms | −24.92 Ms |
Cloud_node_10 | Fog_node_9 | 5.09 | 91.30 ms | 6.14 | 78.03 ms | −13.27 Ms |
Fog_node_8 | Edge_node_17 | 11.01 | 90.05 ms | 4.51 | 76.85 ms | −13.20 Ms |
Fog_node_9 | Edge_node_9 | 10.05 | 92.45 ms | 5.86 | 73.20 ms | −19.25 Ms |
Fog_node_10 | Edge_node_2 | 11.05 | 93.05 ms | 4.31 | 82.01 ms | −11.04 Ms |
Layer | No. Nodes | Node Computational Resources | Data Connection with Lower Layers | |||
---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Processor | RAM | Storage | ||
Edge | 50 | 70 | 30–50 GHz | 2–8 GB | 8–16 GB | N/A |
Fog | 30 | 35 | 40–50 GHz | 4–16 GB | 16–32 GB | Links to edge
|
Cloud | 20 | 20 | 45–50 GHz | 8–32 GB | 20–32 GB | Links to fog
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcas, G.I.; Cioara, T.; Anghel, I. Whale Optimization for Cloud–Edge-Offloading Decision-Making for Smart Grid Services. Biomimetics 2024, 9, 302. https://doi.org/10.3390/biomimetics9050302
Arcas GI, Cioara T, Anghel I. Whale Optimization for Cloud–Edge-Offloading Decision-Making for Smart Grid Services. Biomimetics. 2024; 9(5):302. https://doi.org/10.3390/biomimetics9050302
Chicago/Turabian StyleArcas, Gabriel Ioan, Tudor Cioara, and Ionut Anghel. 2024. "Whale Optimization for Cloud–Edge-Offloading Decision-Making for Smart Grid Services" Biomimetics 9, no. 5: 302. https://doi.org/10.3390/biomimetics9050302
APA StyleArcas, G. I., Cioara, T., & Anghel, I. (2024). Whale Optimization for Cloud–Edge-Offloading Decision-Making for Smart Grid Services. Biomimetics, 9(5), 302. https://doi.org/10.3390/biomimetics9050302