Knee Measurement System with Osteoarthritis Levels Using Artificial Cartilage and Skeletons
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Force Measurement According to OA Level
3.2. Trajectory of the Knee Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, X.; Liu, Z.Y.; Tao, X.X.; Mei, Y.L.; Zhou, D.Q.; Cheng, K.; Gao, S.l.; Shi, H.Y.; Song, C.; Zhang, X.M. Research progress on the pathogenesis of knee osteoarthritis. Orthop. Surg. 2023, 15, 2213–2224. [Google Scholar] [CrossRef]
- Heidari, B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Casp. J. Intern. Med. 2011, 2, 205. [Google Scholar]
- Lespasio, M.J.; Piuzzi, N.S.; Husni, M.E.; Muschler, G.F.; Guarino, A.; Mont, M.A. Knee osteoarthritis: A primer. Perm. J. 2017, 21, 16–183. [Google Scholar] [CrossRef]
- Steinmetz, J.D.; Culbreth, G.T.; Haile, L.M.; Rafferty, Q.; Lo, J.; Fukutaki, K.G.; Cruz, J.A.; Smith, A.E.; Vollset, S.E.; Brooks, P.M. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [Google Scholar] [CrossRef]
- Antony, J.; McGuinness, K.; Moran, K.; O’Connor, N.E. Feature learning to automatically assess radiographic knee osteoarthritis severity. Deep Learn. Deep Learn. Descr. Med. Appl. 2020, 186, 9–93. [Google Scholar]
- Kellgren, J.H.; Lawrence, J. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494. [Google Scholar] [CrossRef] [PubMed]
- Osteoarthritis: Diagnosis, Treatment, and Steps to Take. Available online: https://www.niams.nih.gov/health-topics/osteoarthritis/diagnosis-treatment-and-steps-to-take (accessed on 26 February 2024).
- Divine, J.G.; Zazulak, B.T.; Hewett, T.E. Viscosupplementation for knee osteoarthritis: A systematic review. Clin. Orthop. Relat. Res. 2007, 455, 113–122. [Google Scholar] [CrossRef]
- Raud, B.; Gay, C.; Guiguet-Auclair, C.; Bonnin, A.; Gerbaud, L.; Pereira, B.; Duclos, M.; Boirie, Y.; Coudeyre, E. Level of obesity is directly associated with the clinical and functional consequences of knee osteoarthritis. Sci. Rep. 2020, 10, 3601. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Kortekaas, M.C.; Watt, I.; Huizinga, T.W.; Kloppenburg, M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis. 2010, 70, 60–67. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Patil, S.; Steklov, N.; Slamin, J.E.; Colwell, C.W., Jr. Tibial forces measured in vivo after total knee arthroplasty. J. Arthroplast. 2006, 21, 255–262. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Fregly, B.J.; Patil, S.; Steklov, N.; Colwell Jr, C.W. Knee joint forces: Prediction, measurement, and significance. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2012, 226, 95–102. [Google Scholar] [CrossRef]
- Lewis, J.; Lew, W.; Schmidt, J. A note on the application and evaluation of the buckle transducer for knee ligament force measurement. J. Biomech. Eng. 1982, 104, 125–128. [Google Scholar] [CrossRef]
- Luo, H.; Liu, M.; Chen, H.; Zhang, C.; Wang, Z. A wireless force measurement system for Total Knee Arthroplasty. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Republic of Korea, 20–23 May 2012; pp. 2637–2640. [Google Scholar]
- Nisell, R.; Németh, G.; Ohlsén, H. Joint forces in extension of the knee: Analysis of a mechanical model. Acta Orthop. Scand. 1986, 57, 41–46. [Google Scholar] [CrossRef]
- Shriram, D.; Praveen Kumar, G.; Cui, F.; Lee, Y.H.D.; Subburaj, K. Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci. Rep. 2017, 7, 6011. [Google Scholar] [CrossRef]
- Erdemir, A. Open knee: Open source modeling and simulation in knee biomechanics. J. Knee Surg. 2015, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Kawai, Y.; Hayashi, Y.; Hirano, T.; Ukai, H.; Sanaka, K.; Nakamuta, H.; Takao, K. Development of knee joint robot for students becoming therapist—Design of prototype and fundamental experiments. In Proceedings of the ICCAS 2010, Gyeonggi-do, Republic of Korea, 27–30 October 2010; pp. 151–155. [Google Scholar]
- Kutzner, I.; Heinlein, B.; Graichen, F.; Bender, A.; Rohlmann, A.; Halder, A.; Beier, A.; Bergmann, G. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 2010, 43, 2164–2173. [Google Scholar] [CrossRef]
- Masouros, S.; Bull, A.; Amis, A. (i) Biomechanics of the knee joint. Orthop. Trauma 2010, 24, 84–91. [Google Scholar] [CrossRef]
- Bendjaballah, M.; Shirazi-Adl, A.; Zukor, D. Finite element analysis of human knee joint in varus-valgus. Clin. Biomech. 1997, 12, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Etoundi, A.C.; Lock, R.J.; Vaidyanathan, R.; Burgess, S.C. A bio-inspired condylar knee joint for knee prosthetics. Int. J. Des. Nat. Ecodynamics 2013, 8, 213–225. [Google Scholar] [CrossRef]
- Bian, W.; Lian, Q.; Li, D.; Wang, J.; Zhang, W.; Jin, Z.; Qiu, Y. Morphological characteristics of cartilage-bone transitional structures in the human knee joint and CAD design of an osteochondral scaffold. BioMedical Eng. OnLine 2016, 15, 82. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Sun, X.; Liu, D.; Huang, C.; Wu, J.; Yang, C.; Zhang, Q. Biomimetic cartilage scaffold with orientated porous structure of two factors for cartilage repair of knee osteoarthritis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1710–1721. [Google Scholar] [CrossRef]
- Fisher, M.B.; Henning, E.A.; Söegaard, N.; Esterhai, J.L.; Mauck, R.L. Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater. 2013, 9, 4496–4504. [Google Scholar] [CrossRef]
- Verstraete, M.A.; Victor, J. Possibilities and limitations of novel in-vitro knee simulator. J. Biomech. 2015, 48, 3377–3382. [Google Scholar] [CrossRef]
- Bourne, R.; Goodfellow, J.; O’Connor, J. A functional analysis of various knee arthroplasties. Trans. Orthop. Res. Soc. 1978, 24, 160. [Google Scholar]
- Halloran, J.P.; Clary, C.W.; Maletsky, L.P.; Taylor, M.; Petrella, A.J.; Rullkoetter, P.J. Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator. J. Biomech. Eng. 2010, 132, 081010. [Google Scholar] [CrossRef]
- Wünschel, M.; Müller, O.; Lo, J.; Obloh, C.; Wülker, N. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Arthrosc. J. Arthrosc. Relat. Surg. 2010, 26, 1520–1527. [Google Scholar] [CrossRef]
- Lo, J.; Müller, O.; Dilger, T.; Wülker, N.; Wünschel, M. Translational and rotational knee joint stability in anterior and posterior cruciate-retaining knee arthroplasty. Knee 2011, 18, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Most, E. Development of a 6-DOF Robotic Test System for Studying the Biomechanics of Total Knee Replacement. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2000. [Google Scholar]
- Freudenstein, F. Approximate synthesis of four-bar linkages. Resonance 2010, 15, 740–767. [Google Scholar] [CrossRef]
- Pracht, P.; Minotti, P.; Dahan, M. Synthesis and balancing of cam-modulated linkages. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 27–30 September 1987; pp. 221–226. [Google Scholar]
- Norton, R. Design of Machinery; McGraw-Hill Education: New York, NY, USA, 1998. [Google Scholar]
- Valencia-Segura, L.E.; Villarreal-Cervantes, M.G.; Corona-Ramírez, L.G.; Cuenca-Jiménez, F.; Castro-Medina, R. Optimum synthesis of four-bar mechanism by using relative angle method: A comparative performance study. IEEE Access 2021, 9, 132990–133010. [Google Scholar] [CrossRef]
- Xydas, E.G.; Louca, L.S.; Mueller, A. Analysis and Passive Control of a Four-bar Linkage for the Rehabilitation of Upper-limb Motion. In Proceedings of the Dynamic Systems and Control Conference, Columbus, OH, USA, 28–30 October 2015; p. V003T042A006. [Google Scholar]
- Yoon, D.; Choi, Y. Underactuated finger mechanism using contractible slider-cranks and stackable four-bar linkages. IEEE/ASME Trans. Mechatron. 2017, 22, 2046–2057. [Google Scholar] [CrossRef]
- González, M.; Cuadrado, J.; González, F.; Dopico, D. Optimization of an off-road bicycle with four-bar linkage rear suspension. In Proceedings of the MUSME, San Juan, Argentina, 8–12 April 2008. [Google Scholar]
- Smooth-Sil™ 933 Flame Out. Available online: https://www.smooth-on.com/products/smooth-sil-933/ (accessed on 26 February 2024).
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 2017, 17, 114. [Google Scholar]
- Kabir, W.; Di Bella, C.; Choong, P.F.; O’Connell, C.D. Assessment of native human articular cartilage: A biomechanical protocol. Cartilage 2021, 13, 427S–437S. [Google Scholar] [CrossRef]
- Smeets, K.; Slane, J.; Scheys, L.; Claes, S.; Bellemans, J. Mechanical analysis of extra-articular knee ligaments. Part one: Native knee ligaments. Knee 2017, 24, 949–956. [Google Scholar] [CrossRef]
- Felson, D.T.; Anderson, J.J.; Naimark, A.; Walker, A.M.; Meenan, R.F. Obesity and knee osteoarthritis: The Framingham Study. Ann. Intern. Med. 1988, 109, 18–24. [Google Scholar] [CrossRef]
- Felson, D.T. Osteoarthritis as a disease of mechanics. Osteoarthr. Cartil. 2013, 21, 10–15. [Google Scholar] [CrossRef]
- Buckwalter, J.A.; Anderson, D.D.; Brown, T.D.; Tochigi, Y.; Martin, J.A. The roles of mechanical stresses in the pathogenesis of osteoarthritis: Implications for treatment of joint injuries. Cartilage 2013, 4, 286–294. [Google Scholar] [CrossRef]
- Burr, D.B.; Gallant, M.A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Buttgereit, F.; Burmester, G.-R.; Bijlsma, J.W. Non-surgical management of knee osteoarthritis: Where are we now and where do we need to go? RMD Open 2015, 1, e000027. [Google Scholar] [CrossRef] [PubMed]
- Messier, S.P.; Mihalko, S.L.; Legault, C.; Miller, G.D.; Nicklas, B.J.; DeVita, P.; Beavers, D.P.; Hunter, D.J.; Lyles, M.F.; Eckstein, F. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: The IDEA randomized clinical trial. Jama 2013, 310, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T. Risk factors for osteoarthritis: Understanding joint vulnerability. Clin. Orthop. Relat. Res. 2004, 427, S16–S21. [Google Scholar] [CrossRef] [PubMed]
- Sen, R.; Hurley, J.A. Osteoarthritis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482326/ (accessed on 26 February 2024).
- Adouni, M.; Shirazi-Adl, A. Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects. J. Orthop. Res. 2014, 32, 69–78. [Google Scholar] [CrossRef]
- Berger, M.J.; Kean, C.O.; Goela, A.; Doherty, T.J. Disease severity and knee extensor force in knee osteoarthritis: Data from the Osteoarthritis Initiative. Arthritis Care Res. 2012, 64, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Connelly, A.E.; Tucker, A.J.; Kott, L.S.; Wright, A.J.; Duncan, A.M. Modifiable lifestyle factors are associated with lower pain levels in adults with knee osteoarthritis. Pain Res. Manag. 2015, 20, 241–248. [Google Scholar] [CrossRef] [PubMed]
Parameter | Modulus Range [GPa] |
---|---|
PLA | 0.0015–0.003 |
EcoFlex | 0.00002–0.01 |
Cortical bone | 0.010–0.03 |
Cancellous bone | 0.0005–0.002 |
Muscle | 0.0002–0.001 |
Cartilage | 0.0005–0.02 |
Tendon | 0.1–1 |
Ligament | 0.1–0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.; Seo, S.; Lee, H.; Han, M.-W. Knee Measurement System with Osteoarthritis Levels Using Artificial Cartilage and Skeletons. Biomimetics 2024, 9, 166. https://doi.org/10.3390/biomimetics9030166
Kang M, Seo S, Lee H, Han M-W. Knee Measurement System with Osteoarthritis Levels Using Artificial Cartilage and Skeletons. Biomimetics. 2024; 9(3):166. https://doi.org/10.3390/biomimetics9030166
Chicago/Turabian StyleKang, Minchae, Suyeon Seo, Hyewon Lee, and Min-Woo Han. 2024. "Knee Measurement System with Osteoarthritis Levels Using Artificial Cartilage and Skeletons" Biomimetics 9, no. 3: 166. https://doi.org/10.3390/biomimetics9030166
APA StyleKang, M., Seo, S., Lee, H., & Han, M. -W. (2024). Knee Measurement System with Osteoarthritis Levels Using Artificial Cartilage and Skeletons. Biomimetics, 9(3), 166. https://doi.org/10.3390/biomimetics9030166