A Biologically Inspired Movement Recognition System with Spiking Neural Networks for Ambient Assisted Living Applications
Abstract
:1. Introduction
2. Dataset
3. Method
3.1. Asynchronous Cellular Automaton-Based Neuron
- The membrane register is an N-bit bidirectional shift register with an integer state V in the range of , representing the membrane potential of the neuron model.
- The recovery register is an M-bit bidirectional shift register with an internal state U in the range of , representing the recovery variable of the neuron model.
- The membrane velocity counter is a K-bit register with an internal state P in the range of , controlling the velocity of membrane potential V.
- The recovery velocity counter is a J-bit register with an internal state Q in the range of , controlling the velocity of recovery variable U.
- The Vector Field Unit determines the vector field characteristics for states V and U.
- The Rest Value Unit sets the rest values for states V and U.
3.2. Remote Supervised Method ()
3.3. Network Architecture
4. Experiments and Results
4.1. ACAN Spiking Activity Reproduction on an FPGA
4.2. MNIST Hand-Written Digit Dataset
4.3. Network and Training Optimization
4.4. Novel Movement Dataset
5. Conclusions and Future Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAL | ambient assisted living |
SNN | spiking neural network |
DNN | deep neural network |
ACAN | asynchronous cellular automata-based neuron |
ReSuMe | remote supervised learning |
RC | Reservoir Computing |
MCG | Magnetocardiogram |
EEG | Electroencephalogram |
FPGA | field-programmable gate array |
STDP | spike-timing-dependent plasticity |
VHDL | VHSIC Hardware Description Language |
VHSIC | Very-High-Speed Integrated Circuit |
MNIST | Modified National Institutes of Standards and Technology |
NN | neural network |
References
- Mois, G.; Beer, J.M. Chapter 3—Robotics to support aging in place. In Living with Robots; Pak, R., de Visser, E.J., Rovira, E., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 49–74. [Google Scholar]
- Keroglou, C.; Kansizoglou, I.; Michailidis, P.; Oikonomou, K.M.; Papapetros, I.T.; Dragkola, P.; Michailidis, I.T.; Gasteratos, A.; Kosmatopoulos, E.B.; Sirakoulis, G.C. A Survey on Technical Challenges of Assistive Robotics for Elder People in Domestic Environments: The ASPiDA Concept. IEEE Trans. Med. Robot. Bionics 2023, 5, 196–205. [Google Scholar] [CrossRef]
- Sabater, A.; Santos, L.; Santos-Victor, J.; Bernardino, A.; Montesano, L.; Murillo, A.C. One-shot action recognition towards novel assistive therapies. arXiv 2021, arXiv:2102.08997. [Google Scholar]
- Moschetti, A.; Fiorini, L.; Esposito, D.; Dario, P.; Cavallo, F. Toward an unsupervised approach for daily gesture recognition in assisted living applications. IEEE Sens. J. 2017, 17, 8395–8403. [Google Scholar] [CrossRef]
- Kansizoglou, I.; Bampis, L.; Gasteratos, A. An active learning paradigm for online audio-visual emotion recognition. IEEE Trans. Affect. Comput. 2019, 13, 756–768. [Google Scholar] [CrossRef]
- Chandra, I.; Sivakumar, N.; Gokulnath, C.B.; Parthasarathy, P. IoT based fall detection and ambient assisted system for the elderly. Clust. Comput. 2019, 22, 2517–2525. [Google Scholar] [CrossRef]
- Bao, Y.; Sun, F.; Hua, X.; Wang, B.; Yin, J. Operation action recognition using wearable devices with inertial sensors. In Proceedings of the 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu, Republic of Korea, 16–18 November 2017; pp. 536–541. [Google Scholar]
- Giannakopoulos, T.; Konstantopoulos, S. Daily Activity Recognition based on Meta-classification of Low-level Audio Events. In Proceedings of the ICT4AgeingWell, Porto, Portugal, 28–29 April 2017; pp. 220–227. [Google Scholar]
- Laraba, S.; Brahimi, M.; Tilmanne, J.; Dutoit, T. 3D skeleton-based action recognition by representing motion capture sequences as 2D-RGB images. Comput. Animat. Virtual Worlds 2017, 28, e1782. [Google Scholar] [CrossRef]
- Oikonomou, K.M.; Kansizoglou, I.; Manaveli, P.; Grekidis, A.; Menychtas, D.; Aggelousis, N.; Sirakoulis, G.C.; Gasteratos, A. Joint-Aware Action Recognition for Ambient Assisted Living. In Proceedings of the 2022 IEEE International Conference on Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 21–23 June 2022; pp. 1–6. [Google Scholar]
- Kansizoglou, I.; Bampis, L.; Gasteratos, A. Do neural network weights account for classes centers? IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8815–8824. [Google Scholar] [CrossRef] [PubMed]
- Swanson, L.W. Brain Architecture: Understanding the Basic Plan; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Pfeiffer, M.; Pfeil, T. Deep learning with spiking neurons: Opportunities and challenges. Front. Neurosci. 2018, 12, 774. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.S.; Kim, Y. Recent trend of neuromorphic computing hardware: Intel’s neuromorphic system perspective. In Proceedings of the 2020 International SoC Design Conference (ISOCC), Yeosu, Republic of Korea, 21–24 October 2020; pp. 218–219. [Google Scholar]
- Tang, G.; Kumar, N.; Michmizos, K.P. Reinforcement co-learning of deep and spiking neural networks for energy-efficient mapless navigation with neuromorphic hardware. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 6090–6097. [Google Scholar]
- Takeda, K.; Torikai, H. A novel hardware-efficient CPG model for a hexapod robot based on nonlinear dynamics of coupled asynchronous cellular automaton oscillators. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Takeda, K.; Torikai, H. A novel hardware-oriented recurrent network of asynchronous CA neurons for a neural integrator. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2972–2976. [Google Scholar] [CrossRef]
- Horie, N.; Torikai, H. A novel hardware-efficient asynchronous cellular automaton model of tumor immunotherapy and its FPGA implementation. In Proceedings of the 2021 17th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), Catania, Italy, 29 September–1 October 2021; pp. 1–4. [Google Scholar]
- Suzuki, H.; Torikai, H. A Novel Hardware-Efficient Network of Ergodic Cellular Automaton Neuron Models and its On-FPGA Learning. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; pp. 2266–2270. [Google Scholar]
- Nakata, K.; Torikai, H. Analysis of time series classification of a multi-layer reservoir neural network based on asynchronous cellular automaton neurons with transmission delays. In Proceedings of the 2021 17th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), Catania, Italy, 29–30 September 2021; pp. 1–4. [Google Scholar]
- Matsubara, T.; Torikai, H. A novel reservoir network of asynchronous cellular automaton based neurons for MIMO neural system reproduction. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–7. [Google Scholar]
- Tsakalos, K.A.; Dragkola, P.; Karamani, R.E.; Tsompanas, M.A.; Provata, A.; Dimitrakis, P.; Adamatzky, A.I.; Sirakoulis, G.C. Chimera states in neuro-inspired area-efficient asynchronous cellular automata networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 4128–4140. [Google Scholar] [CrossRef]
- Chatzipaschalis, I.K.; Tsakalos, K.A.; Sirakoulis, G.C.; Rubio, A. Parkinson’s Treatment Emulation Using Asynchronous Cellular Neural Networks. In Proceedings of the 2023 IEEE 14th Latin America Symposium on Circuits and Systems (LASCAS), Quito, Ecuador, 28 February–3 March 2023; pp. 1–4. [Google Scholar]
- Matsubara, T.; Torikai, H. Asynchronous cellular automaton-based neuron: Theoretical analysis and on-FPGA learning. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.; Vai, M.I.; Pun, S.H. A Low-Cost, High-Throughput Neuromorphic Computer for Online Snn Learning; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–18. [Google Scholar]
- Valencia, D.; Alimohammad, A. A generalized hardware architecture for real-time spiking neural networks. Neural Comput. Appl. 2023, 35, 17821–17835. [Google Scholar] [CrossRef]
- Barré, A.; Armand, A. Biomechanical ToolKit: Open-Source Framework to Visualize and Process Biomechanical Data. Comput. Methods Programs Biomed. 2014, 114, 80–87. Available online: https://biomechanical-toolkit.github.io/mokka/ (accessed on 20 December 2023). [CrossRef] [PubMed]
- Menychtas, D.; Petrou, N.; Kansizoglou, I.; Giannakou, E.; Grekidis, A.; Gasteratos, A.; Gourgoulis, V.; Douda, E.; Smilios, I.; Michalopoulou, M.; et al. Gait analysis comparison between manual marking, 2D pose estimation algorithms, and 3D marker-based system. Front. Rehabil. Sci. 2023, 4, 1238134. [Google Scholar] [CrossRef] [PubMed]
- Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [Google Scholar] [CrossRef] [PubMed]
- Izhikevich, E.M. Dynamical Systems in Neuroscience; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Matsubara, T.; Torikai, H. Bifurcation-based synthesis of asynchronous cellular automaton based neuron. Nonlinear Theory Its Appl. IEICE 2013, 4, 111–126. [Google Scholar] [CrossRef]
- Ponulak, F.; Kasinski, A. ReSuMe learning method for Spiking Neural Networks dedicated to neuroprostheses control. In Proceedings of the EPFL LATSIS Symposium 2006, Dynamical Principles for Neuroscience and Intelligent Biomimetic Devices, Citeseer, Lausanne, Switzerland, 8–10 March 2006; pp. 119–120. [Google Scholar]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Psychology Press: London, UK, 2005. [Google Scholar]
- Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Tsakalos, K.A.; Sirakoulis, G.C.; Adamatzky, A. Unsupervised Learning Approach Using Reinforcement Techniques on Bio-inspired Topologies. In Handbook of Unconventional Computing; WSPC Book Series in Unconventional Computing; World Scientific: Singapore, 2021; Chapter 17; pp. 507–533. [Google Scholar]
- Tsakalos, K.A.; Sirakoulis, G.C.; Adamatzky, A.; Smith, J. Protein structured reservoir computing for spike-based pattern recognition. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 322–331. [Google Scholar] [CrossRef]
- Heeger, D. Poisson model of spike generation. Handout Univ. Standford 2000, 5, 76. [Google Scholar]
- LeCun, Y.; Cortes, C. The MNIST Database of Handwritten Digits. 2005. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 22 December 2023).
- Khokhlova, M.; Migniot, C.; Morozov, A.; Sushkova, O.; Dipanda, A. Normal and pathological gait classification LSTM model. Artif. Intell. Med. 2019, 94, 54–66. [Google Scholar] [CrossRef] [PubMed]
Before Preprocessing | After Preprocessing | |
---|---|---|
Gait | 32 | 3659 |
Cutting | 50 | 2404 |
Standing up | 22 | 2751 |
Sitting down | 20 | 3286 |
Turning | 12 | 5703 |
Total | 126 | 17,803 |
Type | |||||||||
---|---|---|---|---|---|---|---|---|---|
a | 7 | R | 0 | ||||||
b | 7 | R | 0 | ||||||
c | 7 | R | |||||||
d | 7 | R | |||||||
e | 7 | R | |||||||
f | 7 | R | |||||||
g | 7 | R | 4 | ||||||
h | 7 | 3 | R | 0 | |||||
i | 7 | R | 4 | ||||||
j | 7 | 3 | R | 0 | |||||
k | 7 | 3 | R | 0 | |||||
l | 7 | R | 4 | ||||||
m | 7 | 3 | R | 0 | |||||
n | 7 | 3 | R | ||||||
o | 7 | 3 | R | 0 | |||||
p | 7 | 3 | R | 0 | |||||
q | 7 | R | |||||||
r | 7 | R | 0 | ||||||
s | 7 | 0 | R | ||||||
t | 7 | 0 | R |
ACAN Model | Training | Testing | ||||
---|---|---|---|---|---|---|
Types | R | Accuracy % | R | Accuracy % | ||
a | 128 | 5 | 80.75 | 128 | 10 | 79.7 |
c | 256 | 5 | 80.87 | 128 | 10 | 79.62 |
f | 128 | 5 | 80.77 | 64 | 10 | 79.53 |
g | 128 | 5 | 80.87 | 128 | 10 | 79.53 |
j | 128 | 5 | 80.87 | 128 | 10 | 79.86 |
m | 128 | 5 | 80.81 | 256 | 5 | 79.53 |
s | 256 | 5 | 80.79 | 256,128 | 5, 10 | 79.87 |
t | 256 | 5 | 80.86 | 128 | 10 | 80.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passias, A.; Tsakalos, K.-A.; Kansizoglou, I.; Kanavaki, A.M.; Gkrekidis, A.; Menychtas, D.; Aggelousis, N.; Michalopoulou, M.; Gasteratos, A.; Sirakoulis, G.C. A Biologically Inspired Movement Recognition System with Spiking Neural Networks for Ambient Assisted Living Applications. Biomimetics 2024, 9, 296. https://doi.org/10.3390/biomimetics9050296
Passias A, Tsakalos K-A, Kansizoglou I, Kanavaki AM, Gkrekidis A, Menychtas D, Aggelousis N, Michalopoulou M, Gasteratos A, Sirakoulis GC. A Biologically Inspired Movement Recognition System with Spiking Neural Networks for Ambient Assisted Living Applications. Biomimetics. 2024; 9(5):296. https://doi.org/10.3390/biomimetics9050296
Chicago/Turabian StylePassias, Athanasios, Karolos-Alexandros Tsakalos, Ioannis Kansizoglou, Archontissa Maria Kanavaki, Athanasios Gkrekidis, Dimitrios Menychtas, Nikolaos Aggelousis, Maria Michalopoulou, Antonios Gasteratos, and Georgios Ch. Sirakoulis. 2024. "A Biologically Inspired Movement Recognition System with Spiking Neural Networks for Ambient Assisted Living Applications" Biomimetics 9, no. 5: 296. https://doi.org/10.3390/biomimetics9050296
APA StylePassias, A., Tsakalos, K. -A., Kansizoglou, I., Kanavaki, A. M., Gkrekidis, A., Menychtas, D., Aggelousis, N., Michalopoulou, M., Gasteratos, A., & Sirakoulis, G. C. (2024). A Biologically Inspired Movement Recognition System with Spiking Neural Networks for Ambient Assisted Living Applications. Biomimetics, 9(5), 296. https://doi.org/10.3390/biomimetics9050296