Experimental Study on Aerodynamic Characteristics of Downwind Bionic Tower Wind Turbine
Abstract
:1. Introduction
2. Design of the Bionic Tower
3. Experimental Setup and Methodology
3.1. Wake Measurement of a Single-Cylinder Model
3.2. Downwind wind Turbine Measurement
4. Results and Discussion
4.1. Wake Measurement of a Single-Cylinder Model
4.2. Power Characteristics
4.3. Wind Turbine Wake Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Wang, X. Preface: Wind Turbines: Aeromechanics and Farm Optimization. Acta Mech. Sin. 2020, 36, 257–259. [Google Scholar] [CrossRef]
- Bortolotti, P.; Kapila, A.; Bottasso, C.L. Comparison between upwind and downwind designs of a 10 MW wind turbine rotor. Wind. Energy Sci. 2019, 4, 115–125. [Google Scholar] [CrossRef]
- Dose, B.; Rahimi, H.; Stoevesandt, B.; Peinke, J. Fluid-structure coupled investigations of the NREL 5 MW wind turbine for two downwind configurations. Renew. Energy 2020, 146, 1113–1123. [Google Scholar] [CrossRef]
- Loth, E.; Steele, A.; Qin, C.; Ichter, B.; Selig, M.S.; Moriarty, P. Downwind pre-aligned rotors for extreme-scale wind turbines. Wind Energy 2017, 20, 1241–1259. [Google Scholar] [CrossRef]
- Frau, E.; Kress, C.; Chokani, N.; Abhari, R.S. Comparison of performance and unsteady Loads of multimegawatt downwind and upwind turbines. J. Sol. Energy Eng. 2015, 137, 041004. [Google Scholar] [CrossRef]
- Zalkind, D.S.; Ananda, G.K.; Chetan, M.; Martin, D.P.; Bay, C.J.; Johnson, K.E.; Loth, E.; Griffith, D.T.; Selig, M.S.; Pao, L.Y. System-level design studies for large rotors. Wind Energy Sci. 2019, 4, 595–618. [Google Scholar] [CrossRef]
- Reiso, M.; Muskulus, M. Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue. J. Phys. Conf. Ser. 2014, 555, 012084. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, W.; Shen, W.; Zhong, W.; Cao, J.; Tao, Q. Aerodynamic Analysis of Coning Effects on the DTU 10 MW Wind Turbine Rotor. Energies 2020, 13, 5753. [Google Scholar] [CrossRef]
- Mohamadnia, E.; Fadaeinedjad, R.; Naji, H.R. Using a new wind turbine emulator to analyze tower shadow and yaw error effects. Energy Convers. Manag. 2018, 11, 378–387. [Google Scholar] [CrossRef]
- Yoshida, S. Dynamic stall model for tower shadow effects on downwind turbines and its scale effects. Energies 2020, 13, 5237. [Google Scholar] [CrossRef]
- Noyes, C.; Qin, C.; Loth, E. Tower shadow induced blade loads for an extreme-scale downwind turbine. Wind Energy 2020, 23, 458–470. [Google Scholar] [CrossRef]
- Kress, C.; Chokani, N.; Abhari, R.S. Downwind wind turbine yaw stability and performance. Renew. Energy 2015, 83, 1157–1165. [Google Scholar] [CrossRef]
- Kress, C.; Chokani, N.; Abhari, R.S. Design Considerations of rotor cone angle for downwind wind turbines. J. Eng. Gas Turbines Power 2016, 138, 052602. [Google Scholar] [CrossRef]
- Meng, H.; Ma, Z.; Dou, B.; Lei, L. Investigation on the performance of a novel forward-folding rotor used in a downwind horizontal-axis turbine. Energy 2020, 190, 116384. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, W.; Hu, H. A Comparative study on the aeromechanic performances of upwind and downwind horizontal-axis wind turbines. Energy Convers. Manag. 2018, 163, 100–110. [Google Scholar] [CrossRef]
- Basta, E.; Ghommem, M.; Romdhane, L.; Abdelkefi, A. Modeling and experimental comparative analysis on the performance of small-scale wind turbines. Wind Struct. 2020, 30, 261–273. [Google Scholar]
- Simpson, J.G.; Kaminski, M.; Loth, E. Influence of tower shadow on downwind flexible rotors: Field tests and simulations. Wind Energy 2022, 25, 881–896. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Cai, C.; Cao, H.; Zhang, Z. A Review on Modeling of Bionic Flow Control Methods for Large-Scale Wind Turbine Blades. J. Therm. Sci. 2021, 30, 743–757. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Zhu, X.; Li, Y.; Song, X.; Cai, C.; Kamada, Y.; Maeda, T.; Li, Q. Investigation of aerodynamic forces and flow field of an H-type vertical axis wind turbine based on bionic airfoil. Energy 2022, 242, 122999. [Google Scholar] [CrossRef]
- Feng, W.; Chen, K.; Gui, H.; Zhao, P.; Gao, R.; Li, Y. Aerodynamic Noise Reduction Based on Bionic Blades with Non-Smooth Leading Edges and Curved Serrated Trailing Edges. J. Appl. Fluid Mech. 2023, 16, 1402–1413. [Google Scholar]
- Zheng, X.; Kamat, A.M.; Cao, M.; Kottapalli, A.G.P. Creating underwater vision through wavy whiskers: A review of the flow-sensing mechanisms and biomimetic potential of seal whiskers. J. R. Soc. Interface 2021, 18, 20210629. [Google Scholar] [CrossRef] [PubMed]
- Lekkala, M.R.; Latheef, M.; Jung, J.H.; Coraddu, A.; Zhu, H.; Srinil, N.; Lee, B.H.; Kim, D. Recent advances in understanding the flow over bluff bodies with different geometries at moderate Reynolds numbers. Ocean Eng. 2022, 261, 111611. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y. Wake dynamics behind a seal-vibrissa-shaped cylinder: A comparative study by time-resolved particle velocimetry measurements. Exp Fluids 2016, 57, 32. [Google Scholar] [CrossRef]
- Chen, W.; Min, X.; Gao, D.; Guo, A.; Li, H. Experimental investigation of aerodynamic forces and flow structures of bionic cylinders based on harbor seal vibrissa. Exp. Therm. Fluid Sci. 2018, 99, 169–180. [Google Scholar]
- Song, L.; Ji, C.; Yuan, D.; Xu, D.; Zhang, X.; Wei, Y.; Yin, T. Single degree-of-freedom flow-induced vibration of an elastically-supported harbor seal whisker model: An experimental study. Chin. J. Theor. App. Mech. 2022, 54, 653–668. [Google Scholar]
- Bunjevac, J.; Turk, J.; Rinehart, A.; Zhang, W. Wake induced by an undulating elephant seal whisker. J. Vis. 2018, 21, 597–612. [Google Scholar] [CrossRef]
- Chu, S.; Xia, C.; Wang, H.; Fan, Y.; Yang, Z. Three-dimensional spectral proper orthogonal decomposition analyses of the turbulent flow around a seal-vibrissa-shaped cylinder. Phys. Fluids 2021, 33, 025106. [Google Scholar]
- Yoon, H.S.; Kim, H.J.; Wei, D.J. Forced convection heat transfer from the helically twisted elliptic cylinder inspired by a daffodil stem. Int. J. Heat Mass Tran. 2018, 119, 105–116. [Google Scholar] [CrossRef]
- Yoon, H.S.; Nam, S.H.; Kim, M.I. Effect of the geometric features of the harbor seal vibrissa based biomimetic cylinder on the flow over a cylinder. Ocean Eng. 2020, 218, 108150. [Google Scholar] [CrossRef]
- Bortolotti, P.; Ivanov, H.; Johnson, N.; Barter, G.; Veers, P.E.; Namura, N. Challenges, opportunities, and a research roadmap for downwind wind turbines. Wind Energy 2022, 25, 354–367. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y. Flow structures behind a vibrissa-shaped cylinder at different angles of attack: Complication on vortex-induced vibration. Int. J. Heat Fluid Flow 2017, 68, 31–52. [Google Scholar]
- Gan, C.; Shi, W.; Li, X.; Yu, J.; Chen, L.; Shen, Q. Aero-Interference Typical Patterns for Multi-Bodies Spacious Separation Flow. J. Propuls. Technol. 2023, 44, 2202008. [Google Scholar]
- Zhou, H.; Jiang, Z.; Wang, G.; Zhang, S. Aerodynamic Characteristics of isolated loaded tires with different tread patterns: Experiment and simulation. Chin. J. Mech. Eng. 2021, 34, 6. [Google Scholar] [CrossRef]
- Yang, J.; Yang, H.; Zhu, W.; Li, N.; Yuan, Y. Experimental Study on Aerodynamic Characteristics of a Gurney Flap on a Wind Turbine Airfoil under High Turbulent Flow Condition. Appl. Sci. 2020, 10, 7258. [Google Scholar] [CrossRef]
- Zanotti, A.; Gibertini, G. Experimental assessment of an active L-shaped tab for dynamic stall control. J. Fluids Struct. 2018, 77, 151–169. [Google Scholar] [CrossRef]
- Li, Q.; Murata, J.; Endo, M.; Maeda, T.; Kamada, Y. Experimental and Numerical Investigation of the Effect of Turbulent Inflow on a Horizontal Axis Wind Turbine (Part II: Wake Characteristics). Energy 2016, 113, 1304–1315. [Google Scholar] [CrossRef]
- Yang, J.; Feng, K.; Yang, H.; Wang, X. Experimental Study on the Influence of a Two-Dimensional Cosine Hill on Wind Turbine Wake. Machines 2022, 10, 753. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, W.; Fischer, A.; García, N.R.; Madsen, J.; Chen, J.; Shen, W.Z. Design and validation of the high performance and low noise CQU-DTU-LN1 airfoils. Wind Energy 2014, 17, 1817–1833. [Google Scholar] [CrossRef]
- Sessarego, M.; Ramos-Garcia, N.; Yang, H.; Shen, W.Z. Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous-inviscid interaction technique. Renew. Energy 2016, 93, 620–635. [Google Scholar] [CrossRef]
- Bastankhah, M.; Porté-Agel, F. A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance. Energies 2017, 10, 908. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Gao, Z.; Sha, C.; Yang, H. Output Power and Wake Flow Characteristics of a Wind Turbine with Swept Blades. Machines 2022, 10, 876. [Google Scholar] [CrossRef]
- Bourhis, M.; Pereira, M.; Ravelet, F. Experimental investigation of the effects of the Reynolds number on the performance and near wake of a wind turbine. Renew. Energy 2023, 209, 63–70. [Google Scholar] [CrossRef]
- Chamorro, L.; Arndt, R.; Sotiropoulos, F. Reynolds number dependence of turbulence statistics in the wake of wind turbines. Wind Energy 2012, 15, 733–742. [Google Scholar] [CrossRef]
- Dou, B.; Guala, M.; Zeng, P.; Lei, L. Experimental Investigation of the Power Performance of a Minimal Wind Turbine Array in an Atmospheric Boundary Layer Wind Tunnel. Energy Convers. Manag. 2019, 196, 906–919. [Google Scholar] [CrossRef]
- Alber, J.; Soto-Valle, R.; Manolesos, M.; Bartholomay, S.; Nayeri, C.N.; Schönlau, M.; Menzel, C.; Paschereit, C.O.; Twele, J.; Fortmann, J. Aerodynamic effects of Gurney flaps on the rotor blades of a research wind turbine. Wind. Energy Sci. Discuss. 2020, 5, 1645–1662. [Google Scholar] [CrossRef]
- Bourhis, M.; Pereira, M.; Ravelet, F. Experimental investigation of the effect of blade solidity on micro-scale and low tip-speed ratio wind turbines. Exp. Therm. Fluid Sci. 2022, 140, 110745. [Google Scholar] [CrossRef]
- Hansen, M.O.L. Aerodynamics of Wind Turbines, 3rd ed.; Earthscan from Routledge, Taylor & Francis Group: London, UK, 2015. [Google Scholar]
- Xu, C.; Zhong, L. Wind Farm Planning and Designing, 2nd ed.; China WaterPower Press: Beijing, China, 2021. [Google Scholar]
A (mm) | B (mm) | a (mm) | b (mm) | λ (mm) | α (°) | β (°) | Dh (mm) | AR | |
---|---|---|---|---|---|---|---|---|---|
Bionic cylinder | 12.8 | 10.3 | 10.2 | 8.1 | 18.9 | 15.27 | 17.6 | 20.0 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Sun, X.; Yang, H.; Wang, X. Experimental Study on Aerodynamic Characteristics of Downwind Bionic Tower Wind Turbine. Biomimetics 2024, 9, 336. https://doi.org/10.3390/biomimetics9060336
Yang J, Sun X, Yang H, Wang X. Experimental Study on Aerodynamic Characteristics of Downwind Bionic Tower Wind Turbine. Biomimetics. 2024; 9(6):336. https://doi.org/10.3390/biomimetics9060336
Chicago/Turabian StyleYang, Junwei, Xin Sun, Hua Yang, and Xiangjun Wang. 2024. "Experimental Study on Aerodynamic Characteristics of Downwind Bionic Tower Wind Turbine" Biomimetics 9, no. 6: 336. https://doi.org/10.3390/biomimetics9060336
APA StyleYang, J., Sun, X., Yang, H., & Wang, X. (2024). Experimental Study on Aerodynamic Characteristics of Downwind Bionic Tower Wind Turbine. Biomimetics, 9(6), 336. https://doi.org/10.3390/biomimetics9060336