Neuron Circuit Based on a Split-gate Transistor with Nonvolatile Memory for Homeostatic Functions of Biological Neurons
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Basic Device Characteristics
3.2. A Neuron Circuit Using the S-G FET
3.3. Pattern Recognition in SNN with Homeostasis Function
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, S. Neuro-inspired computing with emerging nonvolatile memories. Proc. IEEE 2018, 106, 260–285. [Google Scholar] [CrossRef]
- Masquelier, T.; Thorpe, S.J. Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput. Biol. 2007, 3, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Saxena, V.; Zhu, K. Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 254–266. [Google Scholar] [CrossRef]
- Bichler, O.; Querlioz, D.; Thorpe, S.J.; Bourgoin, J.-P.; Gamrat, C. Unsupervised features extraction from asynchronous silicon retina through Spike-Timing-Dependent Plasticity. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 859–866. [Google Scholar]
- Qiao, N.; Mostafa, H.; Corradi, F.; Osswald, M.; Stefanini, F.; Sumislawska, D.; Indiveri, G. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front. Neurosci. 2018, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Ferre, P.; Mamalet, F.; Thorpe, S.J. Unsupervised Feature Learning with Winner-Takes-All Based STDP. Front. Comput. Neurosci. 2018, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 2015, 9, 99. [Google Scholar] [CrossRef] [PubMed]
- Querlioz, D.; Bichler, O.; Dollfus, P.; Gamrat, C. Immunity to device variations in a spiking neural network with memristive nanodevices. IEEE Trans. Nanotechnol. 2013, 12, 288–295. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Song, M.S.; Youn, S.; Kim, K.; Kim, H. Implementation of convolutional neural networks in memristor crossbar arrays with binary activation and weight quantization. ACS Appl. Mater. Interfaces 2024, 16, 1054–1065. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, L.; Huang, W.; Li, Y.; Huang, S.; Zhu, Y.; Yang, D.; Pi, X. Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 2021, 3, 2000099. [Google Scholar] [CrossRef]
- Florini, D.; Gandolfi, D.; Mapelli, J.; Benatti, L.; Pavan, P.; Puglisi, F.M. A Hybrid CMOS-Memristor Spiking Neural Network Supporting Multiple Learning Rules. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 5117–5129. [Google Scholar] [CrossRef]
- Milo, V.; Pedretti, G.; Carboni, R.; Calderoni, A.; Ramaswamy, N.; Ambrogio, S.; Ielmini, D. Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Cooper, L.; Bear, M. The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nat. Rev. Neurosci. 2012, 13, 798–810. [Google Scholar] [CrossRef]
- Ahmed, T.; Walia, S.; Mayes, E.L.H.; Ramanathan, R.; Bansal, V.; Bhaskaran, M.; Sriram, S.; Kavehei, O. Time and rate dependent synaptic learning in neuro-mimicking resistive memories. Sci. Rep. 2019, 9, 15404. [Google Scholar] [CrossRef]
- Fernandes, D.; Carvalho, A.L. Mechanisms of homeostatic plasticity in the excitatory synapse. J. Neurochem. 2016, 139, 973–996. [Google Scholar] [CrossRef]
- Wang, G.; Gilbert, J.; Man, H.-Y. AMPA Receptor Trafficking in Homeostatic Synaptic Plasticity: Functional Molecules and Signaling Cascades. Neural Plast. 2012, 2012, 825364. [Google Scholar] [CrossRef]
- Tien, N.W.; Kerschensteiner, D. Homeostatic plasticity in neural development. Neural Dev. 2018, 13, 9. [Google Scholar] [CrossRef]
- Chowdhury, D.; Hell, J.W. Homeostatic synaptic scaling: Molecular regulators of synaptic AMPA-type glutamate receptors. F1000Research 2018, 7, 234. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Song, M.S.; Hwang, H.; Hwang, S.; Kim, H. A comprehensive review of advanced trends: From artificial synapses to neuromorphic systems with consideration of non-ideal effects. Front. Neurosci. 2024, 18, 1279708. [Google Scholar] [CrossRef] [PubMed]
- Cho, S. Volatile and nonvolatile memory devices for neuromorphic and processing-in-memory applications. J. Semicond. Technol. Sci. 2022, 22, 30–46. [Google Scholar] [CrossRef]
- Lee, G.H.; Song, M.S.; Kim, S.; Yim, J.; Hwang, S.; Yu, J.; Kwon, D.; Kim, H. Ferroelectric field-effect transistors for binary neural network with 3-D NAND architecture. IEEE Trans. Electron Devices 2022, 69, 6438–6445. [Google Scholar] [CrossRef]
- Li, Z.; Meng, J.; Yu, J.; Liu, Y.; Wang, T.; Liu, P.; Chen, S.; Zhu, H.; Sun, Q.; Zhang, D.W.; et al. CMOS compatible low power consumption ferroelectric synapse for neuromorphic computing. IEEE Electron Device Lett. 2023, 44, 532–535. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnaiah, M.; Park, J.; Mishra, D.; Dash, B.; Jo, H.-B.; Lee, G.; Youn, S.; Kim, H.; Jin, S.H. Multibit, lead-free Cs2SnI6 resistive random access memory with self-compliance for improved accuracy in binary neural network application. Adv. Funct. Mater. 2024, 34, 2310780. [Google Scholar] [CrossRef]
- Kim, J.P.; Kim, S.K.; Park, S.; Kuk, S.-H.; Kim, T.; Kim, B.H.; Ahn, S.-H.; Cho, Y.-H.; Jeong, Y.; Choi, S.-Y.; et al. Dielectric-engineered high-speed, low-power, highly reliable charge trap flash-based synaptic device for neuromorphic computing beyond inference. Nano Lett. 2023, 23, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Youn, S.; Lee, J.; Kim, S.; Park, J.; Kim, K.; Kim, H. Programmable threshold logic implementations in a memristor crossbar array. Nano Lett. 2024, 24, 3581–3589. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, J.; Zeng, T.; Zhao, X.; Li, J.; Sun, H.; Cao, Y.; Tong, Y.; Tang, Q.; Liu, Y. Super-flexible, transparent synaptic transistors based on pullulan for neuromorphic electronics. IEEE Electron Device Lett. 2023, 44, 606–609. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.; Kim, T.-H.; Hong, K.; Hwang, Y.; Park, B.G.; Kim, H. 4-bit Multilevel Operation in Overshoot Suppressed Al2O3/TiOx Resistive Random-Access Memory Crossbar Array. Adv. Intell. Syst. 2022, 4, 2100273. [Google Scholar] [CrossRef]
- Hwang, S.; Yu, J.; Song, M.S.; Hwang, H.; Kim, H. Memcapacitor crossbar array with charge trap NAND flash structure for neuromorphic computing. Adv. Sci. 2023, 10, 2303817. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Kim, S.; Hong, K.; Park, J.; Youn, S.; Lee, J.-H.; Park, B.-G.; Kim, H. Effect of program error in memristive neural network with weight quantization. IEEE Trans. Electron Devices 2022, 69, 3151–3157. [Google Scholar] [CrossRef]
- Werner, T.; Vianello, E.; Bichler, O.; Grossi, A.; Nowak, E.; Nodin, J.-F.; Yvert, B.; DeSalvo, B.; Perniola, L. Experimental demonstration of short and long term synaptic plasticity using OxRAM multi k-bit arrays for reliable detection in highly noisy input data. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Wang, Z.Q.; Xu, H.Y.; Li, X.H.; Yu, H.; Liu, Y.C.; Zhu, X.J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2765. [Google Scholar] [CrossRef]
- Oh, S.; Huang, Z.; Shi, Y.; Kuzum, D. The impact of resistance drift of phase change memory (PCM) synaptic devices on artificial neural network performance. IEEE Electron Device Lett. 2019, 40, 1325–1328. [Google Scholar] [CrossRef]
- Bianchi, S.; Munoz-Martin, I.; Hashemkhani, S.; Pedretti, G.; Ielmini, D. A bio-inspired recurrent neural network with self-adaptive neurons and PCM synapses for solving reinforcement learning tasks. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 10–21 October 2020; pp. 1–5. [Google Scholar]
- Kang, M.; Park, J. Peripheral circuit optimization with precharge technique of spin transfer torque MRAM synapse array. In Proceedings of the International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju, Republic of Korea, 25–28 June 2021; pp. 1–3. [Google Scholar]
- Feng, Y.; Huang, P.; Zhao, Y.; Shan, Y.; Zhang, Y.; Zhou, Z.; Liu, L.; Liu, X.; Kang, J. Improvement of state stability in multi-level resistive random-access memory (RRAM) array for neuromorphic computing. IEEE Electron Device Lett. 2021, 42, 1168–1171. [Google Scholar] [CrossRef]
- Li, Y.; Ang, K.-W. Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv. Intell. Syst. 2021, 3, 2000137. [Google Scholar] [CrossRef]
- Jeon, K.; Kim, J.; Ryu, J.J.; Yoo, S.-J.; Song, C.; Yang, M.K.; Jeong, D.S.; Kim, G.H. Self-rectifying resistive memory in passive crossbar arrays. Nat. Commun. 2021, 12, 2968. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, E.; Zheng, X.; Le, B.; Shih, Y.; Radway, R.; Nelson, M.; Mitra, S.; Wong, S. Four-bits-per-memory one-transistor-and-eight-resistive-random-access-memory (1T8R) array. IEEE Electron Device Lett. 2021, 42, 335–338. [Google Scholar] [CrossRef]
- Rajendran, B.; Alibart, F. Neuromorphic Computing Based on Emerging Memory Technologies. IEEE J. Emerg. Sel. Top. Circuits Syst. 2016, 6, 198–211. [Google Scholar] [CrossRef]
- Yang, J.Q.; Zhou, Y.; Han, S.T. Functional Applications of Future Data Storage Devices. Adv. Electron Mater. 2021, 7, 2001181. [Google Scholar] [CrossRef]
- Li, S.; Lyu, H.; Li, J.; He, Y.; Gao, X.; Wan, Q.; Shi, Y.; Pan, L. Multiterminal ionic synaptic transistor with artificial blink reflex function. IEEE Electron Device Lett. 2021, 42, 351–354. [Google Scholar] [CrossRef]
- Lee, S.-T.; Lim, S.; Choi, N.Y.; Bae, J.-H.; Kwon, D.; Park, B.-G.; Lee, J.-H. Operation scheme of multi-layer neural networks using nand flash memory as high-density synaptic devices. IEEE J. Electron Devices Soc. 2019, 7, 1085–1093. [Google Scholar] [CrossRef]
- Park, Y.J.; Kwon, H.T.; Kim, B.; Lee, W.J.; Wee, D.H.; Choi, H.-S.; Park, B.-G.; Lee, J.-H.; Kim, Y. 3-D stacked synapse array based on charge-trap flash memory for implementation of deep neural networks. IEEE Trans. Electron Devices 2018, 66, 420–427. [Google Scholar] [CrossRef]
- Woo, S.Y.; Choi, K.-B.; Kim, J.; Kang, W.-M.; Kim, C.-H.; Seo, Y.-T.; Bae, J.-H.; Park, B.-G.; Lee, J.-H. Implementation of homeostasis functionality in neuron circuit using double-gate device for spiking neural network. Solid-State Electron. 2020, 165, 107741. [Google Scholar] [CrossRef]
- Wu, H.; Yao, P.; Gao, B.; Wu, W.; Zhang, Q.; Zhang, W.; Deng, N.; Wu, D.; Wong, H.-S.P.; Yu, S.; et al. Device and circuit optimization of RRAM for neuromorphic computing. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017. [Google Scholar]
- Lim, S.; Bae, J.-H.; Eum, J.-H.; Lee, S.; Kim, C.-H.; Kwon, D.; Park, B.-G.; Lee, J.-H. Adaptive learning rule for hardware-based deep neural networks using electronic synapse devices. Neural Comput. Appl. 2018, 31, 8101–8116. [Google Scholar] [CrossRef]
- Kwon, D.; Lim, S.; Bae, J.-H.; Lee, S.-T.; Kim, H.; Kim, C.-H.; Park, B.-G.; Lee, J.-H. Adaptive Weight Quantization Method for Nonlinear Synaptic Devices. IEEE Trans. Electron Devices 2019, 66, 395–401. [Google Scholar] [CrossRef]
- Woo, S.Y.; Choi, K.-B.; Lim, S.; Lee, S.-T.; Kim, C.-H.; Kang, W.-M.; Kwon, D.; Bae, J.-H.; Park, B.-G.; Lee, J.-H. Synaptic device using a floating fin-body MOSFET with memory functionality for neural network. Solid-State Electron. 2019, 156, 23–27. [Google Scholar] [CrossRef]
- Bartolozzi, C.; Nikolayeva, O.; Indiveri, G. Implementing homeostatic plasticity in VLSI networks of spiking neurons. In Proceedings of the 15th IEEE International Conference on Electronics, Circuits and Systems, Saint Julian’s, Malta, 31 August–3 September 2008; pp. 682–685. [Google Scholar]
- Bartolozzi, C.; Indiveri, G. Global scaling of synaptic efficacy: Homeostasis in silicon synapses. Neurocomputing 2009, 72, 726–731. [Google Scholar] [CrossRef]
- Rovere, G.; Ning, Q.; Bartolozzi, C.; Indiveri, G. Ultra Low Leakage Synaptic Scaling Circuits for Implementing Homeostatic Plasticity in Neuromorphic Architectures. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014; pp. 2073–2076. [Google Scholar]
- Qiao, N.; Indiveri, G.; Bartolozzi, C. Automatic gain control of ultra-low leakage synaptic scaling homeostatic plasticity circuits. In Proceedings of the 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS); Shanghai, China: 17–19 October 2016; pp. 156–159.
- Shi, X.; Zeng, Z.; Yang, L.; Huang, Y. Memristor-Based Circuit Design for Neuron with Homeostatic Plasticity. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 359–370. [Google Scholar] [CrossRef]
- Zjajo, A. Dynamic Homeostatic Regulation in Energy-Efficient Time-Locked Neuromorphic Systems. In Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, 26–28 October 2020; pp. 719–722. [Google Scholar]
- Zhao, Z.; Qu, L.; Wang, L.; Deng, Q.; Li, N.; Kang, Z.; Guo, S.; Xu, W. A Memristor-Based Spiking Neural Network with High Scalability and Learning Efficiency. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 931–935. [Google Scholar] [CrossRef]
- Johnson, A.P.; Liu, J.; Millard, A.G.; Karim, S.; Tyrrell, A.M.; Harkin, J.; Timmis, J.; McDaid, L.J.; Halliday, D.M. Homeostatic Fault Tolerance in Spiking Neural Networks: A Dynamic Hardware Perspective. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 687–699. [Google Scholar] [CrossRef]
- Kang, W.-M.; Kim, C.-H.; Lee, S.; Woo, S.Y.; Bae, J.-H.; Park, B.-G.; Lee, J.-H. A spiking neural network with a global self-controller for unsupervised learning based on spike-timing-dependent plasticity using flash memory synaptic devices. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–7. [Google Scholar]
- Goda, A. Recent Progress on 3D NAND Flash Technologies. Electronics 2021, 10, 3156. [Google Scholar] [CrossRef]
- Woo, S.Y.; Kang, W.M.; Seo, Y.T.; Lee, S.; Kwon, D.; Oh, S.; Bae, J.-H.; Lee, J.-H. Demonstration of integrate-and-fire neuron circuit for spiking neural networks. Solid-State Electron. 2022, 198, 108481. [Google Scholar] [CrossRef]
- Kim, C.-H.; Lee, S.; Woo, S.Y.; Kang, W.-M.; Lim, S.; Bae, J.-H.; Kim, J.; Lee, J.-H. Demonstration of Unsupervised Learning with Spike-Timing-Dependent Plasticity Using a TFT-Type NOR Flash Memory Array. IEEE Trans. Electron Devices 2018, 65, 1774–1780. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Woo, S.Y.; Kim, H. Neuron Circuit Based on a Split-gate Transistor with Nonvolatile Memory for Homeostatic Functions of Biological Neurons. Biomimetics 2024, 9, 335. https://doi.org/10.3390/biomimetics9060335
Kim H, Woo SY, Kim H. Neuron Circuit Based on a Split-gate Transistor with Nonvolatile Memory for Homeostatic Functions of Biological Neurons. Biomimetics. 2024; 9(6):335. https://doi.org/10.3390/biomimetics9060335
Chicago/Turabian StyleKim, Hansol, Sung Yun Woo, and Hyungjin Kim. 2024. "Neuron Circuit Based on a Split-gate Transistor with Nonvolatile Memory for Homeostatic Functions of Biological Neurons" Biomimetics 9, no. 6: 335. https://doi.org/10.3390/biomimetics9060335
APA StyleKim, H., Woo, S. Y., & Kim, H. (2024). Neuron Circuit Based on a Split-gate Transistor with Nonvolatile Memory for Homeostatic Functions of Biological Neurons. Biomimetics, 9(6), 335. https://doi.org/10.3390/biomimetics9060335