Surface Deformation of Biocompatible Materials: Recent Advances in Biological Applications
Abstract
:1. Introduction
2. Surface Deformation Techniques with Various Biocompatible Substrates
2.1. Biocompatible Substrates
2.1.1. Soft Substrates
2.1.2. Hard Substrates
2.1.3. Hybrid Substrates
2.2. Surface Deformation Examples
2.2.1. Wrinkling
2.2.2. Creasing
2.2.3. Folding and Ridge
3. Biological Applications
3.1. Surface Deformation for Cell Studies
3.1.1. Cell Differentiations
3.1.2. Wound Healing
3.1.3. Cell Alignment
3.1.4. Dynamic Stimulus Platform
3.2. Molecular Study
3.2.1. Biosensors
3.2.2. Surface Wettability Control
3.2.3. Antibiofouling Film
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Del Bakhshayesh, A.R.; Asadi, N.; Alihemmati, A.; Tayefi Nasrabadi, H.; Montaseri, A.; Davaran, S.; Saghati, S.; Akbarzadeh, A.; Abedelahi, A. An Overview of Advanced Biocompatible and Biomimetic Materials for Creation of Replacement Structures in the Musculoskeletal Systems: Focusing on Cartilage Tissue Engineering. J. Biol. Eng. 2019, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Joyce, K.; Fabra, G.T.; Bozkurt, Y.; Pandit, A. Bioactive Potential of Natural Biomaterials: Identification, Retention and Assessment of Biological Properties. Signal Transduct. Target. Ther. 2021, 6, 122. [Google Scholar] [CrossRef] [PubMed]
- Moysidou, C.M.; Barberio, C.; Owens, R.M. Advances in Engineering Human Tissue Models. Front. Bioeng. Biotechnol. 2021, 8, 620962. [Google Scholar] [CrossRef] [PubMed]
- De Pieri, A.; Rochev, Y.; Zeugolis, D.I. Scaffold-Free Cell-Based Tissue Engineering Therapies: Advances, Shortfalls and Forecast. NPJ Regen. Med. 2021, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Green, J.J.; Elisseeff, J.H. Mimicking Biological Functionality with Polymers for Biomedical Applications. Nature 2016, 540, 386. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.C.; Tsai, Y.H.; Hong, S.G.; Chen, Y.; Yao, C.L. Hyaluronic Acid Stimulated Enterocytic Differentiation of Intestinal Stem Cells and Enhanced Enteroid Grafting on Scaffolds. Biotechnol. Bioprocess Eng. 2023, 28, 451–458. [Google Scholar] [CrossRef]
- Paxton, N.C.; Allenby, M.C.; Lewis, P.M.; Woodruff, M.A. Biomedical Applications of Polyethylene. Eur. Polym. J. 2019, 118, 412–428. [Google Scholar] [CrossRef]
- Liang, F.; Qiao, Y.; Duan, M.; Ju, A.; Lu, N.; Li, J.; Tu, J.; Lu, Z. Fabrication of a Microfluidic Chip Based on the Pure Polypropylene Material. RSC Adv. 2018, 8, 8732–8738. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Feng, Y.; Gao, C.; Zhang, X.; Wang, Q.; Zhang, J.; Zhang, H.; Wu, Y.; Li, X.; Wang, L.; et al. Biaxial Stretching of Polytetrafluoroethylene in Industrial Scale to Fabricate Medical EPTFE Membrane with Node-Fibril Microstructure. Regen. Biomater. 2023, 10, rbad056. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Wang, H.; An, G.; Wu, H.; Huang, W. A High-Throughput, Open-Space and Reusable Microfluidic Chip for Combinational Drug Screening on Tumor Spheroids. Lab Chip 2021, 21, 3924–3932. [Google Scholar] [CrossRef]
- Prince, E.; Kheiri, S.; Wang, Y.; Xu, F.; Cruickshank, J.; Topolskaia, V.; Tao, H.; Young, E.W.K.; McGuigan, A.P.; Cescon, D.W.; et al. Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies. Adv. Healthc. Mater. 2022, 11, 2101085. [Google Scholar] [CrossRef]
- Sun, Q.; Tan, S.H.; Chen, Q.; Ran, R.; Hui, Y.; Chen, D.; Zhao, C.X. Microfluidic Formation of Coculture Tumor Spheroids with Stromal Cells As a Novel 3D Tumor Model for Drug Testing. ACS Biomater. Sci. Eng. 2018, 4, 4425–4433. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Dong, Y. Collagen-Based Biomaterials for Tissue Engineering. ACS Biomater. Sci. Eng. 2023, 9, 1132–1150. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Murillo, J.A.; Simental-Mendía, M.A.; Moncada-Saucedo, N.K.; Delgado-Gonzalez, P.; Islas, J.F.; Roacho-Pérez, J.A.; Garza-Treviño, E.N. Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair. Int. J. Mol. Sci. 2022, 23, 9879. [Google Scholar] [CrossRef] [PubMed]
- Braun, F.K.; Rothhammer-Hampl, T.; Lorenz, J.; Pohl, S.; Menevse, A.N.; Vollmann-Zwerenz, A.; Bumes, E.; Büttner, M.; Zoubaa, S.; Proescholdt, M.; et al. Scaffold-Based (MatrigelTM) 3D Culture Technique of Glioblastoma Recovers a Patient-like Immunosuppressive Phenotype. Cells 2023, 12, 1856. [Google Scholar] [CrossRef]
- Kim, M.H.; Sawada, Y.; Taya, M.; Kino-oka, M. Influence of Surface Topography on the Human Epithelial Cell Response to Micropatterned Substrates with Convex and Concave Architectures. J. Biol. Eng. 2014, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Tudureanu, R.; Handrea-Dragan, I.M.; Boca, S.; Botiz, I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int. J. Mol. Sci. 2022, 23, 7731. [Google Scholar] [CrossRef]
- Kim, H.N.; Hong, Y.; Kim, M.S.; Kim, S.M.; Suh, K.Y. Effect of Orientation and Density of Nanotopography in Dermal Wound Healing. Biomaterials 2012, 33, 8782–8792. [Google Scholar] [CrossRef]
- Lee, I.; Kim, D.; Park, G.L.; Jeon, T.J.; Kim, S.M. Investigation of Wound Healing Process Guided by Nano-Scale Topographic Patterns Integrated within a Microfluidic System. PLoS ONE 2018, 13, e0201418. [Google Scholar] [CrossRef]
- Li, S.; Lin, L.; Chang, X.; Si, Z.; Plaxco, K.W.; Khine, M.; Li, H.; Xia, F. A Wrinkled Structure of Gold Film Greatly Improves the Signaling of Electrochemical Aptamer-Based Biosensors. RSC Adv. 2020, 11, 671–677. [Google Scholar] [CrossRef]
- Dou, C.; Wu, Z.; Chen, W.; Yan, H.; Li, D.; You, X.Q.; Chen, Y.S.; Zhou, C.; Chen, S.; Zhuang, P.; et al. Au-Functionalized Wrinkle Graphene Biosensor for Ultrasensitive Detection of Interleukin-6. Carbon 2024, 216, 118556. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, X. A Three-Dimensional Phase Diagram of Growth-Induced Surface Instabilities. Sci. Rep. 2015, 5, 8887. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, F. Chemical Instability-Induced Wettability Patterns on Superhydrophobic Surfaces. Micromachines 2024, 15, 329. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.Y.; Nolte, A.J.; Stafford, C.M.; Chung, J.Y.; Nolte, A.J.; Stafford, C.M. Surface Wrinkling: A Versatile Platform for Measuring Thin-Film Properties. Adv. Mater. 2011, 23, 349–368. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Zhao, X.; Suo, Z. Formation of Creases on the Surfaces of Elastomers and Gels. Appl. Phys. Lett. 2009, 95, 111901. [Google Scholar] [CrossRef]
- Jeng, F.S.; Huang, K.P. Buckling Folds of a Single Layer Embedded in Matrix—Theoretical Solutions and Characteristics. J. Struct. Geol. 2008, 30, 633–648. [Google Scholar] [CrossRef]
- Janmey, P.A.; Winer, J.P.; Weisel, J.W. Fibrin Gels and Their Clinical and Bioengineering Applications. J. R. Soc. Interface 2009, 6, 1–10. [Google Scholar] [CrossRef]
- Schexnailder, P.; Schmidt, G. Nanocomposite Polymer Hydrogels. Colloid Polym. Sci. 2009, 287, 1–11. [Google Scholar] [CrossRef]
- Lubbers, L.A.; Weijs, J.H.; Botto, L.; Das, S.; Andreotti, B.; Snoeijer, J.H. Drops on Soft Solids: Free Energy and Double Transition of Contact Angles. J. Fluid Mech. 2014, 747, R1. [Google Scholar] [CrossRef]
- Banerjee, H.; Suhail, M.; Ren, H. Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics 2018, 3, 15. [Google Scholar] [CrossRef]
- Barrat, J.L.; Del Gado, E.; Egelhaaf, S.U.; Mao, X.; Dijkstra, M.; Pine, D.J.; Kumar, S.K.; Bishop, K.; Gang, O.; Obermeyer, A.; et al. Soft Matter Roadmap. J. Phys. Mater. 2023, 7, 012501. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The Extracellular Matrix at a Glance. J. Cell Sci. 2010, 123, 4195. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Peng, K.; Pan, T.; Long, F.; Lin, Y. Improving the Local Thermal Conductivity of Flexible Films by Microchannels Filled with Graphene. Compos. Commun. 2021, 25, 100689. [Google Scholar] [CrossRef]
- Xie, Z.H.; Hoffman, M.; Moon, R.J.; Munroe, P.R. Deformation of a Hard Coating on Ductile Substrate System during Nanoindentation: Role of the Coating Microstructure. J. Mater. Res. 2006, 21, 437–447. [Google Scholar] [CrossRef]
- Fernández-García, L.; Suárez, M.; Menéndez, J.L.; Pecharromán, C.; Menéndez, R.; Santamaría, R. Dielectric Behavior of Ceramic–Graphene Composites around the Percolation Threshold. Nanoscale Res. Lett. 2015, 10, 216. [Google Scholar] [CrossRef]
- Li, A.; Zhang, C.; Zhang, Y.F. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers 2017, 9, 437. [Google Scholar] [CrossRef]
- Kang, E.S.; Kim, D.S.; Suhito, I.R.; Choo, S.S.; Kim, S.J.; Song, I.; Kim, T.H. Guiding Osteogenesis of Mesenchymal Stem Cells Using Carbon-Based Nanomaterials. Nano Converg. 2017, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.M.; Lim, S.S.; Tiong, T.J.; Show, P.L.; Zaid, H.F.M.; Loh, H.S. Preliminary In Vitro Evaluation of Chitosan–Graphene Oxide Scaffolds on Osteoblastic Adhesion, Proliferation, and Early Differentiation. Int. J. Mol. Sci. 2020, 21, 5202. [Google Scholar] [CrossRef]
- Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Evans, M.D.M.; Vashi, A.V.; Gunatillake, P. Graphene/Polyurethane Composites: Fabrication and Evaluation of Electrical Conductivity, Mechanical Properties and Cell Viability. RSC Adv. 2015, 5, 98762–98772. [Google Scholar] [CrossRef]
- Nayak, T.R.; Andersen, H.; Makam, V.S.; Khaw, C.; Bae, S.; Xu, X.; Ee, P.L.R.; Ahn, J.H.; Hong, B.H.; Pastorin, G.; et al. Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Nano 2011, 5, 4670–4678. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Kim, H.M.; Song, K.H.; Eom, S.; Park, H.J.; Doh, J.; Kim, D.S. Ultra-Thin, Aligned, Free-Standing Nanofiber Membranes to Recapitulate Multi-Layered Blood Vessel/Tissue Interface for Leukocyte Infiltration Study. Biomaterials 2018, 169, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Sriram, G.; Alberti, M.; Dancik, Y.; Wu, B.; Wu, R.; Feng, Z.; Ramasamy, S.; Bigliardi, P.L.; Bigliardi-Qi, M.; Wang, Z. Full-Thickness Human Skin-on-Chip with Enhanced Epidermal Morphogenesis and Barrier Function. Mater. Today 2018, 21, 326–340. [Google Scholar] [CrossRef]
- Rivera, K.R.; Pozdin, V.A.; Young, A.T.; Erb, P.D.; Wisniewski, N.A.; Magness, S.T.; Daniele, M. Integrated Phosphorescence-Based Photonic Biosensor (IPOB) for Monitoring Oxygen Levels in 3D Cell Culture Systems. Biosens. Bioelectron. 2019, 123, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.T.L.; Thai, D.A.; Chae, W.R.; Lee, N.Y. Rapid Fabrication of Poly(Methyl Methacrylate) Devices for Lab-Ona-Chip Applications Using Acetic Acid and UV Treatment. ACS Omega 2020, 5, 17396–17404. [Google Scholar] [CrossRef]
- Saad Aly, M.A.; Nguon, O.; Gauthier, M.; Yeow, J.T.W. Antibacterial Porous Polymeric Monolith Columns with Amphiphilic and Polycationic Character on Cross-Linked PMMA Substrates for Cell Lysis Applications. RSC Adv. 2013, 3, 24177–24184. [Google Scholar] [CrossRef]
- van Meer, B.J.; de Vries, H.; Firth, K.S.A.; van Weerd, J.; Tertoolen, L.G.J.; Karperien, H.B.J.; Jonkheijm, P.; Denning, C.; IJzerman, A.P.; Mummery, C.L. Small Molecule Absorption by PDMS in the Context of Drug Response Bioassays. Biochem. Biophys. Res. Commun. 2017, 482, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Chuah, Y.J.; Heng, Z.T.; Tan, J.S.; Tay, L.M.; Lim, C.S.; Kang, Y.; Wang, D.A. Surface Modifications to Polydimethylsiloxane Substrate for Stabilizing Prolonged Bone Marrow Stromal Cell Culture. Colloids Surf. B Biointerfaces 2020, 191, 110995. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Chuah, Y.J.; Ang, W.T.; Zheng, N.; Wang, D.A. Optimization of a Polydopamine (PD)-Based Coating Method and Polydimethylsiloxane (PDMS) Substrates for Improved Mouse Embryonic Stem Cell (ESC) Pluripotency Maintenance and Cardiac Differentiation. Biomater. Sci. 2017, 5, 1156–1173. [Google Scholar] [CrossRef]
- Etezadi, F.; Nguyen, M.; Le, T.; Shahsavarani, H.; Alipour, A.; Moazzezy, N.; Samani, S.; Amanzadeh, A.; Pahlavan, S.; Bonakdar, S.; et al. Optimization of a PDMS-Based Cell Culture Substrate for High-Density Human-Induced Pluripotent Stem Cell Adhesion and Long-Term Differentiation into Cardiomyocytes under a Xeno-Free Condition. ACS Biomater. Sci. Eng. 2022, 8, 2040–2052. [Google Scholar] [CrossRef]
- Gupta, P.; Hari Narayana S. N., G.; Kasiviswanathan, U.; Agarwal, T.; Senthilguru, K.; Mukhopadhyay, D.; Pal, K.; Giri, S.; Maiti, T.K.; Banerjee, I. Substrate Stiffness Does Affect the Fate of Human Keratinocytes. RSC Adv. 2016, 6, 3539–3551. [Google Scholar] [CrossRef]
- Fu, J.; Chuah, Y.J.; Liu, J.; Tan, S.Y.; Wang, D.A. Respective Effects of Gelatin-Coated Polydimethylsiloxane (PDMS) Substrates on Self-Renewal and Cardiac Differentiation of Induced Pluripotent Stem Cells (IPSCs). ACS Biomater. Sci. Eng. 2018, 4, 4321–4330. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Fuwad, A.; Ko, G.; Kim, G.J.; Jeon, T.J.; Kim, S.M. A PDMS-Based Interdigitated Platform for Trophoblast Invasion Study Under Oxygen Stress Conditions. Biochip J. 2021, 15, 362–370. [Google Scholar] [CrossRef]
- Caplin, J.D.; Granados, N.G.; James, M.R.; Montazami, R.; Hashemi, N. Microfluidic Organ-on-a-Chip Technology for Advancement of Drug Development and Toxicology. Adv. Healthc. Mater. 2015, 4, 1426–1450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Aleman, J.; Shin, S.R.; Kilic, T.; Kim, D.; Shaegh, S.A.M.; Massa, S.; Riahi, R.; Chae, S.; Hu, N.; et al. Multisensor-Integrated Organs-on-Chips Platform for Automated and Continual in Situ Monitoring of Organoid Behaviors. Proc. Natl. Acad. Sci. USA 2017, 114, E2293–E2302. [Google Scholar] [CrossRef] [PubMed]
- Kamei, K.; Mashimo, Y.; Koyama, Y.; Fockenberg, C.; Nakashima, M.; Nakajima, M.; Li, J.; Chen, Y. 3D Printing of Soft Lithography Mold for Rapid Production of Polydimethylsiloxane-Based Microfluidic Devices for Cell Stimulation with Concentration Gradients. Biomed. Microdevices 2015, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Comina, G.; Suska, A.; Filippini, D. PDMS Lab-on-a-Chip Fabrication Using 3D Printed Templates. Lab Chip 2014, 14, 424–430. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.C.; Whitesides, G.M. Poly(Dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Acc. Chem. Res. 2002, 35, 491–499. [Google Scholar] [CrossRef]
- Ardeleanu, M.N.; Popescu, I.N.; Udroiu, I.N.; Diaconu, E.M.; Mihai, S.; Lungu, E.; Alhalaili, B.; Vidu, R. Novel PDMS-Based Sensor System for MPWM Measurements of Picoliter Volumes in Microfluidic Devices. Sensors 2019, 19, 4886. [Google Scholar] [CrossRef]
- Au, A.K.; Bhattacharjee, N.; Horowitz, L.F.; Chang, T.C.; Folch, A. 3D-Printed Microfluidic Automation. Lab Chip 2015, 15, 1934–1941. [Google Scholar] [CrossRef]
- Joo, H.; Shin, J.; Cho, S.-W.; Kim, P. Wrinkled-Surface Mediated Reverse Transfection Platform for Highly Efficient, Addressable Gene Delivery. Adv. Healthc. Mater. 2016, 5, 2025–2030. [Google Scholar] [CrossRef]
- Yang, K.; Lee, J.S.; Kim, J.; Lee, Y.B.; Shin, H.; Um, S.H.; Kim, J.B.; Park, K.I.; Lee, H.; Cho, S.W. Polydopamine-Mediated Surface Modification of Scaffold Materials for Human Neural Stem Cell Engineering. Biomaterials 2012, 33, 6952–6964. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Cuesta, M.; Cortajarena, A.; García, O.; Rodríguez-Hernández, J. Fabrication of Functional Wrinkled Interfaces from Polymer Blends: Role of the Surface Functionality on the Bacterial Adhesion. Polymers 2014, 6, 2845–2861. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, H.; Pei, X.; Liu, Y.; Ye, Q.; Zhou, F. Polymer Brushes on Structural Surfaces: A Novel Synergistic Strategy for Perfectly Resisting Algae Settlement. Biomater. Sci. 2017, 5, 2493–2500. [Google Scholar] [CrossRef] [PubMed]
- Lind, J.U.; Busbee, T.A.; Valentine, A.D.; Pasqualini, F.S.; Yuan, H.; Yadid, M.; Park, S.J.; Kotikian, A.; Nesmith, A.P.; Campbell, P.H.; et al. Instrumented Cardiac Microphysiological Devices via Multimaterial Three-Dimensional Printing. Nat. Mater. 2017, 16, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Cha, B.-H.; Shin, S.R.; Leijten, J.; Li, Y.-C.; Singh, S.; Liu, J.C.; Annabi, N.; Abdi, R.; Dokmeci, M.R.; Vrana, N.E.; et al. Integrin-Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. Adv. Healthc. Mater. 2017, 6, 1700289. [Google Scholar] [CrossRef]
- Asadi, N.; Del Bakhshayesh, A.R.; Davaran, S.; Akbarzadeh, A. Common Biocompatible Polymeric Materials for Tissue Engineering and Regenerative Medicine. Mater. Chem. Phys. 2020, 242, 122528. [Google Scholar] [CrossRef]
- Augustine, R.; Dan, P.; Schlachet, I.; Rouxel, D.; Menu, P.; Sosnik, A. Chitosan Ascorbate Hydrogel Improves Water Uptake Capacity and Cell Adhesion of Electrospun Poly(Epsilon-Caprolactone) Membranes. Int. J. Pharm. 2019, 559, 420–426. [Google Scholar] [CrossRef]
- Cruz-Acuña, R.; García, A.J. Synthetic Hydrogels Mimicking Basement Membrane Matrices to Promote Cell-Matrix Interactions. Matrix Biol. 2017, 57–58, 324–333. [Google Scholar] [CrossRef]
- Heo, D.N.; Hospodiuk, M.; Ozbolat, I.T. Synergistic Interplay between Human MSCs and HUVECs in 3D Spheroids Laden in Collagen/Fibrin Hydrogels for Bone Tissue Engineering. Acta Biomater. 2019, 95, 348–356. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, X.; Huang, Y.; Xu, G.; Yang, J.; Li, L. In Vivo Bioengineered Ovarian Tumors Based on Collagen, Matrigel, Alginate and Agarose Hydrogels: A Comparative Study. Biomed. Mater. 2015, 10, 015016. [Google Scholar] [CrossRef] [PubMed]
- Bertassoni, L.E.; Cecconi, M.; Manoharan, V.; Nikkhah, M.; Hjortnaes, J.; Cristino, A.L.; Barabaschi, G.; Demarchi, D.; Dokmeci, M.R.; Yang, Y.; et al. Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs. Lab Chip 2014, 14, 2202–2211. [Google Scholar] [CrossRef]
- Billiet, T.; Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P. A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering. Biomaterials 2012, 33, 6020–6041. [Google Scholar] [CrossRef] [PubMed]
- Chin, M.H.W.; Norman, M.D.A.; Gentleman, E.; Coppens, M.O.; Day, R.M. A Hydrogel-Integrated Culture Device to Interrogate T Cell Activation with Physicochemical Cues. ACS Appl. Mater. Interfaces 2020, 12, 47355–47367. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.C.; Davidson, M.D.; Burdick, J.A. 3D Bioprinting of High Cell-Density Heterogeneous Tissue Models through Spheroid Fusion within Self-Healing Hydrogels. Nat. Commun. 2021, 12, 753. [Google Scholar] [CrossRef] [PubMed]
- Grix, T.; Ruppelt, A.; Thomas, A.; Amler, A.-K.; Noichl, B.; Lauster, R.; Kloke, L. Bioprinting Perfusion-Enabled Liver Equivalents for Advanced Organ-on-a-Chip Applications. Genes 2018, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Linville, R.M.; DeStefano, J.G.; Sklar, M.B.; Xu, Z.; Farrell, A.M.; Bogorad, M.I.; Chu, C.; Walczak, P.; Cheng, L.; Mahairaki, V.; et al. Human IPSC-Derived Blood-Brain Barrier Microvessels: Validation of Barrier Function and Endothelial Cell Behavior. Biomaterials 2019, 190–191, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Y.; Cui, K.; Guo, Y.; Zhang, X.; Qin, J. Advances in Hydrogels in Organoids and Organs-on-a-Chip. Adv. Mater. 2019, 31, 1902042. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.P.; Delnero, P.F.; Zheng, Y.; Verbridge, S.S.; Chen, J.; Craven, M.; Choi, N.W.; Diaz-Santana, A.; Kermani, P.; Hempstead, B.; et al. Formation of Microvascular Networks in Vitro. Nat. Protoc. 2013, 8, 1820–1836. [Google Scholar] [CrossRef]
- Osaki, T.; Uzel, S.G.M.; Kamm, R.D. Microphysiological 3D Model of Amyotrophic Lateral Sclerosis (ALS) from Human IPS-Derived Muscle Cells and Optogenetic Motor Neurons. Sci. Adv. 2018, 4, eaat5847. [Google Scholar] [CrossRef]
- Lin, Z.; Li, R.; Liu, Y.; Zhao, Y.; Ao, N.; Wang, J.; Li, L.; Wu, G. Histatin1-Modified Thiolated Chitosan Hydrogels Enhance Wound Healing by Accelerating Cell Adhesion, Migration and Angiogenesis. Carbohydr. Polym. 2020, 230, 115710. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Acuña, R.; Quirós, M.; Farkas, A.E.; Dedhia, P.H.; Huang, S.; Siuda, D.; García-Hernández, V.; Miller, A.J.; Spence, J.R.; Nusrat, A.; et al. Synthetic Hydrogels for Human Intestinal Organoid Generation and Colonic Wound Repair. Nat. Cell Biol. 2017, 19, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef] [PubMed]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Hydrogels as Drug Delivery Systems; Pros and Cons; Shiraz University of Medical Sciences: Shiraz, Iran, 2019; Volume 5. [Google Scholar]
- Liu, X.; Miller, A.L.; Park, S.; George, M.N.; Waletzki, B.E.; Xu, H.; Terzic, A.; Lu, L. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS Appl. Mater. Interfaces 2019, 11, 23558–23572. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.K.; Raghavan, G.; Yang, G.; Cohen-Karni, T. Effect of Graphene on Nonneuronal and Neuronal Cell Viability and Stress. Nano Lett. 2017, 17, 3297–3301. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.B.; Liu, Y.L.; Wang, W.J.; Zhang, H.W.; Qin, Y.; Guo, S.; Zhang, X.W.; Fu, L.; Huang, W.H. Biomimetic Graphene-Based 3D Scaffold for Long-Term Cell Culture and Real-Time Electrochemical Monitoring. Anal. Chem. 2018, 90, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Pang, D.W.P.; Hwang, S.M.; Tuan, H.Y.; Hu, Y.C. A Graphene-Based Platform for Induced Pluripotent Stem Cells Culture and Differentiation. Biomaterials 2012, 33, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Verre, A.F.; Faroni, A.; Iliut, M.; Silva, C.; Muryn, C.; Reid, A.J.; Vijayaraghavan, A. Improving the Glial Differentiation of Human Schwann-like Adipose-Derived Stem Cells with Graphene Oxide Substrates. Interface Focus 2018, 8, 20180002. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, H.D.; Park, J.; Lee, E.; Kim, E.; Lee, S.S.; Yang, J.K.; Lee, Y.S.; Hwang, N.S. Enhanced Osteogenic Commitment of Murine Mesenchymal Stem Cells on Graphene Oxide Substrate. Biomater. Res. 2018, 22, 1–9. [Google Scholar] [CrossRef]
- Lee, W.C.; Lim, C.H.Y.X.; Shi, H.; Tang, L.A.L.; Wang, Y.; Lim, C.T.; Loh, K.P. Origin of Enhanced Stem Cell Growth and Differentiation on Graphene and Graphene Oxide. ACS Nano 2011, 5, 7334–7341. [Google Scholar] [CrossRef]
- Tevlek, A.; Aydın, H.M.; Maleki, E.; Varol, R.; Unal, O. Effects of Severe Plastic Deformation on Pre-Osteoblast Cell Behavior and Proliferation on AISI 304 and Ti-6Al-4V Metallic Substrates. Surf. Coat. Technol. 2019, 366, 204–213. [Google Scholar] [CrossRef]
- Jessica Kopf, B.; Ulasevich, S.; Baidukova, O.; Zhukova, Y.; Dunlop, J.W.C.; Fratzl, P.; Rikeit, P.; Knaus, P.; Poznyak, S.K.; Andreeva, D.V.; et al. Ultrasonically Produced Porous Sponge Layer on Titanium to Guide Cell Behavior. Adv. Eng. Mater. 2016, 18, 476–483. [Google Scholar] [CrossRef]
- Makvandi, P.; Wang, C.; Zare, E.N.; Borzacchiello, A.; Niu, L.; Tay, F.R. Metal-Based Nanomaterials in Biomedical Applications: Antimicrobial Activity and Cytotoxicity Aspects. Adv. Funct. Mater. 2020, 30, 1910021. [Google Scholar] [CrossRef]
- Wu, Q.; Li, N.; Wang, Y.; Liu, Y.; Xu, Y.; Wei, S.; Wu, J.; Jia, G.; Fang, X.; Chen, F.; et al. A 2D Transition Metal Carbide MXene-Based SPR Biosensor for Ultrasensitive Carcinoembryonic Antigen Detection. Biosens. Bioelectron. 2019, 144, 111697. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Martinez, C.C.; Gusmão, R.; Sofer, Z.; Pumera, M. Pnictogen-Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angew. Chem. Int. Ed. 2019, 58, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.K.; Na, J.; Lin, T.-E.; Malgras, V.; Preet, A.; Ibn Sina, A.A.; Wood, K.; Billah, M.; Kim, J.; You, J.; et al. Nanostructured Mesoporous Gold Biosensor for MicroRNA Detection at Attomolar Level. Biosens. Bioelectron. 2020, 168, 112429. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Cheng, C.; Qin, H.; Ma, L.; He, C.; Nie, S.; Zhang, X.; Fu, Q.; Zhao, C. Self-Assembled 3D Biocompatible and Bioactive Layer at the Macro-Interface via Graphene-Based Supermolecules. Polym. Chem. 2014, 5, 3563–3575. [Google Scholar] [CrossRef]
- Shah, S.; Yin, P.T.; Uehara, T.M.; Chueng, S.T.D.; Yang, L.; Lee, K.B. Guiding Stem Cell Differentiation into Oligodendrocytes Using Graphene-Nanofiber Hybrid Scaffolds. Adv. Mater. 2014, 26, 3673–3680. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, J.; Gao, J.; Du, F.; Han, Q.; Nie, Y.; Chen, Z.; Bachmatiuk, A.; Priydarshi, M.K.; Ma, D.; et al. Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture. Adv. Mater. 2015, 27, 7839–7846. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Xu, C.; Li, Y.; Gao, J.; Wang, W.; Liu, Y. High Strength Graphene Oxide/Polyvinyl Alcohol Composite Hydrogels. J. Mater. Chem. 2011, 21, 10399–10406. [Google Scholar] [CrossRef]
- Mass Spectrometry Imaging of Untreated Wet Cell Membranes in Solution Using Single-Layer Graphene. Available online: https://figshare.com/articles/dataset/Mass_Spectrometry_Imaging_of_Untreated_Wet_Cell_Membranes_in_Solution_Using_Single-Layer_Graphene/13356740 (accessed on 3 June 2022).
- Fan, Z.; Liu, B.; Wang, J.; Zhang, S.; Lin, Q.; Gong, P.; Ma, L.; Yang, S. A Novel Wound Dressing Based on Ag/Graphene Polymer Hydrogel: Effectively Kill Bacteria and Accelerate Wound Healing. Adv. Funct. Mater. 2014, 24, 3933–3943. [Google Scholar] [CrossRef]
- Leeladhar; Singh, J.P. Vapomechanical Soft Actuators Based on Graphene-Polymer Nanocomposite/Metal Hybrid Structure for Visual Detection of Chloroform. Sens. Actuators A Phys. 2019, 296, 87–91. [Google Scholar] [CrossRef]
- Guo, J.; Li, C.M.; Kang, Y. PDMS-Film Coated on PCB for AC Impedance Sensing of Biological Cells. Biomed. Microdevices 2014, 16, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Hashemzadeh, H.; Allahverdi, A.; Sedghi, M.; Vaezi, Z.; Moghadam, T.T.; Rothbauer, M.; Fischer, M.B.; Ertl, P.; Naderi-Manesh, H. PDMS Nano-Modified Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform. Nanomaterials 2020, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Choi, Y.Y.; Park, S.-H.; Ha, J.H.; Lee, H.U.; Kang, T.; Sun, W.; Chung, B.G. Microfluidic Electrode Array Chip for Electrical Stimulation-Mediated Axonal Regeneration. Lab Chip 2022, 22, 2122–2130. [Google Scholar] [CrossRef] [PubMed]
- Muderrisoglu, C.; Saveleva, M.; Abalymov, A.; Van der Meeren, L.; Ivanova, A.; Atkin, V.; Parakhonskiy, B.; Skirtach, A.G. Nanostructured Biointerfaces Based on Bioceramic Calcium Carbonate/Hydrogel Coatings on Titanium with an Active Enzyme for Stimulating Osteoblasts Growth. Adv. Mater. Interfaces 2018, 5, 1800452. [Google Scholar] [CrossRef]
- Khalid, M.A.U.; Kim, Y.S.; Ali, M.; Lee, B.G.; Cho, Y.J.; Choi, K.H. A Lung Cancer-on-Chip Platform with Integrated Biosensors for Physiological Monitoring and Toxicity Assessment. Biochem. Eng. J. 2020, 155, 107469. [Google Scholar] [CrossRef]
- Tang, Q.; Li, X.; Lai, C.; Li, L.; Wu, H.; Wang, Y.; Shi, X. Fabrication of a Hydroxyapatite-PDMS Microfluidic Chip for Bone-Related Cell Culture and Drug Screening. Bioact. Mater. 2021, 6, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Dey, M.; Ayan, B.; Zhang, Z.; Ozbolat, V.; Kim, M.H.; Khristov, V.; Ozbolat, I.T. Fabrication of PDMS Microfluidic Devices Using Nanoclay-Reinforced Pluronic F-127 as a Sacrificial Ink. Biomed. Mater. 2021, 16, 045005. [Google Scholar] [CrossRef]
- MacDonald, R.A.; Voge, C.M.; Kariolis, M.; Stegemann, J.P. Carbon Nanotubes Increase the Electrical Conductivity of Fibroblast-Seeded Collagen Hydrogels. Acta Biomater. 2008, 4, 1583–1592. [Google Scholar] [CrossRef]
- Chan, H.F.; Zhao, R.; Parada, G.A.; Meng, H.; Leong, K.W.; Griffith, L.G.; Zhao, X. Folding Artificial Mucosa with Cell-Laden Hydrogels Guided by Mechanics Models. Proc. Natl. Acad. Sci. USA 2018, 115, 7503–7508. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.W.; Pellegrino, S. Amplitude of Wrinkles in Thin Membranes. In New Approaches to Structural Mechanics, Shells and Biological Structures; Springer: Berlin/Heidelberg, Germany, 2002; pp. 257–270. [Google Scholar]
- Jia, F.; Cao, Y.P.; Liu, T.S.; Jiang, Y.; Feng, X.Q.; Yu, S.W. Wrinkling of a Bilayer Resting on a Soft Substrate under In-Plane Compression. Philos. Mag. 2012, 92, 1554–1568. [Google Scholar] [CrossRef]
- Singh, N.; Verma, A.; Sachan, P.; Sharma, A.; Kulkarni, M.M. Self-Organized Wrinkling in Thin Polymer Films under Solvent-Nonsolvent Solutions: Patterning Strategy for Microfluidic Applications. ACS Appl. Polym. Mater. 2021, 3, 6198–6206. [Google Scholar] [CrossRef]
- Cheng, Z.; Han, H.; Wang, F.; Yan, Y.; Shi, X.; Liang, H.; Zhang, X.; Shuai, Y. Efficient Radiative Cooling Coating with Biomimetic Human Skin Wrinkle Structure. Nano Energy 2021, 89, 106377. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Crosby, A.J.; Chen, Y.; Crosby, A.J. High Aspect Ratio Wrinkles via Substrate Prestretch. Adv. Mater. 2014, 26, 5626–5631. [Google Scholar] [CrossRef]
- Cao, Y.P.; Zheng, X.P.; Jia, F.; Feng, X.Q. Wrinkling and Creasing of a Compressed Elastoplastic Film Resting on a Soft Substrate. Comput. Mater. Sci. 2012, 57, 111–117. [Google Scholar] [CrossRef]
- Dupont, S.J.; Cates, R.S.; Stroot, P.G.; Toomey, R. Swelling-Induced Instabilities in Microscale, Surface-Confined Poly(N-Isopropylacryamide) Hydrogels. Soft Matter 2010, 6, 3876–3882. [Google Scholar] [CrossRef]
- Kasetsiriku, S.; Ketpun, D.; Chuah, Y.J.; Sriphutkiat, Y.; Wang, D.A.; Zhou, Y. Surface Creasing-Induced Micropatterned GelMA Using Heating-Hydration Fabrication for Effective Vascularization. Tissue Eng. Regen. Med. 2021, 18, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, V.; Kim, J.; Hayward, R.C. Creasing Instability of Surface-Attached Hydrogels. Soft Matter 2008, 4, 564–569. [Google Scholar] [CrossRef]
- Jin, L.; Takei, A.; Hutchinson, J.W. Mechanics of Wrinkle/Ridge Transitions in Thin Film/Substrate Systems. J. Mech. Phys. Solids 2015, 81, 22–40. [Google Scholar] [CrossRef]
- Cao, C.; Chan, H.F.; Zang, J.; Leong, K.W.; Zhao, X. Harnessing Localized Ridges for High-Aspect-Ratio Hierarchical Patterns with Dynamic Tunability and Multifunctionality. Adv. Mater. 2014, 26, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Campos, E.; Gallardo, A.; Lujan, N.; Santos-Coquillat, A.; Reinecke, H.; Del Campo, A.; Rodriguez-Hernandez, J. Wrinkled Hydrogel Surfaces with Modulated Surface Chemistry and Topography: Evaluation As Supports for Cell Growth and Transplant. ACS Appl. Bio Mater. 2019, 2, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Hatano, R.; Mercurio, K.; Luna, J.I.; Glaser, D.E.; Leppert, V.J.; McCloskey, K.E. Endothelial Cells Derived from Embryonic Stem Cells Respond to Cues from Topographical Surface Patterns. J. Biol. Eng. 2013, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Turner, W.S.; Wang, X.; Johnson, S.; Medberry, C.; Mendez, J.; Badylak, S.F.; McCord, M.G.; McCloskey, K.E. Cardiac Tissue Development for Delivery of Embryonic Stem Cell-Derived Endothelial and Cardiac Cells in Natural Matrices. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 2060–2072. [Google Scholar] [CrossRef] [PubMed]
- Major, R.; Lackner, J.M.; Sanak, M.; Major, B. Biomimetics in Thin Film Design: Niche-like Wrinkles Designed for i-Cell Progenitor Cell Differentiation. Mater. Sci. Eng. C 2017, 80, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.-G.; Jeong, H.E.; Kim, J. Multiscale Engineered Hierarchical Structures with Precisely Controlled Sizes for Bio-Inspired Cell Culture. Mater. Lett. 2015, 159, 213–217. [Google Scholar] [CrossRef]
- Eça, L.P.; Pinto, D.G.; de Pinho, A.M.S.; Mazzetti, M.P.V.; Odo, M.E.Y. Autologous Fibroblast Culture in the Repair of Aging Skin. Dermatol. Surg. 2012, 38, 180–184. [Google Scholar]
- Hughes, B.R.; Mirbagheri, M.; Waldman, S.D.; Hwang, D.K. Direct Cell-Cell Communication with Three-Dimensional Cell Morphology on Wrinkled Microposts. Acta Biomater. 2018, 78, 89–97. [Google Scholar] [CrossRef]
- Ge, L.; Yang, L.; Bron, R.; Burgess, J.K.; Van Rijn, P. Topography-Mediated Fibroblast Cell Migration Is Influenced by Direction, Wavelength, and Amplitude. ACS Appl. Bio Mater. 2020, 3, 2104–2116. [Google Scholar] [CrossRef]
- Bonisoli, A.; Marino, A.; Ciofani, G.; Greco, F. Neuronal Alignment and Outgrowth on Microwrinkled Conducting Polymer Substrates. Mater. Res. Soc. 2015, 1795, 13–18. [Google Scholar] [CrossRef]
- Mirbagheri, M.; Adibnia, V.; Hughes, B.R.; Waldman, S.D.; Banquy, X.; Hwang, D.K. Advanced Cell Culture Platforms: A Growing Quest for Emulating Natural Tissues. Mater. Horiz. 2019, 6, 45–71. [Google Scholar] [CrossRef]
- Patel, B.B.; McNamara, M.C.; Pesquera-Colom, L.S.; Kozik, E.M.; Okuzonu, J.; Hashemi, N.N.; Sakaguchi, D.S. Recovery of Encapsulated Adult Neural Progenitor Cells from Microfluidic-Spun Hydrogel Fibers Enhances Proliferation and Neuronal Differentiation. ACS Omega 2020, 5, 7910–7918. [Google Scholar] [CrossRef] [PubMed]
- Aufan, M.R.; Sumi, Y.; Kim, S.; Lee, J.Y. Facile Synthesis of Conductive Polypyrrole Wrinkle Topographies on Polydimethylsiloxane via a Swelling-Deswelling Process and Their Potential Uses in Tissue Engineering. ACS Appl. Mater. Interfaces 2015, 7, 23454–23463. [Google Scholar] [CrossRef] [PubMed]
- Bonisoli, A.; Marino, A.; Ciofani, G.; Greco, F. Topographical and Electrical Stimulation of Neuronal Cells through Microwrinkled Conducting Polymer Biointerfaces. Macromol. Biosci. 2017, 17, 1700128. [Google Scholar] [CrossRef]
- Mohammed, E.E.A.; El-Zawahry, M.; Farrag, A.R.H.; Aziz, N.N.A.; Sharaf-Eldin, W.; Abu-Shahba, N.; Mahmoud, M.; Gaber, K.; Ismail, T.; Mossaad, M.M.; et al. Osteogenic Differentiation Potential of Human Bone Marrow and Amniotic Fluid-Derived Mesenchymal Stem Cells in Vitro & in Vivo. Open Access Maced. J. Med. Sci. 2019, 7, 507–515. [Google Scholar] [PubMed]
- Abagnale, G.; Steger, M.; Nguyen, V.H.; Hersch, N.; Sechi, A.; Joussen, S.; Denecke, B.; Merkel, R.; Hoffmann, B.; Dreser, A.; et al. Surface Topography Enhances Differentiation of Mesenchymal Stem Cells towards Osteogenic and Adipogenic Lineages. Biomaterials 2015, 61, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Kilian, K.A.; Bugarija, B.; Lahn, B.T.; Mrksich, M. Geometric Cues for Directing the Differentiation of Mesenchymal Stem Cells. Proc. Natl. Acad. Sci. USA 2010, 107, 4872–4877. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gao, Q.; Ge, L.; Zhou, Q.; Warszawik, E.M.; Bron, R.; Lai, K.W.C.; Van Rijn, P. Topography Induced Stiffness Alteration of Stem Cells Influences Osteogenic Differentiation. Biomater. Sci. 2020, 8, 2638–2652. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Kwon, K.W.; Jung, H.; Kim, H.N.; Suh, K.Y.; Kim, K.; Kim, K.S. Direct Differentiation of Human Embryonic Stem Cells into Selective Neurons on Nanoscale Ridge/Groove Pattern Arrays. Biomaterials 2010, 31, 4360–4366. [Google Scholar] [CrossRef]
- Kim, D.H.; Han, K.; Gupta, K.; Kwon, K.W.; Suh, K.Y.; Levchenko, A. Mechanosensitivity of Fibroblast Cell Shape and Movement to Anisotropic Substratum Topography Gradients. Biomaterials 2009, 30, 5433–5444. [Google Scholar] [CrossRef]
- Kim, D.H.; Seo, C.H.; Han, K.; Kwon, K.W.; Levchenko, A.; Suh, K.Y. Guided Cell Migration on Microtextured Substrates with Variable Local Density and Anisotropy. Adv. Funct. Mater. 2009, 19, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Kim, D.H.; Kim, H.N.; Wang, C.J.; Kwak, M.K.; Hur, E.; Suh, K.Y.; An, S.S.; Levchenko, A. Directed Migration of Cancer Cells Guided by the Graded Texture of the Underlying Matrix. Nat. Mater. 2016, 15, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Carson, D.; Hnilova, M.; Yang, X.; Nemeth, C.L.; Tsui, J.H.; Smith, A.S.T.; Jiao, A.; Regnier, M.; Murry, C.E.; Tamerler, C.; et al. Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. ACS Appl. Mater. Interfaces 2016, 8, 21923–21932. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Castañeda Ocampo, O.; Guimarães, C.F.; Kühn, P.T.; Van Kooten, T.G.; Van Rijn, P. Screening Platform for Cell Contact Guidance Based on Inorganic Biomaterial Micro/Nanotopographical Gradients. ACS Appl. Mater. Interfaces 2017, 9, 31433–31445. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.T.; Chen, J.R.; Chen, Y.T.; Jiang, B.C.; Sie, Z.H.; Hsu, H.Y.; Chen, T.L.; Chiang, Y.Y.; Hsueh, H.Y. Sol–Gel-Derived Hierarchically Wrinkled Mesoporous Ceramics for Enhancement of Cell Alignment. Chem. Eng. J. 2021, 405, 126572. [Google Scholar] [CrossRef]
- Davis, K.A.; Burke, K.A.; Mather, P.T.; Henderson, J.H. Dynamic Cell Behavior on Shape Memory Polymer Substrates. Biomaterials 2011, 32, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Bernardeschi, I.; Greco, F.; Ciofani, G.; Marino, A.; Mattoli, V.; Mazzolai, B.; Beccai, L. A Soft, Stretchable and Conductive Biointerface for Cell Mechanobiology. Biomed. Microdevices 2015, 17, 46. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Baker, R.M.; Henderson, J.H.; Mather, P.T. In Vitro Wrinkle Formation via Shape Memory Dynamically Aligns Adherent Cells. Soft Matter 2013, 9, 4705–4714. [Google Scholar] [CrossRef]
- Sun, S.; Shi, H.; Moore, S.; Wang, C.; Ash-Shakoor, A.; Mather, P.T.; Henderson, J.H.; Ma, Z. Progressive Myofibril Reorganization of Human Cardiomyocytes on a Dynamic Nanotopographic Substrate. ACS Appl. Mater. Interfaces 2020, 12, 21450–21462. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, C.; Jia, J.; Sun, Y.; Fu, Q.; Pan, C. A Wrinkled Ag/CNTs-PDMS Composite Film for a High-Performance Flexible Sensor and Its Applications in Human-Body Single Monitoring. Nanomaterials 2019, 9, 850. [Google Scholar] [CrossRef]
- Oyunbaatar, N.E.; Lee, D.W. PDMS Cantilever Integrated with Metal Wrinkles to Measure Contractile Behaviours of Matured Cardiac Cells. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; pp. 807–810. [Google Scholar]
- Tang, J.; Guo, H.; Zhao, M.; Yang, J.; Tsoukalas, D.; Zhang, B.; Liu, J.; Xue, C.; Zhang, W. Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates. Sci. Rep. 2015, 5, 16527. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Qian, K.; Cai, A.; Tang, J.; Liu, J. Ordered Gold Nanoparticle Arrays on the Tip of Silver Wrinkled Structures for Single Molecule Detection. Sens. Actuators B Chem. 2019, 300, 126846. [Google Scholar] [CrossRef]
- Tang, J.; Guo, H.; Chen, M.; Yang, J.; Tsoukalas, D.; Zhang, B.; Liu, J.; Xue, C.; Zhang, W. Wrinkled Ag Nanostructured Gratings towards Single Molecule Detection by Ultrahigh Surface Raman Scattering Enhancement. Sens. Actuators B Chem. 2015, 218, 145–151. [Google Scholar] [CrossRef]
- Park, K.; Woo, M.A.; Lim, J.A.; Kim, Y.R.; Choi, S.W.; Lim, M.C. In Situ Synthesis of Directional Gold Nanoparticle Arrays along Ridge Cracks of PDMS Wrinkles. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 186–191. [Google Scholar] [CrossRef]
- Gole, M.T.; Yin, Z.; Wang, M.C.; Lin, W.; Zhou, Z.; Leem, J.; Takekuma, S.; Murphy, C.J.; Nam, S. Large Scale Self-Assembly of Plasmonic Nanoparticles on Deformed Graphene Templates. Sci. Rep. 2021, 11, 12232. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, A.; Youssef, A.; Damman, P. Superhydrophobic Surfaces Created by Elastic Instability of PDMS. Appl. Sci. 2016, 6, 152. [Google Scholar] [CrossRef]
- Jun, K.; Kim, D.; Ryu, S.; Oh, I.K. Surface Modification of Anisotropic Dielectric Elastomer Actuators with Uni-A Nd Bi-Axially Wrinkled Carbon Electrodes for Wettability Control. Sci. Rep. 2017, 7, 6091. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Li, H.; Yu, S.; Jiao, Z.; Li, L. Ridged Zn/PDMS Smart Surface with Wide-Range Reversible Wettability and High Sensitivity Responsive to Mechanical Strain. Mater. Des. 2020, 193, 108857. [Google Scholar] [CrossRef]
- Epstein, A.K.; Hong, D.; Kim, P.; Aizenberg, J. Biofilm Attachment Reduction on Bioinspired, Dynamic, Micro-Wrinkling Surfaces. New J. Phys. 2013, 15, 095018. [Google Scholar] [CrossRef]
- Gilmore, S.F.; Nanduri, H.; Parikh, A.N. Programmed Bending Reveals Dynamic Mechanochemical Coupling in Supported Lipid Bilayers. PLoS ONE 2011, 6, e28517. [Google Scholar] [CrossRef]
- Hao, Y.K.; Li, B.; Feng, X.Q.; Gao, H. Wrinkling–Dewrinkling Transitions in Stretched Soft Spherical Shells. Int. J. Solids Struct. 2024, 294, 112773. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Lu, C.; Hu, L.; Ni, Y.; Yu, S. Harnessing Multimodal Wrinkle Patterns in Flexible Films by Three-Axial Mechanical Loading. Extrem. Mech. Lett. 2024, 68, 102145. [Google Scholar] [CrossRef]
Type | Benefits | Limitations | Materials | Applications |
---|---|---|---|---|
Soft | Low cost, rapid prototyping, high biocompatibility, chemical stability, good mechanical properties, excellent optical transparency, and simple fabrication | Low electrical conductivity and thermal conductivity | PMMA | Cellular assay [42], organ on a chip [43,44], lab on a chip [45], antimicrobial surface [46] |
PDMS | Cellular assay [47,48,49,50,51,52,53], organ on a chip [54,55,56], lab on a chip [57,58,59,60], biomolecular assay, organoid [55] | |||
Polymers | Cellular assay [61,62], antimicrobial surface [63,64], biosensor [65] | |||
Hydrogels | Cellular assay [66,67,68,69,70,71,72,73,74,75], organ on a chip [76,77,78,79,80], wound healing [81,82], drug delivery [83,84], organoid [78,82] | |||
Hard | High electrical conductivity and thermal conductivity | Difficult to control the shape of the surface, poor solubility, difference in physical properties from in vivo systems, and opaque surface | Graphene-based materials | Cellular assay [85,86,87,88,89,90,91] |
Metal | Cellular assay [92,93], antimicrobial surface [94], biosensor [95,96,97] | |||
Hybrid | Advantage of both soft and hard materials at the same time and a variety of applications | Difficult to control the shape of the surface, complex fabrication process, and expensive unit price | Graphene–polymers | Cellular assay [40,41,98,99] |
Graphene–glass | Cellular assay [41,100] | |||
Graphene–hydrogels | Cellular assay [101,102] | |||
Metal–graphene | Wound healing [103] | |||
Metal–polymer | Bioactuator [104], lab on a chip [105,106,107] | |||
Metal–hydrogel | Cellular assay [108] | |||
Ceramic–hydrogel | Organ on a chip [109] | |||
Hydroxyapatite–PDMS | Organ on a chip [110] | |||
Nanoclay–hydrogel | Organ on a chip [111] | |||
Carbon-nanotubes–hydrogel | Biological transducer [112] |
Techniques | Methods to Form the Topography | Mechanism |
---|---|---|
Surface deformation technique |
|
|
Programmed technique (e.g., surface lithography) |
|
|
Application | Surface Deformation | Materials | Reference |
---|---|---|---|
Biosensor | Ridge–crack | Metal–PDMS | [153] |
Wrinkle | Metal–PDMS | [154,155] | |
Nanoparticle array | Ridge | Silver–PDMS | [156,157] |
PDMS | [158] | ||
Wrinkle | Graphene–PDMS | [159] | |
Wettability control | Wrinkle, Ridge | PDMS | [160] |
Ridge | Zinc–PDMS | [162] | |
VHB-4905–carbon-black | [161] | ||
Biofilm | Wrinkle | PDMS | [64,163] |
Lipid bilayer | Ridge | PDMS | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.; Fuwad, A.; Jeong, S.; Cho, H.; Jeon, T.-J.; Kim, S.M. Surface Deformation of Biocompatible Materials: Recent Advances in Biological Applications. Biomimetics 2024, 9, 395. https://doi.org/10.3390/biomimetics9070395
Yoon S, Fuwad A, Jeong S, Cho H, Jeon T-J, Kim SM. Surface Deformation of Biocompatible Materials: Recent Advances in Biological Applications. Biomimetics. 2024; 9(7):395. https://doi.org/10.3390/biomimetics9070395
Chicago/Turabian StyleYoon, Sunhee, Ahmed Fuwad, Seorin Jeong, Hyeran Cho, Tae-Joon Jeon, and Sun Min Kim. 2024. "Surface Deformation of Biocompatible Materials: Recent Advances in Biological Applications" Biomimetics 9, no. 7: 395. https://doi.org/10.3390/biomimetics9070395
APA StyleYoon, S., Fuwad, A., Jeong, S., Cho, H., Jeon, T. -J., & Kim, S. M. (2024). Surface Deformation of Biocompatible Materials: Recent Advances in Biological Applications. Biomimetics, 9(7), 395. https://doi.org/10.3390/biomimetics9070395